457 research outputs found

    Bulk Scheduling with the DIANA Scheduler

    Full text link
    Results from the research and development of a Data Intensive and Network Aware (DIANA) scheduling engine, to be used primarily for data intensive sciences such as physics analysis, are described. In Grid analyses, tasks can involve thousands of computing, data handling, and network resources. The central problem in the scheduling of these resources is the coordinated management of computation and data at multiple locations and not just data replication or movement. However, this can prove to be a rather costly operation and efficient sing can be a challenge if compute and data resources are mapped without considering network costs. We have implemented an adaptive algorithm within the so-called DIANA Scheduler which takes into account data location and size, network performance and computation capability in order to enable efficient global scheduling. DIANA is a performance-aware and economy-guided Meta Scheduler. It iteratively allocates each job to the site that is most likely to produce the best performance as well as optimizing the global queue for any remaining jobs. Therefore it is equally suitable whether a single job is being submitted or bulk scheduling is being performed. Results indicate that considerable performance improvements can be gained by adopting the DIANA scheduling approach.Comment: 12 pages, 11 figures. To be published in the IEEE Transactions in Nuclear Science, IEEE Press. 200

    Grid applications for the BaBar experiment

    Get PDF
    This paper discusses the use of e-Science Grid in providing computational resources for modern international High Energy Physics (HEP) experiments. We investigate the suitability of the current generation of Grid software to provide the necessary resources to perform large-scale simulation of the experiment and analysis of data in the context of multinational collaboration

    Prikaz znanja u internetu stvari: semantičko modeliranje i njegove primjene

    Get PDF
    Semantic modelling provides a potential basis for interoperating among different systems and applications in the Internet of Things (IoT). However, current work has mostly focused on IoT resource management while not on the access and utilisation of information generated by the “Things”. We present the design of a comprehensive and lightweight semantic description model for knowledge representation in the IoT domain. The design follows the widely recognised best practices in knowledge engineering and ontology modelling. Users are allowed to extend the model by linking to external ontologies, knowledge bases or existing linked data. Scalable access to IoT services and resources is achieved through a distributed, semantic storage design. The usefulness of the model is also illustrated through an IoT service discovery method.Semantičko modeliranje pruža potencijalnu osnovu za me.udjelovanje različitih sustava i aplikacija unutar interneta stvari (IoT). Međutim, postojeći radovi uglavnom su fokusirani na upravljanje IoT resursima, ali ne i pristupu i korištenju informacija koje generira “stvar”. Predstavljamo projektiranje sveobuhvatnog i laganog semantičkog opisnog modela za prikaz znanja u IoT domeni. Projektiranje slijedi široko-priznate najbolje običaje u inženjerstvu znanja i ontološkom modeliranju. Korisnicima se dopušta proširenje modela povezivanjem na eksterne ontologije, baze znanja ili postoje će povezane podatke. Skalabilni pristup IoT uslugama i resursima postiže se kroz distribuirano, semantičko projektiranje pohrane. Upotrebljivost modela tako.er je ilustrirana kroz metodu pronalaska IoT usluga

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    The Prom Problem: Fair and Privacy-Enhanced Matchmaking with Identity Linked Wishes

    Get PDF
    In the Prom Problem (TPP), Alice wishes to attend a school dance with Bob and needs a risk-free, privacy preserving way to find out whether Bob shares that same wish. If not, no one should know that she inquired about it, not even Bob. TPP represents a special class of matchmaking challenges, augmenting the properties of privacy-enhanced matchmaking, further requiring fairness and support for identity linked wishes (ILW) – wishes involving specific identities that are only valid if all involved parties have those same wishes. The Horne-Nair (HN) protocol was proposed as a solution to TPP along with a sample pseudo-code embodiment leveraging an untrusted matchmaker. Neither identities nor pseudo-identities are included in any messages or stored in the matchmaker’s database. Privacy relevant data stay within user control. A security analysis and proof-of-concept implementation validated the approach, fairness was quantified, and a feasibility analysis demonstrated practicality in real-world networks and systems, thereby bounding risk prior to incurring the full costs of development. The SecretMatch™ Prom app leverages one embodiment of the patented HN protocol to achieve privacy-enhanced and fair matchmaking with ILW. The endeavor led to practical lessons learned and recommendations for privacy engineering in an era of rapidly evolving privacy legislation. Next steps include design of SecretMatch™ apps for contexts like voting negotiations in legislative bodies and executive recruiting. The roadmap toward a quantum resistant SecretMatch™ began with design of a Hybrid Post-Quantum Horne-Nair (HPQHN) protocol. Future directions include enhancements to HPQHN, a fully Post Quantum HN protocol, and more
    corecore