103 research outputs found

    Orthomodular-Valued Models for Quantum Set Theory

    Full text link
    In 1981, Takeuti introduced quantum set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed linear subspaces of a Hilbert space in a manner analogous to Boolean-valued models of set theory, and showed that appropriate counterparts of the axioms of Zermelo-Fraenkel set theory with the axiom of choice (ZFC) hold in the model. In this paper, we aim at unifying Takeuti's model with Boolean-valued models by constructing models based on general complete orthomodular lattices, and generalizing the transfer principle in Boolean-valued models, which asserts that every theorem in ZFC set theory holds in the models, to a general form holding in every orthomodular-valued model. One of the central problems in this program is the well-known arbitrariness in choosing a binary operation for implication. To clarify what properties are required to obtain the generalized transfer principle, we introduce a class of binary operations extending the implication on Boolean logic, called generalized implications, including even non-polynomially definable operations. We study the properties of those operations in detail and show that all of them admit the generalized transfer principle. Moreover, we determine all the polynomially definable operations for which the generalized transfer principle holds. This result allows us to abandon the Sasaki arrow originally assumed for Takeuti's model and leads to a much more flexible approach to quantum set theory.Comment: 25 pages, v2: to appear in Rev. Symb. Logic, v3: corrected typo

    A presentation of Quantum Logic based on an "and then" connective

    Full text link
    When a physicist performs a quantic measurement, new information about the system at hand is gathered. This paper studies the logical properties of how this new information is combined with previous information. It presents Quantum Logic as a propositional logic under two connectives: negation and the "and then" operation that combines old and new information. The "and then" connective is neither commutative nor associative. Many properties of this logic are exhibited, and some small elegant subset is shown to imply all the properties considered. No independence or completeness result is claimed. Classical physical systems are exactly characterized by the commutativity, the associativity, or the monotonicity of the "and then" connective. Entailment is defined in this logic and can be proved to be a partial order. In orthomodular lattices, the operation proposed by Finch (1969) satisfies all the properties studied in this paper. All properties satisfied by Finch's operation in modular lattices are valid in Hilbert Space Quantum Logic. It is not known whether all properties of Hilbert Space Quantum Logic are satisfied by Finch's operation in modular lattices. Non-commutative, non-associative algebraic structures generalizing Boolean algebras are defined, ideals are characterized and a homomorphism theorem is proved.Comment: 28 pages. Submitte

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    A Bridge Between Q-Worlds

    Get PDF
    Quantum set theory (QST) and topos quantum theory (TQT) are two long running projects in the mathematical foundations of quantum mechanics that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding quantum mechanics by reformulating parts of the theory inside of non-classical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to the physical interpretation, `Q-worlds'. Here, we provide a unifying framework that allows us to (i) better understand the relationship between different Q-worlds, and (ii) define a general method for transferring concepts and results between TQT and QST, thereby significantly increasing the expressive power of both approaches. Along the way, we develop a novel connection to paraconsistent logic and introduce a new class of structures that have significant implications for recent work on paraconsistent set theory
    • …
    corecore