6,503 research outputs found

    SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases

    Get PDF
    The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs

    A Comparative Analysis of Graph Vs Relational Database For Instructional Module Development System

    Get PDF
    abstract: In today's data-driven world, every datum is connected to a large amount of data. Relational databases have been proving itself a pioneer in the field of data storage and manipulation since 1970s. But more recently they have been challenged by NoSQL graph databases in handling data models which have an inherent graphical representation. Graph databases with the ability to store physical relationships between two nodes and native graph processing technique have been doing exceptionally well in graph data storage and management for applications like recommendation engines, biological modeling, network modeling, social media applications, etc. Instructional Module Development System (IMODS) is a web-based software system that guides STEM instructors through the complex task of curriculum design, ensures tight alignment between various components of a course (i.e., learning objectives, content, assessments), and provides relevant information about research-based pedagogical and assessment strategies. The data model of IMODS is highly connected and has an inherent graphical representation between all its entities with numerous relationships between them. This thesis focuses on developing an algorithm to determine completeness of course design developed using IMODS. As part of this research objective, the study also analyzes the data model for best fit database to run these algorithms. As part of this thesis, two separate applications abstracting the data model of IMODS have been developed - one with Neo4j (graph database) and another with PostgreSQL (relational database). The research objectives of the thesis are as follows: (i) evaluate the performance of Neo4j and PostgreSQL in handling complex queries that will be fired throughout the life cycle of the course design process; (ii) devise an algorithm to determine the completeness of a course design developed using IMODS. This thesis presents the process of creating data model for PostgreSQL and converting it into a graph data model to be abstracted by Neo4j, creating SQL and CYPHER scripts for undertaking experiments on both platforms, testing and elaborate analysis of the results and evaluation of the databases in the context of IMODS.Dissertation/ThesisMasters Thesis Computer Science 201

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems
    • …
    corecore