88,511 research outputs found

    Matching hierarchical structures for shape recognition

    Get PDF
    In this thesis we aim to develop a framework for clustering trees and rep- resenting and learning a generative model of graph structures from a set of training samples. The approach is applied to the problem of the recognition and classification of shape abstracted in terms of its morphological skeleton. We make five contributions. The first is an algorithm to approximate tree edit-distance using relaxation labeling. The second is the introduction of the tree union, a representation capable of representing the modes of structural variation present in a set of trees. The third is an information theoretic approach to learning a generative model of tree structures from a training set. While the skeletal abstraction of shape was chosen mainly as a exper- imental vehicle, we, nonetheless, make some contributions to the fields of skeleton extraction and its graph representation. In particular, our fourth contribution is the development of a skeletonization method that corrects curvature effects in the Hamilton-Jacobi framework, improving its localiza- tion and noise sensitivity. Finally, we propose a shape-measure capable of characterizing shapes abstracted in terms of their skeleton. This measure has a number of interesting properties. In particular, it varies smoothly as the shape is deformed and can be easily computed using the presented skeleton extraction algorithm. Each chapter presents an experimental analysis of the proposed approaches applied to shape recognition problems

    A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model

    Full text link
    A graph theoretic approach is proposed for object shape representation in a hierarchical compositional architecture called Compositional Hierarchy of Parts (CHOP). In the proposed approach, vocabulary learning is performed using a hybrid generative-descriptive model. First, statistical relationships between parts are learned using a Minimum Conditional Entropy Clustering algorithm. Then, selection of descriptive parts is defined as a frequent subgraph discovery problem, and solved using a Minimum Description Length (MDL) principle. Finally, part compositions are constructed by compressing the internal data representation with discovered substructures. Shape representation and computational complexity properties of the proposed approach and algorithms are examined using six benchmark two-dimensional shape image datasets. Experiments show that CHOP can employ part shareability and indexing mechanisms for fast inference of part compositions using learned shape vocabularies. Additionally, CHOP provides better shape retrieval performance than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp 566-581. Supplementary material can be downloaded from http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates
    • …
    corecore