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Abstract

The matching preclusion number of a graph with an even number of vertices is
the minimum number of edges whose deletion results in a graph that has no perfect
matchings. For many interconnection networks, the optimal such sets are precisely sets
of edges incident to a single vertex, whose deletion creates an isolated vertex, which
is an obstruction to the existence of a perfect matching. The conditional matching
preclusion number of a graph was introduced to look for obstruction sets beyond these,
and it is defined as the minimum number of edges whose deletion results in a graph with
neither isolated vertices nor perfect matchings. In this paper we generalize this concept
to get a hierarchy of stronger matching preclusion properties in bipartite graphs, and
completely characterize such properties of complete bipartite graphs and hypercubes.

Keywords: Interconnection network; perfect matching; bipartite graph

1 Introduction

A perfect matching in a graph is a set of edges such that every vertex is incident with
exactly one edge in this set. So if a graph has a perfect matching, then it has an even
number of vertices. In this paper we only consider graphs with an even number of vertices.
The matching preclusion number of a graph G, denoted by mp(G), is the minimum number
of edges whose deletion leaves the resulting graph without perfect matchings. Any such
optimal set is called an optimal matching preclusion set. We note that mp(G) = 0 if G has
no perfect matchings. This concept of matching preclusion was introduced by Brigham et
al. [3] and further studied in [9, 6] as a measure of robustness in the event of edge failures
in interconnection networks, as well as a theoretical connection to conditional connectivity,
“changing and unchanging of invariants” and extremal graph theory. We refer the readers
to [3] for details and additional references. The idea of studying the effect of deleting edges
on maximum matchings has been considered prior to [3]. For example, Hung et al. [13]
studied the most “vital” edges of a matching in a bipartite graph, that is, those edges whose
individual removal results in the largest decrease of the objective function value in the
corresponding weighted matching problem. It turns out that this problem can be obtained
from the dual solution (by linear programming) as observed by Volgenant [23] in reference
of [15]. More recently, Zenklusen [25] studied matching interdiction and [21, 26] studied
d-blockers of a graph. In particular, a d-blocker is a set of edges whose deletion decreases the
cardinality of a maximum matching by at least d. So a 1-blocker corresponds to a matching
preclusion set if the underlying graph has a perfect matching. Algorithmic aspects of finding
optimal 1-blockers have been considered by Boros et al. [2].

Distributed processor architectures offer the advantage of improved connectivity and
reliability. An important component of such a distributed system is the system topology,
which defines the inter-processor communication architecture. In certain applications every
vertex requires a special partner at any given time, and the matching preclusion number
measures the robustness of this requirement in the event of link failures as indicated in [3].
Hence in these interconnection networks it is desirable to have the property that the only
optimal matching preclusion sets are those whose elements are incident to a single vertex.
Indeed, since one common criterion in interconnection networks is regularity, we are only
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interested in connected regular graphs. Clearly, deleting all edges incident to a single vertex
will give an isolated vertex, so the following result is immediate:

Proposition 1.1. If G is a graph with an even number of vertices, then mp(G) ≤ δ(G),
where δ(G) is the minimum degree of G.

If mp(G) = δ(G), then G is called maximally matched. We call an optimal matching
preclusion set whose deletion isolates a vertex in G a trivial optimal matching preclusion set.
As mentioned above, it is desirable for an interconnection network to have only trivial optimal
matching preclusion sets, so we call a graph G super matched if every optimal matching
preclusion set is trivial (and thus mp(G) = δ(G), so G is also maximally matched). Note
that this condition implies that the graph has a perfect matching unless it has an isolated
vertex. Most classes of interconnection networks have too many vertices to consider practical
algorithms on these graphs (for example, the hypercube Qn has 2n vertices, so one usually
cannot find a polynomial time algorithm in terms of n). So instead of finding algorithms to
compute a particular measure such as the matching preclusion number of a graph (for which
the corresponding decision problem has recently been shown to be NP-complete, see [12]),
researchers in this area usually are only interested in graphs that have the best possible value
of the given measure, for example, super matched graphs. This naturally leads to the desire
of finding necessary and sufficient conditions that are easy to check, and if it is difficult to do
so, one wants a “good” sufficient condition. It turns out that a classical result of Plesńık [20]
gives such a result for graphs to be maximally matched, and [4, 8] extended this result in
other contexts.

In the event of random link failures it is unlikely in a distributed system that all edges
incident to a single vertex fail simultaneously. Hence it is natural to require that the faulty
graph (i.e., the graph obtained by deleting the failed edges) has no isolated vertices, and
ask what the obstruction sets are for the graph to have a perfect matching. This motivates
the following definition given in [7]: The conditional matching preclusion number of a super
matched graph G, denoted by mp1(G), is the minimum number of edges whose deletion leaves
the resulting graph with no isolated vertices and no perfect matchings. Any such optimal
set is called an optimal conditional matching preclusion set. We note that mp1(G) = 0 if G
has no perfect matchings (assuming G has no isolated vertices), and we will leave mp1(G)
undefined if a conditional matching preclusion set does not exist, that is, we cannot delete
edges to satisfy both conditions in the definition. We remark that in our definition we only
consider the conditional matching preclusion problem for graphs that are super matched.
Although it is not necessary to do so, we believe this approach is more natural in light of
the later generalization of these concepts, because it results in a nested hierarchy of stronger
and stronger matching preclusion properties.

If we delete edges so that the resulting graph has no isolated vertices, then a basic
obstruction to a perfect matching will be the existence of a path u–v–w in the resulting
graph where the degree of u and the degree of w are 1. (In other words, the neighborhood
of the two vertices u and w consists of only one vertex, v.) To produce such an obstruction
set, one can pick any path u–v–w in the original graph and delete all the edges incident to
either u or w but not to v. Accordingly we define

νe(G) = min{dG(u) + dG(w)− 2− yG(u,w) : u and w are ends of a 2-path},
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where dG(u) is the degree of vertex u and yG(u,w) = 1 if u and w are adjacent and 0
otherwise. (We will suppress G and simply write d(u) and y(u,w) if it is clear from the
context.) So mirroring Proposition 1.1, we have the following easy result.

Proposition 1.2. If G is a super matched graph with an even number of vertices and
δ(G) ≥ 3, then mp1(G) ≤ νe(G).

Note that the degree condition δ(G) ≥ 3 in Proposition 1.2 simply ensures that deleting
all edges incident to either u or w but not to v of any path u–v–w does not create an isolated
vertex (which can happen when vertices u and w have a common neighbor of degree 2
different from v). In fact, it is easy to show that Proposition 1.2 holds even when δ(G) = 2
except for the 4-cycle, for which the conditional matching preclusion number is undefined.

If G is super matched and mp1(G) = νe(G), then G is called conditionally maximally
matched, and an optimal conditional matching preclusion set whose deletion creates two
vertices whose neighborhood is one vertex (as in the definition of νe(G)) is called a trivial
optimal conditional matching preclusion set. As mentioned earlier, the matching preclusion
number measures the robustness of this requirement in the event of link failures, so it is
desirable for an interconnection network to be super matched. Similarly, it is desirable to
have the property that all optimal conditional matching preclusion sets are trivial as well.
Such an interconnection network is called conditionally super matched. This concept was
introduced in [7], where the conditional matching preclusion problem was considered for
a number of basic networks including hypercubes, and it was proved that they have this
desired property. We have remarked earlier that we only consider the conditional matching
preclusion problem for super matched graphs. One question is what happens without this
restriction: Can we find a graph that is not super matched but satisfies the other conditions
of conditionally super matched? The answer is yes: The 6-cycle C6 is such an example. Since
the purpose of considering the conditional matching preclusion problem is to determine which
super matched graphs are comparatively more resilient, it is natural to exclude such examples
and only consider super matched graphs as we have done here. More importantly, this way
we develop a nested hierarchy of successively stronger matching preclusion properties.

Since the introduction of the concepts of matching preclusion and conditional matching
preclusion, a lot of research has been done in this area for various classes of interconnection
networks in [9, 6, 10, 11, 18, 19, 17, 14, 5] and sufficient conditions have been given for
general graphs in [8]. In this paper we generalize this concept to get a hierarchy of stronger
matching preclusion properties in bipartite graphs, and determine such properties of the
complete bipartite graphs and the hypercubes. In Section 2 we introduce the necessary
concepts, in Section 3 we examine complete bipartite graphs, and in Section 4 we prove our
main results about hypercubes.

2 Generalized matching preclusion

A 2-regular connected bipartite graph is an even cycle, so we consider only graphs that are
at least 3-regular. We use standard graph theory terminology. In bipartite graphs there
is one obvious impediment to finding perfect matchings. Given a bipartite graph H with
bipartition (V1, V2), consider a subset of vertices W from one part. Let NH(W ) be the set of
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vertices that are adjacent to a vertex in W . (We suppress H if it is clear from the context.)
If |NH(W )| < |W |, then there is clearly no possibility of forming a perfect matching, since
every matching would have to omit at least one vertex in W . Such a set W is called an
obstruction set. (Note that a matching preclusion set is a set of edges in the original graph,
while an obstruction set is a set of vertices showing the non-existence of a perfect matching
after a matching preclusion set has been deleted.) A well-known result regarding obstruction
sets is the following corollary of Hall’s Theorem [16]:

Theorem 2.1. A bipartite graph H has a perfect matching if and only if there are no
obstruction sets in it.

Another easy well-known corollary to Hall’s Theorem is that the edges of a k-regular
bipartite graph can be partitioned into k perfect matchings. This fact immediately implies
the following: If G is a k-regular bipartite graph, then G is maximally matched, that is,
mp(G) = k.

Let H be a bipartite graph. If W is an obstruction set in H, we call W a (|W |, |NH(W )|)-
obstruction set.

So deleting edges of a trivial matching preclusion set creates a (1, 0)-obstruction set, and
deleting a trivial conditional matching preclusion set creates a (2, 1)-obstruction set without
creating (1, 0)-obstruction sets in the resulting graph.

We will now look at the matching preclusion problem from a different perspective. We
want to delete a minimum sized set of edges from a bipartite graph G with bipartition (V1, V2)
to destroy all perfect matchings. By Theorem 2.1, we need to create an obstruction set, i.e.,
choose (W,U) with |W | > |U | such that either W ⊆ V1, U ⊆ V2 or W ⊆ V2, U ⊆ V1, and
choose the set F of edges to be deleted to be F = δG(W )− δG(W,U), where δG(W,U) is the
set of edges between W and U , and δG(W ) is the notational simplification of δG(W,W ) (W
is the complement of W with respect to the set of vertices). Note that this should cause no
confusion with the use of δ(G) to mean the minimum degree of G.

We will need the following proposition:

Proposition 2.1. Let G = (V,E) be a bipartite graph, and let F ⊆ E be a matching
preclusion set in G. If G− F has an (a, b)-obstruction set (where a > b), then there exists
F ′ ⊆ F such that G− F ′ has a (b+ 1, b)-obstruction set.

Proof. Let G have bipartition (V1, V2), and assume that G−F contains an (a, b)-obstruction
set W , so |W | = a > b = |NG−F (W )|. By symmetry we may assume that W ⊆ V1. Clearly
δG(W,V2 − NG−F (W )) ⊆ F . For each vertex in NG−F (W ) pick a vertex adjacent to it
in W , then pick more vertices of W until we have picked b + 1 vertices in total. Let W ′

be the set of these chosen vertices, and let F ′ = δG(W ′, V2 − NG−F (W )) ⊆ F . Clearly
NG−F ′(W

′) = NG−F (W ), so W ′ is a (b+ 1, b)-obstruction set in G−F ′, and F ′ ⊆ F , proving
the claim.

Proposition 2.1 implies that if we want to find F ⊆ E of smallest size in a bipartite
graphG such thatG−F has no perfect matchings, we only need to consider creating (a, a−1)-
obstruction sets. This observation motivates us to introduce the following concepts. Let
G = (V,E) be a bipartite graph and a ≥ 1 an integer. A set F ⊆ E is a matching preclusion
set of order a if G−F has no perfect matchings and it does not have any (b, b−1)-obstruction
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sets for all positive b such that b ≤ a− 1 (it is possible that it has no (a, a− 1)-obstruction
set either, only a (c, c−1)-obstruction set for some c > a). The matching preclusion problem
of order a is to find a smallest matching preclusion set of order a; the size of such a set
is the matching preclusion number of order a. Ideally, we would want a smallest matching
preclusion set of order a to have the property that the deletion of its edges does create an
(a, a − 1)-obstruction set. Such a matching preclusion set will be called trivial. We call G
maximally matched of order a if the matching preclusion problem of order a is solved by
a trivial matching preclusion set of order a. Graph G is super matched of order a if, in
addition, every optimal solution to the matching preclusion problem of order a is a trivial
matching preclusion set of order a. These definitions, as given here, allow a graph to be not
super matched of order a−1 but still maximally matched of order a. (For example, a 6-cycle
is not super matched of order 1 but it is maximally matched of order 2 and super matched
of order 2.) Since it is desirable to have these to be successively stronger properties, we
only want to investigate whether a graph is maximally matched of order a if it is also super
matched of order 1, 2, . . . , a−1. So we call a graph strongly maximally matched of order a if it
is super matched of order 1, 2, . . . , a−1 and maximally matched of order a. Similarly we call
a graph strongly super matched of order a if it is super matched of order 1, 2, . . . , a−1, a. Thus
strongly maximally matched of order a and strongly super matched of order a for a = 1, 2, . . .
will give a nested hierarchy of successively stronger matching preclusion properties, as we
wanted.

Note that the earlier notion of maximally matched is the same as maximally matched of
order 1, and similarly, super matched is the same as super matched of order 1, conditionally
maximally matched is the same as strongly maximally matched of order 2, and conditionally
super matched is the same as strongly super matched of order 2. We will study this problem
first for complete bipartite graphs in Section 3 and then for hypercubes in Section 4, and
give a complete characterization of when they are strongly maximally matched of order a
and strongly super matched of order a.

3 Complete bipartite graphs

Although the complete bipartite graph Kn,n is not a suitable interconnection network, it is
still illuminative for us to solve the generalized matching preclusion problem for this graph
to gain understanding. Let gK(n, k) be the minimum number of edges whose deletion creates
a (k, k − 1)-obstruction set in Kn,n. We have the following easy result:

Proposition 3.1. Let 1 ≤ k ≤ n. Then gK(n, k) = gK(n, n−k+1) = k(n−k+1). Moreover,
if F is a minimum set of edges in Kn,n such that the deletion of F creates a (k, k − 1)-
obstruction set, then Kn,n − F contains exactly one (k, k − 1)-obstruction set and exactly
one (n− k + 1, n− k)-obstruction set, but no other obstruction sets.

Proof. Let the bipartition of Kn,n be (V1, V2), and assume that F is a minimum set of edges
in Kn,n such that the deletion of F creates a (k, k−1)-obstruction set W . Thus |W | = k and
|NKn,n−F (W )| = k − 1. By symmetry we may assume that W ⊆ V1 and NKn,n−F (W ) ⊆ V2.
Clearly F must contain all edges between the k vertices of W and the n− (k− 1) vertices in
V2 −NKn,n−F (W ) to create a (k, k − 1)-obstruction set, so if it is minimum, it must contain
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exactly these edges. Therefore gK(n, k) = k(n − k + 1). Notice that the neighborhood of
V2−NKn,n−F (W ) in Kn,n−F is exactly V1−W , so V2−NKn,n−F (W ) is an (n−k+1, n−k)-
obstruction set in Kn,n − F , and it is clearly minimum, hence gK(n, k) = gK(n, n − k + 1).
It remains to show that these are the only obstruction sets that are created by the deletion
of F . Let Y be any obstruction set in Kn,n − F . First assume ∅ 6= Y ⊆ V1. If Y contains a
vertex of V1 −W , then NKn,n−F (Y ) = V2, so Y is not an obstruction set. If Y ⊆ W , then
|NKn,n−F (Y )| = |NKn,n−F (W )| = k − 1, so the only way for Y to be an obstruction set is if
Y = W .

If ∅ 6= Y ⊆ V2, we can show by a similar argument that we must have Y = V2 −
NKn,n−F (W ), finishing the proof.

Next we have the following result about how to determine whether Kn,n is maximally or
super matched of order a.

Proposition 3.2. Let n ≥ 2 and a ≤ dn
2
e. The graph Kn,n is maximally matched of order a

if and only if gK(n, a) ≤ gK(n, k) for all k with a + 1 ≤ k ≤ dn
2
e; moreover, Kn,n is super

matched of order a if and only if gK(n, a) < gK(n, k) for all k with a+ 1 ≤ k ≤ dn
2
e.

Proof. First note that as we have seen in the proof of Proposition 3.1, deleting gK(n, k) edges
appropriately to create a (k, k − 1)-obstruction set will also create an (n − k + 1, n − k)-
obstruction set when viewed from the other side, but it will not create any other obstruction
set, in particular, any (b, b − 1)-obstruction set with b < min(k, n − k + 1). This limits the
possible values of a that we can consider. If n is even, say n = 2r, then Kn,n cannot be
maximally or super matched of order r+1 or higher. Indeed, deleting gK(n, r+1) appropriate
edges will produce both an (r+1, r)-obstruction set and an (r, r−1)-obstruction set, so there
are no matching preclusion sets of order r + 1 (or higher) at all in Kn,n. Similarly, if n is
odd, say n = 2r + 1, then Kn,n cannot be maximally or super matched of order r + 2 or
higher. This is why we have a ≤ dn

2
e in the proposition. In addition, one may be tempted to

think that for a fixed a, the graph Kn,n being maximally matched of order a is equivalent to
gK(n, a) ≤ gK(n, k) for all k such that a + 1 ≤ k ≤ n (with strict inequality for gK instead
for super matched of order a). The above observation also shows that we need to ignore
values of gK(n, k) when k > n − a + 1, and then because of the symmetry of the function
gK(n, k), we can have k ≤ dn

2
e in the claim.

First assume that gK(n, a) ≤ gK(n, k) for all k with a + 1 ≤ k ≤ dn
2
e, and let F be

a minimum matching preclusion set of order a in Kn,n. Then the deletion of F in Kn,n

must create a (k, k − 1)-obstruction set for some k ≥ a. Proposition 3.1 then implies that
|F | = gK(n, k), and there are exactly two obstruction sets in Kn,n−F : a (k, k−1)-obstruction
set and an (n− k + 1, n− k)-obstruction set. From the definition of a matching preclusion
set of order a, we must have n − k + 1 ≥ a. If a ≤ k ≤ dn

2
e, then immediately we get

|F | = gK(n, k) ≥ gK(n, a). If, on the other hand, k > dn
2
e, then dn

2
e > n − k + 1 ≥ a, so

again |F | = gK(n, n−k+1) ≥ gK(n, a). Now let F be a minimum set of edges whose deletion
creates an (a, a − 1)-obstruction set in Kn,n. Then |F | = gK(n, a), and there are exactly
two obstruction sets in Kn,n − F : an (a, a − 1)-obstruction set and an (n − a + 1, n − a)-
obstruction set. Since a ≤ dn

2
e, we have n− a+ 1 ≥ a, so F is a trivial matching preclusion

set of order a. Since every minimum matching preclusion set of order a in Kn,n has size at
least gK(n, k) = |F |, the graph Kn,n is maximally matched of order a.
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A similar argument shows that if gK(n, a) < gK(n, k) for all k with a + 1 ≤ k ≤ dn
2
e,

then Kn,n is super matched of order a.
Now fix a ≤ dn

2
e and assume that Kn,n is maximally matched of order a. Let F be a set of

edges in Kn,n whose deletion produces a (k, k − 1)-obstruction set such that |F | = gK(n, k)
and a + 1 ≤ k ≤ dn

2
e. (This is unique up to isomorphism.) Then Kn,n − F contains

only a (k, k − 1) obstruction set and an (n − k + 1, n − k)-obstruction set. Notice that
n − k + 1 ≥ dn

2
e ≥ a whenever k ≤ dn

2
e, so Kn,n − F has no (b, b − 1)-obstruction sets

for any b < a. Therefore F is a matching preclusion set of order a, so we must have
gK(n, a) ≤ gK(n, k) by the definition of maximally matched of order a.

By a similar argument we get gK(n, a) < gK(n, k) for all k with a+1 ≤ k ≤ dn
2
e if instead

we assume that Kn,n is super matched of order a.

Note that when a reaches its upper bound in Proposition 3.2, there is an interesting
scenario. If n = 2r, Proposition 3.2 states that K2r,2r is maximally matched of order r if and
only if gK(n, r) ≤ gK(n, k) for all r + 1 ≤ k ≤ r, which is vacuously true (every matching
preclusion set of order r is trivial). However, the ultimate goal is to consider the strong
version, that is, we are only interested in this case if K2r,2r is already super matched of order
1, 2, . . . , r − 1, and these statements have substance. We are now ready to show our result
for the complete bipartite graph Kn,n.

Theorem 3.1. Let n ≥ 2. The graph Kn,n is super matched of order a whenever 1 ≤ a ≤
dn
2
e. Moreover, it is strongly super matched of order a whenever 1 ≤ a ≤ dn

2
e.

Proof. Both statements follow directly from Proposition 3.2 and the fact that gK(n, k) =
k(n− k + 1) (where n is a parameter) is a quadratic function in k with global maximum at
k = n+1

2
, so it is strictly increasing from 1 to n+1

2
.

Note that Theorem 3.1 shows that Kn,n has the best possible behavior that a regular
bipartite graph can have regarding these properties, because it is strongly super matched of
order a for every value of a for which it possibly could.

4 The Hypercube

In this section we consider the generalized matching preclusion problem for the hypercube.
The n-dimensional hypercube Qn, where n ≥ 1, is defined as follows: The vertex set is
the set of binary strings of length n and two vertices are adjacent if and only if they differ
in exactly one bit position. The hypercube has many well-known properties and for space
considerations, we will not explicitly state them. Define gQ(n, k) as the minimum number of
edges whose deletion produces a (k, k− 1)-obstruction set in Qn. As in the previous section,
we want a formula for gQ(n, k). A function related to gQ(n, k) was considered by Yang and
Lin [24], who studied a strong edge-connectivity concept. So instead of deriving gQ(n, k)
from first principles here, we will use their relevant results. Given a positive integer m, they
studied the maximum number of edges in a subgraph of Qn containing m vertices. This
number was shown to be related to the binary representation of m. Let t0 = blog2mc and
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ti =
⌊
log2(m−

∑i−1
r=0 2tr)

⌋
for i ≥ 1. For example, if m = 26, then t0 = 4, t1 = 3, t2 = 1 and

26 = 24 + 23 + 21. More compactly, we can simply define the ti’s as the exponents from the
binary representation m = 2t0 + 2t1 + · · ·+ 2ts where ti > ti+1 for all 0 ≤ i ≤ s− 1. We note
that this definition is well-defined because m has a unique binary representation.

Theorem 4.1 (Yang and Lin [24]). Let 1 ≤ m ≤ 2n. The maximum number of edges in
a subgraph of Qn containing exactly m vertices is f(m)/2, where

f(m) =
s∑
i=0

ti2
ti +

s∑
i=0

i2ti+1

is defined by the binary representation of m: m = 2t0 + 2t1 + · · ·+ 2ts such that ti > ti+1 for
all 0 ≤ i ≤ s− 1.

We consider three special cases to illustrate this theorem. If m = 1, then s = 0 and
t0 = 0, thus f(1) = 0. If m = 2n, then s = 0 and t0 = n, thus f(2n) = n2n. If m = 2p + 2r

such that n > p > r, then s = 1 and t0 = p and t1 = r, thus f(2p + 2r) = p2p + r2r + 2r+1.
Note that f(m) is independent of n.

Fortunately, a maximizer to Theorem 4.1 is precisely of the form that we are interested
in. We now describe the maximizer (attaining f(m)/2 edges) as given in [24]. Given m,
we write m = 2t0 + 2t1 + · · · + 2ts where ti > ti+1 for 0 ≤ i ≤ s − 1. The objective is to
use s + 1 subcubes of dimension t0, t1, . . . , ts to obtain the desired subgraph. Here is the
procedure: Let A0 be the subgraph of Qn induced by vertices of the form x1x2 . . . xt00

n−t0 ;
let A1 be the subgraph of Qn induced by vertices of the form x1x2 . . . xt10

t0−t110n−t0−1; let
A2 be the subgraph of Qn induced by vertices of the form x1x2 . . . xt20

t1−t210t0−t1−110n−t0−1;
and so on (i.e., in Ai the first ti bits are unrestricted, the next ti−1 − ti bits are zero, and
the remaining bits are just like in Ai−1, except the first bit is 1 to make it disjoint from
the previous subcubes). Notice that every vertex in A1 has a unique neighbor in A0, every
vertex in A2 has a unique neighbor in both A0 and A1, etc. Now let Gn,m be the subgraph of
Qn induced by the vertices of A0, A1, . . . , As. Note that Gn,m is isomorphic to Gn+1,m, which
follows immediately from the structure of Gn,m as given. Hence we will often abbreviate
Gn,m to Gm for convenience.

Proposition 4.1 (Yang and Lin [24]). Gn,m has m vertices and f(m)/2 edges whenever
1 ≤ m ≤ 2n.

Theorem 4.1 and Proposition 4.1 are precisely the pieces of information that we need to
deduce the formula for gQ(n, k):

Proposition 4.2. gQ(n, k) = nk − 1
2
f(2k − 1) whenever k and n are integers such that

1 ≤ 2k − 1 ≤ 2n.

Proof. Let m = 2k−1, and consider the subgraph Gm in Qn. Since m is odd, we have ts = 0,
thus exactly one of the smaller hypercubes that constitute Gm has exactly one vertex (As),
and the other hypercubes have an even number of vertices. Since Gm is bipartite, its two
partite sets must differ in size by 1. Let W and U denote these partite sets such that
|W | = k and |U | = k−1, and define F = δQn(W )−δQn(W,U). After deleting the edges of F
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in Qn, all neighbors of the vertices in W will be in U , so (W,U) is a (k, k − 1)-obstruction
set in Qn − F . Since Qn is n-regular and Gm has f(2k − 1)/2 edges, it is easy to count
that |F | = nk − f(2k − 1)/2. By Theorem 4.1, Gm maximizes the number of edges in
a subgraph of Qn with m vertices, so choosing its larger partite set to form the larger part
in a (k, k − 1)-obstruction set minimizes the number of edges needed to be deleted, hence
gQ(n, k) = |F | = nk − f(2k − 1)/2.

Figure 1 provides the graph of gQ when n = 13.

Figure 1: Plot of gQ for n = 13

As before, deleting edges that create a (k, k−1)-obstruction set will also create a (2n−1−
k + 1, 2n−1 − k)-obstruction set in Qn. So Qn cannot be maximally matched of order k for
k > 2n−2: Indeed, this would imply by definition the existence of an obstruction set of size k,
and hence there would also be a smaller one (because k ≥ 2n−2+1 implies 2n−1−k+1 ≤ 2n−2),
which would contradict the existence of a matching preclusion set of order k. Moreover, this
also shows that the graph of gQ(n, k) for fixed n is symmetric about the line k = 2n−2 + 1

2

(see also Figure 1):

Proposition 4.3. gQ(n, k) = gQ(n, 2n−1 − k + 1) whenever 1 ≤ k ≤ 2n−2.

Care must be taken regarding F in the proof of Proposition 4.2. It is tempting to say
that F is a matching preclusion set of order k, but this claim requires one to check that
Qn − F does not contain any (a, a− 1)-obstruction set for every a < k. (In Proposition 3.1,
the justification is easy for Kn,n.)

Theorem 4.2. Let m = 2k − 1 such that 1 ≤ m ≤ 2n−1, and let W and U denote the two
partite sets of Gm such that |W | > |U |. If F = δQn(W )− δQn(W,U), then Qn−F does not
contain any (a, a− 1)-obstruction set for all a < k.
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Proof. From the proof of Proposition 4.2 we have |W | = k and |U | = k − 1, so F is a
(k, k − 1)-obstruction set. Note that here we need k ≤ 2n−2, so m ≤ 2n−1, because we must
consider the smaller obstruction set of the two that is created in Qn.

We first claim that for any w ∈ W , the subgraph H induced by (W − {w}) ∪ U has
a perfect matching. First note that Gm is constructed from the subgraphs A0, A1, . . . , As,
the subgraph As contains a single vertex that belongs to W , and this singleton has a vertex
adjacent to it in each of A0, . . . , As−1. Moreover, Ai is a hypercube for each i 6= s. Now the
claim follows from the following two facts. First, every hypercube has a perfect matching,
and second, every hypercube is Hamiltonian laceable, that is, there is a Hamiltonian path in
it between any two vertices from different partite sets. Both facts are well-known and easy
to prove (in fact, the same is true even after deleting up to n−2 edges in Qn, see [22]). Note
that the second fact implies that if we delete one vertex from each partite set of a hypercube,
the resulting graph still has a Hamiltonian path, and hence a perfect matching. To see how
these facts establish the claim, proceed as follows: if w is the unique vertex in As, then the
claim follows from the first fact; if w is a vertex in Ai such that 0 ≤ i ≤ s − 1, then match
the unique vertex in As to a vertex v in Ai (v 6= w, since v belongs to U), and use the second
fact to conclude that there is a perfect matching in Ai−{v, w}, and use the first fact for the
other Ai’s.

Since Gm − w has a perfect matching for every w ∈ W , it follows from Hall’s Theorem
that |J | ≤ |NGm(J)| for every J ( W and |J | ≤ |NGm(J)| for every J ⊆ U . In particular,
Gm has no (a, a − 1)-obstruction sets for every a < k. By switching the roles of 0 and 1 in
the definition of Gm, it is easy to see that Qn−V (Gm) is isomorphic to G2n−m (for simplicity
we will refer to it as G2n−m). Let the partite sets of Qn be X and Y such that W ⊆ X and
U ⊆ Y . The argument given above applies to G2n−m as well, so we have |J | ≤ |NG2n−m

(J)|
for every J ( Y −U , and |J | ≤ |NG2n−m

(J)| for every J ⊆ X−W . In particular, G2n−m has
no (a, a− 1)-obstruction set for every a < (2n −m+ 1)/2. Note that (2n −m+ 1)/2 ≥ k as
m ≤ 2n−1. Thus G2n−m has no (a, a− 1)-obstruction set for every a < k.

We now show that Qn−F contains no (a, a−1)-obstruction sets for every a < k. Let A ⊆
X such that |A| = a < k. Since a < k, we have A∩W ( W , thus |A∩W | ≤ |NGm(A∩W )|.
Since A ∩ (X −W ) ⊆ X −W , we get |A ∩ (X −W )| ≤ |NG2n−m

(A ∩ (X −W ))|. Thus
|A| = |A ∩W | + |A ∩ (X −W )| ≤ |NGm(A ∩W )| + |NG2n−m

(A ∩ (X −W ))| ≤ |NQn−F (A)|
because of the results in the previous paragraph and that both Gm and G2n−m are subgraphs
of Qn − F . (The last inequality is not tight in general because of the edges between X −W
and U .) Thus A does not induce an (a, a−1)-obstruction set in Qn−F . A similar argument
holds if A ⊆ Y , and the proof is complete.

Now we have the following claim mirroring Proposition 3.2 about how to determine
whether Qn is maximally or super matched of order λ. Similarly as in Proposition 3.2, we
limit the possible values of λ up to a quarter of the number of vertices in Qn, because, as we
noted earlier, Qn cannot be maximally or super matched of order 2n−2 + 1 or higher.

Proposition 4.4. Let n ≥ 3 and λ ≤ 2n−2. The graph Qn is maximally matched of order λ
if and only if gQ(n, λ) ≤ gQ(n, k) for all k with λ + 1 ≤ k ≤ 2n−2; moreover, Qn is super
matched of order λ if and only if gQ(n, λ) < gQ(n, k) for all k with λ+ 1 ≤ k ≤ 2n−2.

Proof. The claims can be proven using an argument similar to the one used in Proposition 3.2

10

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 1, Art. 1

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss1/1
DOI: 10.20429/tag.2018.050101



since Proposition 4.3 and Theorem 4.2 show that the function gQ is symmetric about 2n−2+ 1
2

and that the minimizers create no smaller obstruction set.

Similarly to the case of the complete bipartite graph, one may hope that the best possible
scenario happens here as well, that is, Qn is strongly super matched of order 2n−2. However,
we will soon find out that Qn is strongly super matched of order up to about 2d

n
2
e except for

very small n. This can also be inferred from Figure 1.
Before proceeding further, we state several identities of the function f that we will need

in later proofs.

Lemma 4.3. Let x and y be positive integers. We have

1. f(2x) = x2x;

2. f(2x − 1) = x2x − 2x;

3. f(2x + y) = x2x + 2y + f(y) if 1 ≤ y ≤ 2x − 1;

4. f(2x + y) = 2x+1 + x2x + f(y) if 2x ≤ y ≤ 2x+1 − 1; and

5. f(y + 1)− f(y) is twice the number of 1s in the binary representation of y,

where f is the function defined in Theorem 4.1.

Proof. We use the notation as defined in Theorem 4.1. Identity (1) is obvious as t0 = x and
s = 0. For identity (2), observe that 2x− 1 =

∑x−1
i=0 2i, hence ti = x− 1− i for 0 ≤ i ≤ x− 1.

Thus

f(2x − 1) =
x−1∑
i=0

(x− 1− i)2x−1−i +
x−1∑
i=0

i2(x−1−i)+1

=
x−2∑
i=0

(x− 1− i)2x−1−i +
x−2∑
i=0

(i+ 1)2x−1−i

=
x−2∑
i=0

x2x−1−i = x(2x − 2) = x2x − 2x.

For identity (3), let y =
∑s

i=0 2ti such that y < 2x and ti > ti+1 for all 0 ≤ i ≤ s− 1. Then
2x + y =

∑s+1
i=0 2τi , where τ0 = x and τi+1 = ti for 0 ≤ i ≤ s, therefore

f(2x + y) =
s+1∑
i=0

τi2
τi +

s+1∑
i=0

i2τi+1 = τ02
τ0 + 2

s∑
i=0

2ti +
s∑
i=0

ti2
ti +

s∑
i=0

i2ti+1

= x2x + 2y + f(y).

Note that the case y = 2x−1 is consistent with identity (2), because (3) gives f(2x+2x−1) =
x2x + 2(2x − 1) + f(2x − 1) = x2x + 2(2x − 1) + x2x − 2x = (x + 1)2x+1 − 2(x + 1), which
equals f(2x+1 − 1) in identity (2).
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For identity (4), let y =
∑s

i=0 2ti as before. Note that t0 = x, so 2x + y =
∑s

i=0 2τi with
τ0 = t0 + 1 = x+ 1 and τi = ti for 1 ≤ i ≤ s. Therefore

f(2x + y) =
s∑
i=0

τi2
τi +

s∑
i=0

i2τi+1 = (t0 + 1)2t0+1 +
s∑
i=1

ti2
ti +

s∑
i=0

i2ti+1

= 2t0+1 + t02
t0 +

s∑
i=0

ti2
ti +

s∑
i=0

i2ti+1

= 2x+1 + x2x + f(y).

Note that the case y = 2x is consistent with identity (1), because (4) gives f(2x + 2x) =
2x+1 + x2x + f(2x) = 2x+1 + x2x + x2x = (x+ 1)2x+1, which equals f(2x+1) in identity (1).

Finally, for identity (5) note that if y = 2x− 1, then the claim follows from identities (1)
and (2), since 2x−1 has x 1s in its binary representation. Similarly, f(2x+1)−f(2x) = 2 by
identity (3), and 2x has only one 1. For the remaining values note that any positive integer
can be written as either 2x − 1, or 2x, or 2x + p where 1 ≤ p < 2x − 1, so use identity (3)
when 1 ≤ y < 2x − 1 to get

f(2x + y + 1)− f(2x + y) =
(
x2x + 2(y + 1) + f(y + 1)

)
−
(
x2x + 2y + f(y)

)
= 2 + f(y + 1)− f(y),

and with f(2)−f(1) = 2 the identity follows by induction on the number of 1s in the binary
representation of y.

Next we derive properties for the function gQ.

Lemma 4.4. Let n ≥ 3 and 1 ≤ k < 2n−1. The difference gQ(n, k + 1) − gQ(n, k) is equal
to n minus the sum of the number of 0s k ends with and twice the number of 1s in k, both
in its binary representation.

Proof. Using Proposition 4.2 we get

gQ(n, k + 1)− gQ(n, k) =

(
n(k + 1)− f(2k + 1)

2

)
−
(
nk − f(2k − 1)

2

)
= n− 1

2

(
f(2k + 1)− f(2k − 1)

)
= n− 1

2

(
f(2k + 1)− f(2k)

)
− 1

2

(
f(2k)− f(2k − 1)

)
.

By identity (5) in Lemma 4.3, the term 1
2

(
f(2k + 1) − f(2k)

)
is the number of 1s in the

binary representation of 2k, which is the same as the number of 1s in k. Similarly, the term
1
2

(
f(2k)− f(2k − 1)

)
is the number of 1s in the binary representation of 2k − 1, and notice

that this is equal to the number of 1s in k plus the number of 0s k ends with in its binary
representation. This is because 2k ends with one more 0s than k, all of which will become
1s in the binary representation of 2k − 1, but the 1 right before the ending 0s in 2k turns
into 0. Combining these results gives the claim.
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Corollary 4.5. Let n ≥ 1 be a fixed integer. The function gQ(n, k) is strictly increasing

for k in the interval [1, 2
n
2 − 1] when n is even, and in the interval [1, 2

n+1
2 − 2] when n is

odd.

Proof. When n is even, Lemma 4.4 implies that the smallest positive integer k for which
gQ(n, k + 1) ≤ gQ(n, k) happens when k consists of n/2 1s, i.e., when k = 2n/2 − 1. When n
is odd, it is similarly easy to see that gQ(n, k + 1) ≤ gQ(n, k) holds first when k consists of
(n− 1)/2 1s and ends with one 0, i.e., k = 2(n+1)/2 − 2.

We need two additional lemmas on the behavior of gQ.

Lemma 4.6. Let n ≥ 3. We have gQ(n, 2x) < gQ(n, 2y) for all integers x and y such that
0 ≤ x < y ≤ n− 2.

Proof. From Proposition 4.2 and identity (2) in Lemma 4.3 we get

gQ(n, 2y)− gQ(n, 2x) = n2y − n2x − 1

2

(
f(2y+1 − 1)− f(2x+1 − 1)

)
= (n− 1− y)2y − (n− 1− x)2x + (y − x).

The function (n− 1− x)2x is increasing for x in [0, n− 2], so this term is maximized when
x = y − 1, thus the previous expression is no less than

(n− 1− y)2y − (n− y)2y−1 + (y − x) = (n− 2− y)2y−1 + (y − x) > 0,

since x < y ≤ n− 2.

Lemma 4.7. Let n ≥ 4. We have gQ(n, 2x) < gQ(n, 2x + y) for all integers x and y such
that 1 ≤ x ≤ n− 3 and 1 ≤ y < 2x.

Proof. Using Proposition 4.2 and identities (2) and (3) in Lemma 4.3 we get

gQ(n, 2x + y)− gQ(n, 2x) = ny − 1

2

(
f(2x+1 + 2y − 1)− f(2x+1 − 1)

)
= (n− 2)y − 1

2
f(2y − 1)− x

= gQ(n− 2, y)− x.

Because Qn−2 is super matched of order 1 with gQ(n − 2, 1) = n − 2 (see [3]), we get
gQ(n− 2, y) ≥ gQ(n− 2, 1) = n− 2 > x, finishing the proof.

Note that by Lemma 4.4 we have gQ(n, 2x+1)−gQ(n, 2x) = n−(x+2), so the computation
in Lemma 4.7 also shows that gQ(n, 2x + y)− gQ(n, 2x + 1) = gQ(n− 2, y)− (n− 2), so the
graph of gQ(n, k) in the interval [2x + 1, 2x+1] is obtained from the graph of gQ(n− 2, k) on
the interval [1, 2x] by a linear shift for each x, giving the graph of gQ a fractal-like structure
shown in Figure 1.

We are now ready to present our main result in this section.
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Theorem 4.8. Let n ≥ 4. The graph Qn is strongly maximally matched of order λ for λ
in the interval [1, 2

n
2 − 1] when n is even, and in the interval [1, 2

n+1
2 − 3] when n is odd.

Moreover, Qn is strongly super matched of order λ for λ in the interval [1, 2
n
2 −2] when n is

even, and in the interval [1, 2
n+1
2 − 4] when n is odd. All these results are sharp, so Qn is

not strongly maximally or super matched of order λ for larger values of λ.

Proof. By Proposition 4.4 all we need to do is to check the behavior of the function gQ. Note
that when n = 3, we have gQ(3, 1) = gQ(3, 4) = 3 and gQ(3, 2) = gQ(3, 3) = 4, and since
2n−2 = 2, the graph Q3 is strongly super matched of order 1 and of order 2. Thus we need
the condition n ≥ 4 in the theorem.

Now consider n ≥ 4. Assume first that n is fixed and odd. From Corollary 4.5 we have
that gQ(n, k) is strictly increasing when k is in the interval [1, 2

n+1
2 − 2] and by Lemma 4.4

we can easily compute that

gQ(n, 2
n+1
2 − 3) = gQ(n, 2

n+1
2 − 4) + 1

gQ(n, 2
n+1
2 − 2) = gQ(n, 2

n+1
2 − 4) + 2

gQ(n, 2
n+1
2 − 1) = gQ(n, 2

n+1
2 − 4) + 2

gQ(n, 2
n+1
2 ) = gQ(n, 2

n+1
2 − 4) + 1.

Moreover, from Lemmas 4.6 and 4.7 we get that gQ(n, k) > gQ(n, 2
n+1
2 ) = gQ(n, 2

n+1
2 − 3)

for all k such that 2
n+1
2 < k ≤ 2n−2. Thus by Proposition 4.4, Qn is strongly super matched

of order λ for λ in [1, 2
n+1
2 − 4], but not for larger values of λ, and Qn is strongly maximally

matched of order λ for λ in [1, 2
n+1
2 − 3], but not for larger values of λ.

Similarly, when n is fixed and even, we have that gQ(n, k) is strictly increasing when k is in
the interval [1, 2

n
2−1], and we can compute that gQ(n, 2

n
2−1) = gQ(n, 2

n
2 ) = gQ(n, 2

n
2−2)+1,

and get that gQ(n, k) > gQ(n, 2
n
2 ) = gQ(n, 2

n
2 − 1) for all k such that 2

n
2 < k ≤ 2n−2. Thus

by Proposition 4.4, Qn is strongly super matched of order λ for λ in [1, 2
n
2 − 2], but not for

larger values of λ, and Qn is strongly maximally matched of order λ for λ in [1, 2
n
2 − 1], but

not for larger values of λ.

Theorem 4.8 tells us that Q10, for instance, is strongly super matched for up to order 2
10
2 −

2 = 30, and Q11 is strongly super matched for up to order 2
12
2 − 4 = 60. We can use

Theorem 4.8 to also obtain a result that fixes λ and varies n, that is, given a fixed λ, the
graph Qn is strongly super matched for large enough n.

Corollary 4.9. Let λ and n be positive integers. The graph Qn is strongly super matched
of order λ if either n is even and n ≥ 2 log2(λ+ 2) or if n is odd and n ≥ 2 log2(λ+ 4)− 1.

In particular, Corollary 4.9 implies that Qn is strongly super matched of order 1 for
n ≥ 4, it is strongly super matched of order 2 for n ≥ 4 and strongly super matched of
order 3 for n ≥ 5, which were proved respectively in [3], [7] and [1].

5 Conclusion

In this paper, we introduced generalized versions of matching preclusion for bipartite graphs
via definitions that tie directly to the classical Hall’s Theorem. We studied this problem for
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the complete bipartite graph and the hypercube and found sharp results for the generalized
matching preclusions of these graphs. It is interesting to note that in our approach, once we
obtained a formula for gQ(n, k), the argument involves minimal graph theory.
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[20] J. Plesńık. Connectivity of regular graphs and the existence of 1-factors, Matematický
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