626 research outputs found

    Generalized Matching Preclusion in Bipartite Graphs

    Get PDF
    The matching preclusion number of a graph with an even number of vertices is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal such sets are precisely sets of edges incident to a single vertex. The conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond these, and it is defined as the minimum number of edges whose deletion results in a graph with neither isolated vertices nor perfect matchings. In this paper we generalize this concept to get a hierarchy of stronger matching preclusion properties in bipartite graphs, and completely characterize such properties of complete bipartite graphs and hypercubes

    Tight upper bound on the maximum anti-forcing numbers of graphs

    Full text link
    Let GG be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of GG is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of GG and investigate the extremal graphs. If GG has a perfect matching MM whose anti-forcing number attains this upper bound, then we say GG is an extremal graph and MM is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of GG and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of GG, which are the automorphisms α\alpha of order two such that vv and α(v)\alpha(v) are adjacent for every vertex vv. We demonstrate that all extremal graphs can be constructed from K2K_2 by implementing two expansion operations, and GG is extremal if and only if one factor in a Cartesian decomposition of GG is extremal. As examples, we have that all perfect matchings of the complete graph K2nK_{2n} and the complete bipartite graph Kn,nK_{n, n} are nice. Also we show that the hypercube QnQ_n, the folded hypercube FQnFQ_n (n4n\geq4) and the enhanced hypercube Qn,kQ_{n, k} (0kn40\leq k\leq n-4) have exactly nn, n+1n+1 and n+1n+1 nice perfect matchings respectively.Comment: 15 pages, 7 figure

    Boxicity and Cubicity of Product Graphs

    Full text link
    The 'boxicity' ('cubicity') of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in RkR^k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of dd, of the boxicity and the cubicity of the dd-th power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dd-th Cartesian power of any given finite graph is in O(logd/loglogd)O(\log d / \log\log d) and θ(d/logd)\theta(d / \log d), respectively. On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products.Comment: 14 page

    Parity balance of the ii-th dimension edges in Hamiltonian cycles of the hypercube

    Full text link
    Let n2n\geq 2 be an integer, and let i{0,...,n1}i\in\{0,...,n-1\}. An ii-th dimension edge in the nn-dimensional hypercube QnQ_n is an edge v1v2{v_1}{v_2} such that v1,v2v_1,v_2 differ just at their ii-th entries. The parity of an ii-th dimension edge \edg{v_1}{v_2} is the number of 1's modulus 2 of any of its vertex ignoring the ii-th entry. We prove that the number of ii-th dimension edges appearing in a given Hamiltonian cycle of QnQ_n with parity zero coincides with the number of edges with parity one. As an application of this result it is introduced and explored the conjecture of the inscribed squares in Hamiltonian cycles of the hypercube: Any Hamiltonian cycle in QnQ_n contains two opposite edges in a 4-cycle. We prove this conjecture for n7n \le 7, and for any Hamiltonian cycle containing more than 2n22^{n-2} edges in the same dimension. This bound is finally improved considering the equi-independence number of Qn1Q_{n-1}, which is a concept introduced in this paper for bipartite graphs

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure
    corecore