6,439 research outputs found

    On matching property for groups and field extensions

    Get PDF
    In this paper we prove a sufficient condition for the existence of matchings in arbitrary groups and its linear analogue, which lead to some generalizations of the existing results in the theory of matchings in groups and central extensions of division rings. We introduce the notion of relative matchings between arrays of elements in groups and use this notion to study the behavior of matchable sets under group homomorphisms. We also present infinite families of prime numbers p such that ℤ/pℤ does not have the acyclic matching property. Finally, we introduce the linear version of acyclic matching property and show that purely transcendental field extensions satisfy this property

    Minimal Envy and Popular Matchings

    Full text link
    We study ex-post fairness in the object allocation problem where objects are valuable and commonly owned. A matching is fair from individual perspective if it has only inevitable envy towards agents who received most preferred objects -- minimal envy matching. A matching is fair from social perspective if it is supported by majority against any other matching -- popular matching. Surprisingly, the two perspectives give the same outcome: when a popular matching exists it is equivalent to a minimal envy matching. We show the equivalence between global and local popularity: a matching is popular if and only if there does not exist a group of size up to 3 agents that decides to exchange their objects by majority, keeping the remaining matching fixed. We algorithmically show that an arbitrary matching is path-connected to a popular matching where along the path groups of up to 3 agents exchange their objects by majority. A market where random groups exchange objects by majority converges to a popular matching given such matching exists. When popular matching might not exist we define most popular matching as a matching that is popular among the largest subset of agents. We show that each minimal envy matching is a most popular matching and propose a polynomial-time algorithm to find them

    A simple characterization of special matchings in lower Bruhat intervals

    Full text link
    We give a simple characterization of special matchings in lower Bruhat intervals (that is, intervals starting from the identity element) of a Coxeter group. As a byproduct, we obtain some results on the action of special matchings.Comment: accepted for publication on Discrete Mathematic

    A simple characterization of special matchings in lower Bruhat intervals

    Get PDF
    We give a simple characterization of special matchings in lower Bruhat intervals (that is, intervals starting from the identity element) of a Coxeter group. As a byproduct, we obtain some results on the action of special matchings.Comment: accepted for publication on Discrete Mathematic

    The combinatorial invariance conjecture for parabolic Kazhdan-Lusztig polynomials of lower intervals

    Full text link
    The aim of this work is to prove a conjecture related to the Combinatorial Invariance Conjecture of Kazhdan-Lusztig polynomials, in the parabolic setting, for lower intervals in every arbitrary Coxeter group. This result improves and generalizes, among other results, the main results of [Advances in Math. {202} (2006), 555-601], [Trans. Amer. Math. Soc. {368} (2016), no. 7, 5247--5269].Comment: to appear in Advances in Mathematic

    Special matchings in Coxeter groups

    Full text link
    Special matchings are purely combinatorial objects associated with a partially ordered set, which have applications in Coxeter group theory. We provide an explicit characterization and a complete classification of all special matchings of any lower Bruhat interval. The results hold in any arbitrary Coxeter group and have also applications in the study of the corresponding parabolic Kazhdan--Lusztig polynomials.Comment: 19 page
    corecore