4 research outputs found

    Massively Parallel Algorithms for Distance Approximation and Spanners

    Full text link
    Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often poly(loglogn)poly(\log\log n)-time, or even faster -- for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(logk)poly(loglogn)poly(\log k) \in poly(\log\log n) round MPC algorithms for computing O(k1+o(1))O(k^{1+{o(1)}})-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(log2logn)O(\log^2\log n)-round algorithm for O(log1+o(1)n)O(\log^{1+o(1)} n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model

    Massively parallel algorithms for distance approximation and spanners

    No full text
    Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms - -usually sublogarithmic-time and often poly(łogłog n)-time, or even faster - -for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(łog k) ϵ poly(łogłog n) round MPC algorithms for computing O(k^1+o(1) )-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(łog^2łog n)-round algorithm for O(łog^1+o(1) n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model

    DISTRIBUTED, PARALLEL AND DYNAMIC DISTANCE STRUCTURES

    Get PDF
    Many fundamental computational tasks can be modeled by distances on a graph. This has inspired studying various structures that preserve approximate distances, but trade off this approximation factor with size, running time, or the number of hops on the approximate shortest paths. Our focus is on three important objects involving preservation of graph distances: hopsets, in which our goal is to ensure that small-hop paths also provide approximate shortest paths; distance oracles, in which we build a small data structure that supports efficient distance queries; and spanners, in which we find a sparse subgraph that approximately preserves all distances. We study efficient constructions and applications of these structures in various models of computation that capture different aspects of computational systems. Specifically, we propose new algorithms for constructing hopsets and distance oracles in two modern distributed models: the Massively Parallel Computation (MPC) and the Congested Clique model. These models have received significant attention recently due to their close connection to present-day big data platforms. In a different direction, we consider a centralized dynamic model in which the input changes over time. We propose new dynamic algorithms for constructing hopsets and distance oracles that lead to state-of-the-art approximate single-source, multi-source and all-pairs shortest path algorithms with respect to update-time. Finally, we study the problem of finding optimal spanners in a different distributed model, the LOCAL model. Unlike our other results, for this problem our goal is to find the best solution for a specific input graph rather than giving a general guarantee that holds for all inputs. One contribution of this work is to emphasize the significance of the tools and the techniques used for these distance problems rather than heavily focusing on a specific model. In other words, we show that our techniques are broad enough that they can be extended to different models
    corecore