
DISTRIBUTED, PARALLEL AND DYNAMIC DISTANCE
STRUCTURES

by
Yasamin Nazari

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
June, 2021

© 2021 Yasamin Nazari
All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JScholarship

https://core.ac.uk/display/478862376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Many fundamental computational tasks can be modeled by distances on a graph. This

has inspired studying various structures that preserve approximate distances, but

trade off this approximation factor with size, running time, or the number of hops on

the approximate shortest paths. Our focus is on three important objects involving

preservation of graph distances: hopsets, in which our goal is to ensure that small-hop

paths also provide approximate shortest paths; distance oracles, in which we build a

small data structure that supports efficient distance queries; and spanners, in which

we find a sparse subgraph that approximately preserves all distances.

We study efficient constructions and applications of these structures in various

models of computation that capture different aspects of computational systems. Specif-

ically, we propose new algorithms for constructing hopsets and distance oracles in

two modern distributed models: the Massively Parallel Computation (MPC) and the

Congested Clique model. These models have received significant attention recently

due to their close connection to present-day big data platforms.

In a different direction, we consider a centralized dynamic model in which the input

changes over time. We propose new dynamic algorithms for constructing hopsets and

distance oracles that lead to state-of-the-art approximate single-source, multi-source

and all-pairs shortest path algorithms with respect to update-time.

Finally, we study the problem of finding optimal spanners in a different distributed

model, the LOCAL model. Unlike our other results, for this problem our goal is to

ii

find the best solution for a specific input graph rather than giving a general guarantee

that holds for all inputs.

One contribution of this work is to emphasize the significance of the tools and the

techniques used for these distance problems rather than heavily focusing on a specific

model. In other words, we show that our techniques are broad enough that they can

be utilized in different models.

Thesis Readers

Dr. Michael Dinitz (Primary Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Amitabh Basu
Associate Professor
Department of Applied Mathematics and Statistics
Johns Hopkins University

Dr. Xin Li
Associate Professor
Department of Computer Science
Johns Hopkins University

iii

Dedicated to my parents and grandparents who have always encouraged me to pursue

my passion and education wherever it took me.

iv

Acknowledgements

First and foremost, I would like to thank my advisor, Mike Dinitz, for his support

and guidance. Mike encouraged me to pursue my own path in research, even if it

meant we published less than we could together. This helped me gain confidence and

independence that will be tremendously helpful in the future. His true passion for

CS theory has strengthened my own enthusiasm and perseverance. I would also like

to thank my mentor, Amitabh Basu. Amitabh’s patience and endurance has aspired

me to be a better researcher and educator, and has made me fond of certain areas in

math that once seemed intimidating to me.

I would also like to thank my internship hosts at Google, NYC: Jakub (Kuba)

Łącki and Creighton Thomas. Kuba patiently guided me while I was learning a new

area, and provided me with an enormous amount of helpful feedback. Both Kuba and

Creighton made me realize that I would also very much enjoy an intriguing industry

career, and they broadened my perspective in CS beyond academia. I would also like

to thank my GBO and thesis committee members, Dr. Xin Li, Prof. William Cook,

Prof. Rao Kosarajou, and Dr. Vladimir Braverman.

As I am concluding this phase of my studies, I would also like to acknowledge all the

mentors and teachers who assisted me along the way to a PhD program: My master’s

supervisors and mentors Philipp Woelfel, George Giakkoupis, Petra Berenbrink and

Peter Kling, who laid the foundation of CS theory research for me; My undergraduate

instructors in Shiraz University of Technology and numerous high school teachers all

of whom enforced my passion in Math and Computer Science.

v

Next, I would like to thank all my other collaborators, some of whom are also my

coauthors. I have learned a great deal from each one of them, and I am confident

that I will continue to do so in the upcoming years. Some of our problems might have

remained unsolved, but each experience has helped me grow as a researcher. Namely, I

thank (in alphabetic order): Melika Abolhassani, Sara Ahmadian, Mohammad Hossein

Bateni, Amartya Shanka Biswas, Greg Bodwin, Michal Dory, Hossein Esfandiari,

Venkat Gandikota, Mohsen Ghaffari, Ama Koranteng, Thomas Lavastida, Roie Levin,

Slobodan Mitrović, Benjamin Moseley, Balasubramanian Sivan, Yifeng Teng, Leonidas

Tsepenekas, Enayat Ullah, Zeyu Zhang and Goran Zuzic.

I am forever grateful to my family for their unwavering support and encouragement.I

would specially like to thank my parents, grand parents, my brother Behzad, and his

wife Leslie. It must have been particularly difficult for my parents to have both of

their children be in the US, be unjustly banned from visiting them, and lose many

milestones, including my brother’s wedding. They endured all of this as they always

put our success and future first. I would also like to thank my extended family in the

US, my aunt and uncle (Niloofar and Reza) and my great aunt and uncle (Fati and

John), who made sure I felt like home, despite being apart from the rest of our family.

During much of my PhD, the CS department at Hopkins became my home. My

friends were always there for me, and helped me cope with a fair bit of non-academic

stress. Just to name a few Hopkins and non-Hopkins friends1, I am grateful to (in

no particular order): Kestrel, Mahshid, Aarushi, Jalaj, Disa, Aditya, Alishah, Jasper,

Eli, Jaron, Razieh, Rohit, Arka, Nikita, Teodore, Ravi, Huda, Chris Wilks, Charlotte,

Gabby, Pouriya, Rachel Sherman, Max, Rob DiPietro, Leila, Johannes, Melanie, Mike

Alonge, Maryam Neghbani, James, Chang and Zaoxing.

Last but not least, I would like to thank the 20 (and counting) foster cats who

were a reliable source of joy and bliss through all the challenges I faced in the past 3
1The lists are in no way mutually exclusive even though I am not repeating any names.

vi

years. Unfortunately, they cannot receive this note (except for the one who is still

here and just stared at me when I thanked him out loud). But I would like to use any

opportunity to encourage everyone to foster and volunteer with their local shelters to

help pets in need.

As I am writing this, the world is still devastated by COVID-19. We are counting

on science (and vaccines) to save us. Here is to hoping that we always use science

wisely and for a good cause.

Funding. This work is generously funded by NSF awards CCF-1535887, CCF-

1464239 and CCF-1909111, the Computer Science department at Johns Hopkins

University, and Google (summer internship 2020).

vii

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . viii

Chapter 1 Introduction . 1

1.1 Models . 3

1.1.1 Connections and Comparison 6

1.2 Distance Structures . 8

1.2.1 Hopsets . 9

1.2.2 Distance Oracles . 11

1.2.3 Spanners . 12

1.2.4 Connections . 13

Chapter 2 Massively Parallel Distance Sketches and Distributed Dis-

tance Oracles . 16

2.1 Introduction . 16

2.1.1 Our Results . 18

2.1.2 Our Techniques . 22

2.1.3 Related Work . 24

viii

2.2 Preliminaries and Notation . 26

2.2.1 Notation . 26

2.2.2 Algorithmic Building Blocks 26

2.3 Distance Oracles in Congested Clique 30

2.4 Distance Sketches in Massively Parallel Computation Model 36

2.4.1 Polylogarithmic Round Complexity 42

2.4.2 Single-source shortest path . 47

2.5 Distance Oracles in the Streaming Model 48

2.6 Comparison with Alternative Methods 52

2.7 Discussion and Future Work . 53

Chapter 3 Sparse Hopsets in Congested Clique 55

3.1 Introduction . 55

3.1.1 Our contribution . 57

3.1.2 Overview of techniques. 64

3.1.3 Preliminaries . 67

3.2 Algorithmic Tools. 69

3.3 Neighborhood covers using low-diameter decomposition 70

3.4 Congested Clique Hopset Construction 75

3.5 Massively Parallel Hopsets and MSSP 80

3.6 Conclusion and Open Problem . 82

Chapter 4 Dynamic Hopsets . 83

4.1 Introduction . 83

4.1.1 Preliminaries and Notation . 85

4.1.2 Summary of Results . 86

4.2 Overview of Our Algorithms . 90

4.2.1 Static Hopset Construction 91

ix

4.2.2 Maintaining Restricted Hopsets Dynamically 93

4.2.3 Decremental Approximate Distances 99

4.3 Decremental Hopset . 100

4.3.1 Maintaining a Restricted Hopset 101

4.3.2 New Hopsets with Improved Running Time. 105

4.3.3 Hopset stretch . 114

4.4 Applications . 125

4.4.1 (1 + ϵ)-approximate SSSP and (1 + ϵ)-MSSP 126

4.4.2 APSP distance oracles . 127

4.5 Conclusion and Future Direction . 130

Chapter 5 Distributed Distance Bounded Network Design 131

5.1 Introduction . 131

5.1.1 Our Results . 133

5.1.1.1 Solving convex programs 133

5.1.1.2 Distributed approximation algorithms for network design136

5.1.2 Related Work . 139

5.2 Preliminaries and Notation . 141

5.3 Padded decompositions . 142

5.4 Distributed distance bounded network design convex programming . . 146

5.4.1 Distance bounded network design convex programs 146

5.4.2 Distributed Algorithm . 149

5.5 Distributed Approximation Algorithms for Network Design 154

5.5.1 Directed k-Spanner . 155

5.5.2 Basic 3-Spanner and Basic 4-Spanner 157

5.5.3 Lowest-Degree k-Spanner 158

5.5.4 Directed Steiner Network with Distance Constraints159

5.6 Conclusion and Future Work . 160

x

Chapter 6 Conclusion and Future Direction 161

Bibliography . 164

xi

Chapter 1

Introduction

In recent years, due to the growth of massive datasets, the study of fundamental graphs

problem in many big data and distributed platforms has gained significant attention.

This motivates us to find efficient solutions to many fundamental algorithmic problems

under various abstractions of modern computational systems.

A fundamental problem in all models of computation is the task of distance

computation. In general, objects in many computational problems have an associated

notion of distance or similarity. Hence in many problems involving graph analytics we

need to compute some approximation of distances, or we need to preserve approximate

distances in the graph while optimizing computational resources (such as space,

communication, and time).

However in many situations computation of distances or preserving the distance

structure in large-scale systems efficiently is quite challenging. This motivates us

to study several different but related distance-based structures, such as distance

sketches, spanners and hopsets in various computational models. As we will see, these

structures provide us with different tradeoffs between size, accuracy and running time.

These objects have gained significant attention as fundamental graph theoretic objects,

in addition to related algorithmic applications such as shortest path computation,

sparsification, routing, overlay networks, clustering, etc.

1

We study several different models each of which captures a different computational

aspect of modern systems. Two main models we consider are the massively parallel

computation model and the Congested Clique model, both of which are known to be

closely connected with modern distributed platforms such as MapReduce, Hadoop,

and Spark [50, 10, 54]. We also consider more classical distributed models, such as

the LOCAL model and the CONGEST model, that capture theoretical restrictions

on locality and congestion. Finally, we consider a dynamic model, that unlike other

models we consider is sequential, but captures changing of input over time.

While the objects we study are of theoretical interest, we also use them to get

state-of-the-art bounds in distance computation. In particular, in several of the models

that we consider, our constructions have direct implications for single source, multi

source, or all-pair shortest path computation. More broadly, many of the algorithms

we study can be seen as a preprocessing step for constructing a sparse data structure

that can be used for more efficient querying of distances. The preprocessing step may

require more resources such as construction time.

Finally, while we mainly focus on constructing objects with guarantees that hold

for an arbitrary input graph, in Chapter 5 we take a different perspective in which our

goal is to find the best (minimal cost) solution for the specific instance considered. In

particular, we consider distributed optimization of several network design problems,

e.g. finding the minimal cost k-spanner in a given input graph. Solving these types of

problems require a different set of techniques, such as linear programming. Interestingly,

despite these differences a tool that we use for these optimization problems is a type

of network decomposition that we also use in our sparse hopset algorithm in Chapter

3. Indeed throughout this thesis, we will see that similar ideas and techniques apply

to seemingly different models and problems. One of our contributions is pointing out

the significance of such techniques, by showing that they generalize to various models.

This may in turn provide some insight into the connections between these models and

2

their power and limitations.

First, we formally describe the models studied in this thesis, and then move on to

formally defining the distance structures of interest, their applications, and connections

between them.

Throughout this thesis, the input is an undirected graph G = (V, E) with n vertices

and m edges. In all chapters, except for Chapter 5, our results apply to weighted

graphs.

1.1 Models

In all of the distributed models we study, time passes in synchronous rounds and in

each round nodes exchange information in the network. The communication network,

and the size of messages communicated in each model is different. The goal is to

compute a solution to a problem in a small number of rounds of communication.

Initially, each node knows its own portion of the input and the goal is for nodes to

know their portion of the output (e.g. the incident edges in a desired subgraph or

distance to a source). As we shall see, in the Massively Parallel Computation model,

a node may be a collection of machines, or a machine may represent a collection of

nodes.

LOCAL and CONGEST Models. In the LOCAL model [82], we are given an

undirected graph G = (V, E), and in each round every node can send an arbitrary

message of unbounded size to each of its neighbors in G. In other words, the

communication and input graph are the same in this model. As the name suggests, this

model captures the locality of a problem, i.e., how many rounds of local computation

is required to solve a problem globally.

In the CONGEST model [82], in each round nodes can send a message of O(log n)-

bits to each of their neighbors in G (different messages can be sent along different

3

edges). In other words, similar to the LOCAL model, messages can only be sent

along the input graph edges. However, unlike the LOCAL model, there is a bound on

messages sent along each link in each round.

Congested Clique Model. In the Congested Clique model an input graph of

G = (V, E) is given, and initially each node v ∈ V only knows its incident edges.

However, the underlying communication graph is an undirected clique, and in each

round every node can send a message of O(log n) bits to any other node. This model

was introduced by [72], and has been studied extensively in recent years due to its

connections with modern distributed platforms, such as MapReduce [54] and the

Massively Parallel Computation model that we will define next.

Massively Parallel Computation Model. The Massively Parallel Computation

or the MPC model was proposed by [10] as an abstraction of many modern distributed

and parallel data processing platforms such as MapReduce, Spark and Hadoop. The

model introduced by [10] refined previous abstractions proposed by [60, 50]. In this

model, there is an input of size N distributed over N/S machines, each of which has

S = N ϵ, ϵ < 1 memory. Each machine can communicate with any other machine in

each round but can have total I/O of at most S.

For graph problems, one particularly interesting and arguably more practical setting

is the low memory regime in which each machine has memory strictly sublinear in the

number of nodes (rather than edges). In other words, given a graph with n vertices

and m edges, in low memory MPC, the memory per machine is O(nγ), 0 < γ < 1, and

the total memory is O(m). Other memory regimes are the linear memory regime, in

which, memory per machine is Θ(n), or the super linear memory regime, in which

memory machine can be superlinear in n. For many graph problems the power of the

model may significantly change in each of these three cases. We mostly focus on the

4

low memory regime, which is the most challenging.

While in the standard MPC model the total memory over all machines is O(m),

we sometimes allow relaxations of this standard model in which the overall memory is

slightly larger. We will see that such relaxations can sometimes significantly change

the power of the model.

Dynamic Models. Next, we discuss a different type of model, which, unlike the

previously described models, is centralized (sequential). Instead of communication

limitations, the dynamic models capture changes of the input over time. A graph

algorithm is called dynamic if it maintains a structure that supports answering queries

about a graph which is undergoing modifications, or, as we say in the following, updates

(see e.g. [46]). Each update is an edge deletion, insertion, or a weight change. We

consider this model in Chapter 4.

The model that handles both insertions and deletions, called the fully dynamic

model is quite challenging. That is why a large body of work (e.g. [15, 16, 21, 55])

focused on the the partially dynamic settings that can handle deletions only (the

decremental model), or insertions only (the incremental model). In this thesis, we

mainly focus on designing decremental algorithms for distance problems in weighted

graphs in which, the updates are only edge deletions or weight increases.

PRAM and Streaming. We also come across two other models that are indirectly

related to the distributed models described: the PRAM model (e.g. [49]) and the

streaming model ([52, 44]). While they are not our focus, we give a brief discussion

on their connection with the distributed models described, since we use some of the

techniques in these models and in a few cases our results extend to these models.

In the PRAM model1 parallel computation is performed by a group of processors
1We consider a simple abstraction without details of the exact parallel model (EREW, CRCW,

etc), since PRAM is not our focus and there are reductions with small overhead between these

5

reading and writing on a shared memory. The number of parallel rounds of computation

is called the depth, and the total amount of computation over all machines is called

the work. In designing algorithms we wish to keep the depth and the work small, and

there is often a tradeoff between these two performance measures.

In the streaming model, the input arrives based on a sequence of updates (insert

only, delete only, or both) and we have space that is sublinear in the input size. In

graph problems, there is often a treadeoff between number of passes and the space

used, and our goal is to solve the problem in a small number of passes over the

stream in a given space. While in the streaming model we also have a sequence of

updates, unlike the dynamic model, we only require to maintain a solution after one

or multiple passes are finished. Moreover, in the dynamic model we do not have a

memory restriction, as we do in streaming model.

1.1.1 Connections and Comparison

In this section, we are going to give a high-level discussion on how these models with

different goals and properties, relate to each other in some special settings. This

discussion may be helpful in understanding the models better, but a reader may skip

this section without loss of continuity.

However, we emphasize that one of the contributions of this thesis is to focus on

the techniques used, rather than specific models. We aim to convey that for many

distance-based graph problems, despite the differences, the techniques used to improve

the performance of an algorithm in one model often leads to improvements in another

model, even though we still need to use model-specific tools and modify the algorithms

to optimize our bounds in each model.

It is known that the Congested Clique model is closely related to MPC. Specifically,

when the graph is dense (Θ(n2) overall memory), an algorithm in Congested Clique

variants.

6

that does not use more than O(n) memory per machine can be implemented in the

linear MPC model [12] in the same number of communication rounds. On the other

hand an algorithm in linear MPC model can be implemented in the Congested Clique

model in the same number of rounds. In general, the Congested Clique model is

stronger than linear and low memory MPC, with total memory of O(m). These

reductions may no longer hold in variants where we relax the overall memory to Õ(m)

or larger.

It is easy to see that solving problems in the LOCAL and CONGEST model heavily

rely on the network structure. On the other hand, in both MPC and Congested

Clique the network topology is abstracted, and the input graph is not the same as

the communication graph. Instead, communication is limited by size or number of

messages exchanged.

The PRAM model also has close connections with the MPC model: [50] showed

that a PRAM algorithm can be implemented in roughly the same number of rounds

in MPC when the number of processors is (up to polylog factors) the same as the

memory in MPC and polylogarithmic many rounds of computation is allowed.

While there are no known generic black-box reductions between streaming and

distributed models, for some distance-based graph problems considered in this thesis

the semi-streaming model (where memory is O(n)) is related to the Congested Clique

model and the MPC regime with linear memory per machine. Intuitively, in this case

the input stored in the streaming model can be stored in one machine (or node in

case of Congested Clique), and depending on the problem, a pass of the stream can

be implemented with one distributed round. We use this intuition in constructing

distance oracles in streaming in Chapter 2. In related work on distance objects,

similar connections between number of passes in streaming and distributed rounds

was observed, such as for constructing hopsets [38] and spanners [17].

Despite the differences in what each model captures, in the context of graph

7

problems, they sometimes have to deal with similar bottlenecks. For instance, in both

CONGEST and Congested Clique, message size and the number of messages exchanged

between nodes cause limitations that we need to overcome. But this type of congestion

bottleneck also often translates to the communication limits among machines in MPC.

Even though in more powerful models such as Congested Clique and MPC the number

of rounds of communication is expected to be much smaller than in the CONGEST

model, in designing algorithms for all of these models, we are interested in compressing

the messages, restricting our focus to local neighborhoods with small overlap. This

is why sparsification techniques, such as spanners, have significance in all of these

models. On the other hand, as we will see while the techniques used for one model

can be useful in implementing algorithm in another model, we often have to modify

the structure of the objects we study to make them suitable to each specific model.

Finally, even though the LOCAL model seems to have very different focus than

most models introduced here, there are still technical connections. Intuitively, this is

because for many distance problems (and other graph problems such as connecitivity,

or network design) many of the known algorithms in these models have a local growth

structure (e.g. ball growing, neighborhood collection, Bellman-Ford, BFS). Hence the

efficiency of such algorithms also depends on locality, and how fast local information

can be gathered.

1.2 Distance Structures

In this section, we describe the fundamental objects that are going to be used through-

out this thesis, and their application and connections. In different section, depending

on the model, we may use different implementations of these objects. Throughout this

section we assume that the input is a weighted and undirected graph G = (V, E) with

n vertices and m edges. We denote the distance between a pair of vertices u, v ∈ V in

G by dG(u, v).

8

1.2.1 Hopsets

An important object that we study through this thesis is a hopset. Informally, a

hopset is a set of (weighted) edges added to a graph that while preserving distances

approximately, reduces the maximum number of hops in the shortest paths among all

pairs. In other words, these edges shortcut the shortest paths. More formally,

Definition 1.2.1. ((β, ϵ)- Hopset) For parameter ϵ, β > 0, a graph H = (V, EH , wH)

is called a (β, ϵ)-hopset for the graph G, if in G ∪H, the graph obtained by adding

EH to G, we have: dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ (1 + ϵ)dG(u, v) for every pair u, v ∈ V of

vertices, where d
(β)
G∪H(u, v) is the length of the shortest path between u and v that has

at most β hops in G ∪H. The parameter β is called the hopbound of the hopset.

Hopsets, originally introduced by Cohen [25], are widely used in distance related

problems in various settings, such as parallel shortest path computation [25, 74, 35, 41],

distributed shortest path computation [40, 76], routing tables [39] and distance sketches

[39, 30]. In addition to their direct applications, hopsets have recently gained more

attention (e.g. [13, 40, 1, 58]) as a fundamental object closely related to several other

fundamental objects such as additive (or near-additive) spanners and emulators[43].

One of the common application of hopsets is in obtaining faster algorithms for

shortest path computation in various models. For instance, in distributed (e.g. con-

gested clique) or parallel (MPC, PRAM) models, after constructing a (β, ϵ)-hopset,

we can compute (1 + ϵ)-approximate single-source shortest paths in O(β) rounds. In

many applications we need to tradeoff the time needed for constructing a hopset, with

the hopbound/stretch guarantees.

One limitation of hopsets in applications in (1+ϵ) single-source shortest paths is that

their utility is limited for sparse graphs, i.e. they will only lead to suboptimal algorithms.

Existential lower bounds imply that when ϵ < 1, a hopset with polylogarithmic

hopbound must have size at least n1+Ω(1) [1]. This is why for very sparse graphs we

9

cannot hope to obtain Õ(m)-time algorithms based on hopsets. However, when the

graph is slightly denser (|E| = n1+Ω(1)), ϵ is larger (ϵ ≥ 1) [13, 35], or when we are

computing distances from a large set of sources, this limitation no longer applies.

Throughout this thesis we use different types of hopset constructions, each of which

is used for a specific model/application:

In Chapter 2, we use a hopset construction proposed by [38] to construct distributed

distance oracles. In particular, we first construct a hopset with polylogarithmic

hopbound, and then use the hopset to construct a distance oracle more efficiently

in various models such as Congested Clique, MPC, and streaming. We also show

applications of this MPC hopset algorithms in computing single-source shortest paths.

In Chapter 3, we propose a new sparse hopset construction in the Congested Clique

model that uses a similar structure as the original hopsets proposed by Cohen [25].

In Chapter 4, we propose a new dynamic hopset construction that builds upon a

construction by [41].

Different hopset constructions. In sequential/static settings there are three main

efficient hopset constructions [25, 38, 41]. For applications in (sequential) shortest

path computation these main hopset constructions lead to similar bounds (up to

polylogarithmic factors).

In Chapter 2, we show how the hopsets of [38] can be implemented in MPC, but

in other chapters we propose new hopsets. In particular, in Chapters 3, and 4, while

our hopsets have structurally similarities with known hopsets, we need to modify the

constructions to make them suitable for the specific models and applications that we

consider.

10

1.2.2 Distance Oracles

In many situations we are interested in querying distances between a pair of nodes

in a graph efficiently, but computing distance for each query is too slow, and we

can not afford to store all distance pairs. This motivated Thorup and Zwick [88] to

define the notion of an approximate distance oracle: a small data structure which can

quickly report an approximation of the true distance for any pair of vertices. In other

words, by spending some time up front to compute this data structure (known as

the preprocessing step) and then storing it (which can be done since the structure is

small), any algorithm used in the future can quickly obtain provably accurate distance

estimates.

An approximate distance oracle is said to have stretch t if, when queried on u, v ∈ V ,

it returns a value d′(u, v) such that d(u, v) ≤ d′(u, v) ≤ t · d(u, v) for all u, v ∈ V ,

where d(u, v) denotes the shortest-path distance between u and v. The important

parameters of an approximate distance oracle are the size of the oracle, the stretch,

the query time, and the preprocessing time. For a parameter k ≥ 2, Thorup and

Zwick’s construction (in the sequential setting) has expected size O(kn1+1/k), stretch

(2k − 1), query time O(k), and preprocessing time O(kmn1/k), where n = |V | and

m = |E|. Additionally, the Thorup-Zwick distance oracle consists of n smaller pieces

corresponding to each node each of expected size O(kn1/k). These are called distance

sketches or distance labelings. The estimate between a pair of nodes u and v can be

computed just from the sketch for u and the sketch for v, and there is no need for

the rest of the structure. This property makes this structure particularly useful in

distributed models in which each node has a memory or congestion limit.

Since the work of [88], there has been a large amount of followup work on improving

the achievable tradeoffs, such as achieving query time of O(1) with size O(n1+1/k) [90,

20] or giving more refined bounds [80, 81]. However, with the notable exception

11

of an interesting construction due to Mendel and Naor [73], the vast majority of

followup work on this type of distance oracle has essentially been refinements and

improvements to the approach pioneered by Thorup and Zwick. Thus understanding

the Thorup-Zwick distance oracle is an important first step to understanding the

limits and possibilities of distance oracles. This is our main focus in Chapter 2. We

note that distance oracles with slightly different type of guarantees (such as allowing

queries from multiple sources) have also recently been studied, for example in [35].

We also define a distance oracle with multi-source querying guarantees in Chapter 3.

In Chapter 2, we directly focus on computing Thorup-Zwick distance oracles and

distance sketches. In this chapter our goal is to only keep a sparse data structure, and

we do not need to store the original graph edges after the preprocessing step. But in

Chapters 3 and 4 we still need to keep the original graph edges, and our main goal is

to keep the query time small.

In particular, in Chapter 4 we maintain Thorup-Zwick distance oracles dynamically,

and use this data structure for computing fast all-pairs-shortest path queries. But

in order to maintain the data structure while keeping the update time small, we

need to maintain a hopset, and the original graph. Similarly, in Chapter 3, we use

a slightly different type of distance oracles. Again, our data structure supports fast

(polylogarithmic rounds) distance queries, but we still need to store the original input

graph edges. On the other hand, the data structure supports distance queries from a

large number of sources (up to O(
√

n)) simultaneously.

1.2.3 Spanners

Another related class of distance object are graph spanners. Informally, spanners

are sparse subgraphs of a given graph that preserve the pairwise distances up to a

multiplicative or additive (or both) factor. We mostly focus on multiplicative spanners,

which were introduced by Peleg and Ullman [84] and Peleg and Schäffer [83], and are

12

defined as follows.

Definition 1.2.2. Let G = (V, E) be a graph (possibly directed), and let k ∈ N. A

subgraph H of G is a k-spanner of G if dH(u, v) ≤ k · dG(u, v) for all u, v ∈ V . The

value k is called the stretch of the spanner.

In Chapter 2, we use spanners to improve the round complexity of both our

distributed distance oracle and hopset algorithms by trading off round complexity

with accuracy. Informally, by first constructing a spanner, we can reduce an instance

in the standard MPC model, to an instance in a stronger variant of MPC with extra

memory. On the other hand, in this extra memory MPC variant, we can construct

hopsets and distance oracles more efficiently.

We also consider spanners and several related objects in Chapter 5. As discussed,

there we take the different perspective of finding the optimal spanner: given any graph,

our goal is to find the best (minimum cost) spanner for that instance. While it is not

our focus, it is observed (e.g. by [43]) that the algorithms for so-called near additive

spanners (whose stretch has both an additive and (1 + ϵ) multiplicative factor), are

closely related to hopset constructions.

1.2.4 Connections

There are many structural and algorithmic connections between the objects defined.

For instance, in this thesis we use hopsets to construct distance oracles more efficiently

in various models: specifically we show this for MPC, Congested Clique, and the

streaming model (all in Chapter 2), and for the dynamic model in Chapter 4.

Moreover, some hopset constructions have a structure similar to the sampling and

clustering scheme of distance oracle construction by [88]. What leads to different

guarantees, is the subsampling rates and the distance estimates stored (e.g. as edge

weights). Going even further, as observed in [13] the Thorup-Zwick [88] distance

13

oracles can be seen as hopsets with hopbound 2, and stretch 2k − 1. This intuition

was extended in [13] to obtain a range of tradeoffs between stretch and hopbound. On

the other hand, a (β, ϵ)-hopset can also be seen as a type of data structure that allow

faster (1 + ϵ)-approximate distance queries: after adding hopset edges, in distributed

and parallel models distances can be queried in O(β) rounds.

Finally, as we discussed, we can use spanners as a general sparsification tool to

construct hopsets, distance oracles or other distance objects, using less computational

resources such as time, communication, or parallel work in exchange for accuracy.

Outline. We now give a brief outline of this thesis, which is divided in four main

parts (Chapters 2 to 5):

In Chapter 2, we focus on constructing distance oracles and distances sketches in

MPC, Congested Clique and Streaming models, and we use hopsets as tool for making

our algorithms efficient. Depending on the model, and the approximation ratio, the

round complexity of our algorithms are either a small polynomial, subpolynomial no(1),

or polylogarithmic. Once the distance oracles are constructed, the distance between a

pair of nodes can be queried in at most 2 rounds of communication. In our final MPC

algorithms in addition to hopsets, spanners are also used in obtaining polylogarithmic

round complexity in MPC. As a side result we also obtain the first (1 + ϵ)-single source

shortest path in low memory MPC. The results in this chapter are published in [30].

In Chapter 3, we focus on hopsets directly, and give a new efficient algorithm for

constructing sparse hopsets in the Congested Clique model. In particular, we give the

first algorithm for constructing a sparse hopset in Congested Clique in polylogarithmic

rounds of communication. We also show an application of this construction in obtaining

a distributed multi-source distance oracle that supports polylogarithmic round queries.

The result of this chapter is published in [77].

In Chapter 4, we turn our attention to a dynamic model (specifically the decre-

14

mental model), and provide algorithms for constructing hopsets in this model that

have near-optimal (up to polylogarithmic factor) update time. These new hopsets

lead to state-of-the-art update time for several important shortest path problems,

such as (1 + ϵ)-approximate single-source shortest paths (SSSP), (2k− 1)-approximate

all-pairs-shortest-path (APSP), and (1 + ϵ)-approximate multi-source shortest path

(MSSP). Our all-pairs-shortest-paths result is based on simultaneously maintaining

low-hop hopset and a Thorup-Zwick [88] distance oracle decrementally. A manuscript

of the results in this chapter can also be found in [59].

In order to get a more clear outline of the objects and models considered in the first

three chapters, these are summarized in Table 1.2.4. Note that this table summarizes

the main results of each chapter, whereas there may be side-results related to a

different model/object not mentioned here.

Model \Problem Hopset Distance Oracle Distance Computation
MPC Chapter 2 Chapter 2 Chapter 2

Congested Clique Chapters 2 & 3 Chapters 2 & 3 -
Dynamic Chapter 4 Chapter 4 Chapter 4

Finally, in Chapter 5, we study a certain class of network design problems which

we call distance bounded, in the LOCAL model. Our goal is to find a minimum cost

subgraph with certain properties (e.g., connecting a pair of demands), but where

the set of allowed paths have a bounded distance D. The round complexity of our

algorithms depend on this distance bound D.

One specific example of this class of problems is the problem of finding the optimal

k-spanner for the input graph. We provide an O(
√

n)-approximation algorithm for

the directed k-spanner problem that runs in O(k log n) rounds of the LOCAL model.

This guarantee matches the best-known sequential approximation algorithm for this

problem. Our results are based on a distributed algorithm for solving a special class

of network design linear programs. The results of this chapter are published in [29].

15

Chapter 2

Massively Parallel Distance
Sketches and Distributed Distance
Oracles

2.1 Introduction

In this chapter, we focus on distance oracles, distance sketches, and their implementa-

tion and application in big data distributed platforms. In particular, we mainly focus

on MPC and Congested Clique. The results in this chapter are published in [30].

To date, efficient distance computation in massive graphs remain a challenging

task. While one side effect of our techniques is indeed a state of the art algorithm for

shortest paths in MPC, the focus of this chapter is on getting around the limitations of

these models by allowing preprocessing of the (distributed) graph. We can first spend

some time building the approximate distance sketches (or an approximate distance

oracle), as introduced in Chapter 1, which will then let us (approximately) answer

any distance query using only 0, 1, or 2 rounds of network communication (depending

on the precise model). Thus after this preprocessing, anyone who is interested in

analyzing the massive graph has access to approximate distances essentially for free,

making this a powerful tool for distributed graph analytics. For this we show that we

can repurpose centralized data structures (in particular the Thorup-Zwick oracle [88])

16

by computing them efficiently in these new distributed models. Moreover, since our

algorithms are derived from centralized data structures we even allow for efficient local

computation in addition to efficient communication.

So our focus is on how to compute these data structures efficiently, since once

they are computed, distance estimates become fast and easy. In the Congested Clique

model, we can compute oracles a small polynomial number of rounds. In MPC, we

can go even further and compute slightly suboptimal sketches in time that is only

polylogarithmic. So while computing the data structure is still somewhat expensive,

it is far more efficient than trivial approaches, and once it is computed, the analyst

can receive approximate distances extremely quickly, allowing for low amortized cost

or just the ability to do exploratory analysis without constantly waiting for expensive

distance queries to complete.

It is also worth noting that in other related models such as PRAM, there are

no known algorithms for (k-approximate) shortest paths in polylogarithmic depth

(number of rounds), and use at most Õ(m) processors. Hence, even for k-approximate

shortest paths the bounds we achieve can not obtained by PRAM reductions directly-

even though we indirectly use the PRAM algorithms in our final construction. For

constructing distance oracles/sketches our MPC algorithms can also be extended to

the PRAM model with additional polylog factors that depend on the exact type of

PRAM.

Finally, while our main focus is on distributed models, as a side result, we also

extend our algorithms to the (insert-only) streaming model.

Distance Oracles and Sketches. Even in many centralized applications, the time

it takes to compute exact distances in graphs is undesirably slow, and similarly the

memory that it would take to store all
(︂

n
2

)︂
distances is also undesirable. This motivates

the study of an approximate distance oracles. Recall the definition of an approximate

17

distance oracle: a small data structure which can quickly report an approximation

of the true distance for any pair of vertices. In other words, by spending some time

up front to compute this data structure (known as the preprocessing step) and then

storing it (which can be done since the structure is small), any algorithm used in the

future can quickly obtain provably accurate distance estimates.

More formally, an approximate distance oracle is said to have stretch t if, when

queried on u, v ∈ V , it returns a value d′(u, v) such that d(u, v) ≤ d′(u, v) ≤ t · d(u, v)

for all u, v ∈ V , where d(u, v) denotes the shortest-path distance between u and

v. The important parameters of an approximate distance oracle are the size of the

oracle, the stretch, the query time, and the preprocessing time. For any constant

k, Thorup and Zwick’s construction (in the sequential setting) has expected size

O(kn1+1/k), stretch (2k − 1), query time O(k), and preprocessing time O(kmn1/k),

where n = |V | and m = |E|. Recall also, that the Thorup-Zwick distance oracle has

the additional property that the data structure can be “broken up" into n pieces,

each of size O(kn1/k log n), that are called distance sketches or distance labelings,.

The estimate d′(u, v) can be computed just from the piece for u and the piece for v

(the rest of the structure is unnecessary). Das Sarma et al. [86] initiated the study

of Thorup-Zwick distance sketches in distributed networks, and in particular in the

CONGEST model of distributed computing [82], which was later studied by [68], and

[39].

2.1.1 Our Results

In this chapter we initiate the study of distance oracles and sketches in two popular

computational models for “big data”: Congested Clique and MPC. In addition, we

show that our techniques can be used to give the first sublinear algorithm (and in

fact polylogarithmic) for approximate single-source shortest paths for weighted graphs

in (low memory) MPC, and moreover can be applied in straightforward ways to

18

non-distributed models such as the streaming setting.

We discuss our results for each model in turn. At a high level, Congested Clique

turns out to be relatively easy: we can essentially just combine the known CONGEST

algorithm [86] with a slightly modified hopset construction. For MPC, the natural

approach is to simulate the Congested Clique algorithm, since it is known [12] that

under certain density and memory conditions, Congested Clique algorithms can be

simulated in MPC. However, this simulation requires at least Ω(n) memory per

machine. Our task becomes much more challenging if we allow o(n) memory per

machine, which we refer to as the low memory setting. Designing algorithms for this

setting forms the bulk of this chapter.

Congested Clique. Since there is no memory restriction for Congested Clique,

we assume that some node in the network is the coordinator at which the entire

distance oracle will be stored (i.e., the machine with which users will interact with

the distributed system). So at query time, the user can just query the coordinator

locally (avoiding all network delay) rather than initiating an expensive distributed

computation. The precise statements of our results are given in Section 2.3 and are

somewhat technical, so for simplicity we state one particularly interesting corollary

obtained by some specific parameter settings:

Theorem 2.1.1. Given a weighted graph G = (V, E, w), for all k ≥ 2 and constant

ϵ > 0, we can construct a distance oracle with stretch (1+ ϵ)(2k−1), (local) query time

O(k), and space O(kn1+1/k log n) w.h.p. in the Congested Clique model. If k = O(1),

then the number of rounds for preprocessing is1 Õ(n1/k), and if k = Ω(log n) then the

number of rounds is Õ(log(n)).

Note that after a limited amount of preprocessing, distance queries can be computed
1The notation Õ(f(n)) stands for O(f(n) · polylog(f(n)), e.g. it is suppressing polyloglog(n)

terms in 2Õ(log n).

19

without any network access whatsoever. Moreover, the computational query time

is also extremely small, so these queries are extraordinarily efficient in the context

of distributed algorithms. As an interesting extension, we show that the message

complexity of computing this distance oracle can be reduced by adding an additional

preprocessing step of computing a graph spanner.

MPC. In Section 3.5 we discuss the MPC model, which is the heart of this chapter.

Since in the MPC model servers have small memory, it is impossible to fit an entire

distance oracle at a single server as we did in the Congested Clique. So we instead

focus on distance sketches. After the preprocessing algorithm, for each node v ∈ V , a

distance sketch of size O(kn1/k log n) will be stored and mapped to a machine with

key v (this assumes that the memory at each server is at least Ω(kn1/k log n), which is

reasonable in most settings). This means that after the preprocessing to construct

these sketches, only two rounds of communication are needed for for approximating

distance queries between a pair of nodes u and v: one for sending requests for the

sketches of u and v and one for receiving them. We give the following result:

Theorem 2.1.2. Given a weighted graph G = (V, E, w) with polynomial weights2 and

parameters ρ ≤ γ ≤ 1, 1/k ≤ ρ, 0 < ϵ < 1, we can construct Thorup-Zwick distance

sketches with stretch (2k − 1)(1 + ϵ) and size O(kn1/k log n) w.h.p. in Õ(1
γ
· n1/k · β)

rounds of MPC(nγ), where β = min(O(log n
ϵ

)log(k)+k, 2Õ(
√

log n)). In particular, if k =

O(1) and ϵ is a constant, then w.h.p. we require Õ(n1/k) rounds, and if k = Θ(log n)

then w.h.p. we require 2Õ(
√

log n) rounds.

In the above theorem the distance sketches have the same guarantees as the

centralized Thorup-Zwick distance oracles. However, in MPC a polynomial round

complexity, while possibly of theoretical interest, is generally considered not practical.
2This assumption can be relaxed using reduction techniques (e.g. from [38]) in exchange for extra

polylogarithmic factors in the hopbound and construction time.

20

So we give a different (but related) algorithm which achieves polylogarithmic round

complexity, at the price of larger stretch.

Theorem 2.1.3. Consider a graph G = (V, E) where m = Ω(kn1+1/k log n), for any

k ≥ 2. Then there is an algorithm in MPC(nγ) (with 0 < γ < 1) that constructs

Thorup-Zwick distance sketches with stretch O(k2) and size O(kn1/k log n) and with

high probability completes in O(k
γ
· (log n·log k

ϵ
)log k+k−1) rounds.

As a side effect of our techniques (which we discuss more in Section 2.1.2), we

immediately get an algorithm for computing approximate single-source shortest paths

(SSSP) in the MPC model, which is the problem of finding the (approximate) distances

from a source node to all other nodes. Unlike Congested Clique, there do not seem to

be any known nontrivial results for this problem in MPC. We first give an algorithm

which computes a (1 + ϵ)-approximation in no(1) time. Then we show that we can

compute an O(1)-approximation in only polylogarithmic time, if we make an additional

assumption about the density of the input graph. We will prove the following theorem

in Section 2.4.2:

Theorem 2.1.4. Given a weighted undirected graph G = (V, E, w) with polynomial

weights, a source node s ∈ V , and 0 < γ ≤ 1, 0 < ϵ < 1 we can compute (1 + ϵ)-

approximate SSSP w.h.p. in O(1
γ
) · 2Õ(

√
log n) rounds of MPC with Θ(nγ) memory per

machine. Moreover, if |E| ≥ Ω(n1+1/k log(n)), we can compute 4k(1 + ϵ)-approximate

SSSP in O(1
γ
· (log n·log k

ϵ
)log k+k−1) rounds of MPC(nγ), where 1/k < γ ≤ 1, k ≥ 2. In

particular, for k = O(1) the algorithm runs in O(1
γ
· (log n

ϵ
)O(1)) rounds.

Note that while the round complexity is polylogarithmic, it may still be somewhat

slow for certain applications: an analyst who has to wait polylogarithmic rounds

for every distance query would essentially be unable to perform any analysis which

depended on large numbers of distance queries. On the other hand, our main results

21

on distance sketches allows us to pay this round complexity only once, for constructing

the sketch.

Streaming. Finally, we provide an algorithm for constructing distance oracles in

the multi-pass streaming model. This is essentially a side-effect of our main results

for Congested Clique and MPC, but we include it for completeness. For the specific

settings of constant or logarithmic stretch, we have:

Corollary 2.1.5. Given a graph G = (V, E, w), there exists a streaming algorithm

that constructs a Thorup-Zwick distance oracle of stretch (2k − 1)(1 + ϵ) of size

O(kn1/k log n) w.h.p. and expected space O(n1+1/k · log2 n), such that if k = O(1),

w.h.p. we require O(logk n) passes , and if k = Ω(log n), w.h.p. we require 2Õ(
√

log n)

passes.

Note that in case of k = Ω(log n) we are in the so-called semi-streaming setting in

which the total memory used is O(n · polylog n).

2.1.2 Our Techniques

Our main approach is to combine constructions of hopsets with efficient distributed

constructions of Thorup-Zwick distance oracles/sketches. In particular, Das Sarma

et al. [86] showed that Thorup-Zwick sketches could be computed in the CONGEST

model, but the time depended on the graph diameter. So all that we really need

to do is to reduce the diameter of the graph, since any CONGEST algorithm also

works in the Congested Clique. This is what hopsets do: we discuss them in more

detail in Section 2.2.2, but informally they allow us to reduce the diameter of the

graph while preserving distances by adding in a carefully chosen set of weighted

“shortcut" edges. Hopset constructions for the Congested Clique were given by Elkin

and Neiman [38] (and more recently by[19]) so for Congested Clique we can essentially

22

just combine result of [38] (or [19]) with [86] to get our result (modulo a small number

of technicalities).

Moving to MPC introduces some significant technical difficulties, particularly

when the space per machine is o(n). Neither [86] nor [38] are written with MPC in

mind, so we cannot simply “black-box" them as we could (mostly) in the Congested

Clique. However, not surprisingly, both [86] and [38] use as a fundamental primitive a

“restricted" version of the classical Bellman-Ford shortest-path algorithm that ends

early, and it turns out that implementing this restricted Bellman-Ford is the main

(although not the only) technical hurdle in adapting both of them to the MPC model.

When implementing restricted Bellman-Ford in low-memory MPC, the main

difficulty is that since the memory at each server is o(n), a single server cannot

“simulate" a node in Bellman-Ford. It takes many machines to store the edges incident

on any particular node, so we need to show that it is possible for many machines to

simulate a single node in MPC without too much overhead. We show that this is indeed

possible: Bellman-Ford and related algorithms can be implemented in low-memory

MPC with very little additional overhead. Once we develop this tool, we argue that

the hopsets of [38] can be constructed in low-memory MPC with essentially the same

complexity as in the Congested Clique. Our implementation of Bellman-Ford and

this hopset construction, as well as a few other primitives we develop for low-memory

MPC (e.g., finding minimum or broadcasting on a range of machines), may be of

independent interest.

Even after using hopsets, we would still need polynomial time for constructing

constant stretch distance sketches. We overcome this issue and improve the running

time using two ideas. First, we show that by relaxing the model to allow small addi-

tional total memory (either through extra space per machine or additional machines),

we can run our algorithms in polylogarithmic number of rounds. So we just need

to argue that there is a way of obtaining extra memory without actually changing

23

the model assumptions. This is our second idea: by constructing a spanner we can

sparsify the graph while keeping the memory per machine and number of machines

the same. Thus from the perspective of the spanner, it will appear that we do indeed

have “extra" memory. The idea of sparsifying the input to obtain extra resources has

already proved to be powerful in related contexts (for example, [47] recently used

spanners to give a work-efficient PRAM metric embedding algorithm). To the best of

our knowledge, though, this idea has not yet appeared in the MPC graph algorithms

literature.

Other hopset constructions. Throughout this thesis, we discuss several different

hopset constructions for various models. While we used the construction of [38] in

this chapter, we could also use the hopset construction in [41] for Congested Clique

(which is close to what we use in Chapter 4), or hopsets of [25] (closer to the one used

in Chapter 3) for MPC. The implementation of these hopsets in each model would be

be different, and there are differences in the polylogarithmic factors in the hopbound.

2.1.3 Related Work

Distributed constructions of distance oracles and sketches have been studied extensively

in the CONGEST model [86, 69, 39]. All of these algorithms have running times

dependent on the graph diameter, while our algorithms run in time independent of the

graph diameter. To the best of our knowledge, constructing distance oracles/sketches

has not previously been studied for the Congested Clique or the MPC model. Similarly,

hopsets have been used extensively in various models of computation for solving

approximate SSSP ([56, 38]). Our result on hopset construction in low memory MPC

also gives the first (approximate) SSSP algorithm in this model for weighted graphs

(in Congested Clique there are more results known [38, 56, 11, 19], but these do not

translate obviously to MPC when there is sublinear memory per machine). In a recent

24

result, [19] gave an efficient Congested Clique algorithm that constructs hopsets of

size Õ(n3/2) with hopbound O(log2(n)/ϵ). Their hopsets are a special case of hopsets

of [38]. In Section 2.3 we explain how their algorithm applies to our result.

In the PRAM model, shortest path computation is well studied (e.g. [25, 38]),

and it is known that many PRAM algorithms can be simulated in the MPC model

([60, 50]). However, most of these algorithms use ω(|E|) number of processors, in

which case the simulations of [60] and [50] do not directly apply as they assume that

the number of processors is at most the input size. As we argue in Section 2.4.1 we

will still utilize an extension of this simulation.

Finally, we note that distance problems have also been studied in related models

such as the k-machine model ([63]). In this model they show a low bound of Ω(n/k)

for computing shortest paths, where k is the number of machines. To the best of our

knowledge, the exact connection between this model and the MPC model has not yet

been studied3.

Subsequent work. After [30], there has been several results with implications on

shortest path computation in MPC and Congested Clique. Li [70] and Andoni et al. [3]

presented algorithms for computing (1 + ϵ)-approximate single-sources shortest paths

in polylogarithmic depth and Õ(m) work. This translates to a polylogarithmic round

algorithm for (1 + ϵ)-SSSP in low memory MPC. Results of [70] and [3] are based on

continuous optimization techniques and are mainly suitable for SSSP, whereas hopset

based solutions like ours are more suitable for multi-source shortest path. We will

discuss this further in Chapter 3. These algorithms cannot be extended to construct

distance sketches/oracles efficiently, which is our main focus in this chapter.

Finally, in [17], we proposed an efficient algorithm for constructing O(k)-spanners
3In the k-machine model generally the number of machines considered is small. The computational

power of this model therefore seems very different from the low-memory MPC setting where there are
many machines (possibly more than n), but each one has small memory. Moreover, the k-machine
model does not bound the space on each machine and the IO bound is slightly different with MPC.

25

in low and linear memory MPC and Congested Clique. One consequence of the

result of [17] is an Õ(log n)-approximate APSP algorithm for weighted graphs that

runs in O(log log2 n) rounds of linear memory MPC and Congested Clique. This

result also does not lead to efficient algorithms for constructing distance sketches

in MPC. However, [17] and other spanner constructions can be used to efficiently

construct distance oracles in Congested Clique with weaker stretch/size tradeoff than

the algorithm used in this chapter (for a fixed size using spanners leads to stretch

O(k2), whereas we get O(k)).

2.2 Preliminaries and Notation

2.2.1 Notation

In a given weighted graph G = (V, E), we denote the (weighted) distance between a

pair of nodes u, v ∈ V by dG(u, v). We may drop the subscript G when there is no

ambiguity. We define the h hop-restricted distance between u and v to be the weight

of the shortest path between u and v that uses at most h hops and denote this by

d(h)(u, v).

We will denote the set of neighbors of a node v ∈ V by N(v). In a weighted graph

G, we define the shortest-path diameter of G, denoted by Λ, to be the maximum over

all u, v ∈ V of the number of edges in the shortest u − v path (so if the graph is

unweighted this is the same as the diameter, but in weighted settings it can be larger

than the unweighted diameter). Finally, a t-spanner of G is simply a subgraph which

preserves distances up to a multiplicative t factor.

2.2.2 Algorithmic Building Blocks

In this section we describe the algorithms of [88], [86] and [38], that are the building

blocks used in next sections.

26

Thorup-Zwick Distance Oracle. In this section, we briefly describe the central-

ized construction of the well-known Thorup-Zwick distance oracle [88]. Given an

undirected weighted graph G = (V, E, w) and k > 1, in the preprocessing phase of

their algorithm they first create a hierarchy of subsets A0, A1, ..., Ak by sampling from

nodes of V in the following manner: set A0 = V , and for 1 ≤ i ≤ k − 1, add every

node v ∈ Ai−1 to the set Ai independently with probability n−1/k. Set Ak = ∅ and for

all u ∈ V define d(u, Ak) = ∞. Let Bi(u) = {w ∈ Ai : d(u, w) < d(u, Ai+1)} for all

u ∈ V and 0 ≤ i ≤ k − 1, where d(u, Ai) is the minimum distance between u and a

node in the set Ai, and set B(u) = ∪k−1
i=0 Bi(u). We also denote the node that has the

minimum distance to u among all nodes in Ai by pi(u) and call this the i-center of

u, and so d(u, Ai) = d(u, pi(u)). The distance sketch for u consists of {pi(u)}k
i=0, the

set B(u), and the corresponding distances between these nodes and u. The distance

oracle is just the union of the sketches for all u ∈ V . Thorup and Zwick showed

that this data structure has size O(kn1+1/k log n) w.h.p., and access to these sketches

is enough for approximating distances between every pair of vertices in O(k) time

with stretch 2k − 1. In all the settings we consider, after preprocessing the distance

oracle/sketches, we can locally perform the query algorithm of [88] in O(k) time.

Next, we explain a distributed construction of Thorup-Zwick distance sketches as

described by Das Sarma et al. [86] for the CONGEST model. The sampling phase can

easily be done in distributed settings. Then for finding pi(v), 1 ≤ i ≤ k for all nodes

v ∈ V , we will do the following: in iteration i, define a virtual source node si, and

for all nodes in u ∈ Ai add an edge between u and si where w(u, si) = 0. Then we

will only need to run the Bellman-Ford algorithm from si, and after O(kΛ) time every

node u ∈ V knows pi(u) and d(u, Ai). Finally, for all 1 ≤ i ≤ k we need to compute

the distance from w ∈ Ai \Ai+1 to all the nodes v for which w ∈ B(v). Simply running

a distributed Bellman-Ford independently from all the sources w ∈ Ai \Ai+1 would be

slow since due to congestion limit on each edge we cannot run all these in parallel at

27

the same time. However, [86] argue that this can be done in O(Λ·kn1/k log n) rounds in

total (w.h.p), since each node v needs to forward messages in the runs of Bellman-Ford

algorithm for a source w only if w ∈ B(v). This means that, roughly speaking, each

node v participates in |B(v)| = O(kn1/k log n) runs of Bellman-Ford. Then by a simple

round-robin scheduling scheme they show that running these Bellman-Fords for all

sources in Ai \ Ai+1 can be done in O(Λ · kn1/k log n) without violating the congestion

bound on each edge.

Query algorithm. The querying step can be performed locally in one machine

after only two rounds of communication for storing sketches of a pair of nodes in one

machine. However for completeness, we briefly review the (sequential) query algorithm

of [88]. Given sketches of a pair of nodes (u, v) ∈ V the query algorithm proceeds as

follows: For each 0 ≤ i ≤ k − 1, we check if pi(u) ∈ Bi(v) or pi(v) ∈ Bi(u). Let j be

the smallest level at which one of these conditions occur. Note that by construction

pk−1(u) ∈ B(v) and pk−1(v) ∈ B(u), and this implies that j ≤ k − 1 exists. Then if

the first condition holds, the distance estimate d̃(u, v) = d(u, pj(u)) + d(v, pj(u)) and

if the second conditions holds we set d̃(u, v) = d(u, pj(v)) + d(v, pj(v)). Note that

these distance are stored with the sketch and can be computed. This clearly takes

O(k) time (sequentially), and it can be shown (see [88]) that this estimate satisfies

d̃(u, v) = (2k − 1)d(u, v)-stretch.

Hopsets. Recall, that for parameter ϵ, β > 0, a graph GH = (V, H, wH) is called

a (β, ϵ)-hopset for the graph G, if in graph G′ = (V, E ∪H, w′) obtained by adding

edges of GH , we have dG(u, v) ≤ d
(β)
G′ (u, v) ≤ (1 + ϵ)dG(u, v) for every pair u, v ∈ V of

vertices. The parameter β is called the hopbound of the hopset.

We first give a high level overview of the (sequential) hopset construction of [38] here.

In their algorithm, they consider each distance scale (2k, 2k+1], k = 0, 1, 2, ... separately.

28

For a fixed distance scale (2k, 2k+1] the algorithm consists of a set of superclustering,

and interconnection phases. Initially, the set of clusters is P = {{v}v∈V }. Each cluster

in C ∈ P has a cluster center which we denote by rC . The algorithm uses a sequence

δ1, δ2, ... of distance thresholds and a sequence deg1, deg2, ... of degree thresholds that

determines the sampling probability of clusters. At the i-th iteration, every cluster

C ∈ P is sampled with probability 1/ degi. Let Si denote the set of sampled clusters.

Now a single shortest-path exploration of depth δi (weighted) from the set of centers

of sampled clusters R = {rC | C ∈ Si} is performed. Let C ′ ∈ P \ Si be a cluster

whose center rC′ was reached by the exploration and let rC be the center in R closest

to r′
C . An edge (rC , rC′) with weight dG(rC , rC′) is then added to the hopset. A

supercluster Ĉ with center rĈ = rC is now created that contains all the vertices of C

and the clusters C ′ for which a hopset edge was added. In the next stage of iteration

i, all clusters within distance δi/2 of each other that have not been superclustered at

iteration i will be interconnected. In other words, a separate exploration of depth δi

2

is performed from each such cluster center rC and if center of cluster C ′ is reached,

an edge (rC , r′
C) with weight dG(rC , rC′) will be also added to the hopset. The final

phase of their algorithm only consists of the interconnection phase. We denote the

hopset edges added for distance scale (2k, 2k+1] by Hk. One important property of this

hopset construction (proved in Lemma 3.3 of [38]) that we will need for our analysis

in Section 3.5) is the following:

Lemma 2.2.1 ([38]). In the i-th iteration of a given distance scale (2k, 2k+1], for each

node v ∈ V , w.h.p. the number of explorations of interconnection phase that visit v is

at most O(degi · log n), where degi is the sampling probability of the superclustering

phase.

Now we turn our attention to efficient construction of hopsets in distributed

settings (such as CONGEST and Congested Clique) also proposed by [38]. Note

that each superclustering phase can be performed by a distributed Bellman-Ford

29

exploration of depth δi. For an interconnection phase, a separate distributed Bellman-

Ford explorations of depth δi/2 from cluster centers is performed. These Bellman-Ford

algorithms can easily be implemented sequentially, however, in distributed settings,

O(n) rounds may be needed for each of the explorations of the larger scales. To

overcome this issue, [38] propose to use the hopsets ∪log β−1<j≤k−1Hj , for constructing

hopset edges Hk. More precisely, they observe that for any pair of nodes with distance

less than 2k+1, hopsets ∪log β−1<j≤k−1Hj provide a (1 + ϵ)-stretch approximate shortest

path with 2β + 1 hops between these pair of nodes. In other words, it is enough to

run each Bellman-Ford exploration only for O(β) rounds.

2.3 Distance Oracles in Congested Clique

In this section, as a warm-up, we will explain how a distance oracle can be efficiently

constructed in the Congested Clique model. We will use the algorithm described in

Section 2.2.2 by Das Sarma et al. [86] that constructs Thorup-Zwick distance sketches

with stretch 2k − 1 and size kn1+1/k in O(kΛn1/k) rounds in the CONGEST model,

where Λ is shortest-path diameter. Our algorithm is similar to their algorithm, with

the difference that we first construct a hopset. This will allow us to terminate the

algorithm earlier while preserving the distances within a (1 + ϵ) factor. Constructing

hopsets in the Congested Clique model can be done more efficiently than in CONGEST

model. Hence, unlike the known algorithms in the CONGEST model, we can build a

distance oracle in time independent of the shortest path diameter.

In this section, we can use the Congested Clique hopset algorithm of [38] directly

as a black-box. Hence we mainly need to describe the distance oracle construction

after adding the hopset edges. First we formally state a theorem proved in [38] for

hopset construction in Congested Clique.

Theorem 2.3.1 ([38]). For any graph G = (V, E, w) with n vertices, and parameters

30

2 ≤ κ ≤ (log n)/4, 1/2 > ρ ≥ 1/κ and 0 < ϵ < 1, there is a distributed algorithm for the

Congested Clique model that computes a (β, ϵ)-hopset with expected size O(n1+ 1
κ log n)

in O(nρ

ρ
· log3 n · β) rounds whp, where β = O(log(n)·(log κ+1/ρ)

ϵ·ρ)log κ+ 1
ρ .

Roughly speaking, adding a (β, ϵ)-hopset to a graph is as if the shortest path

diameter is reduced to β in exchange for a small loss in the stretch. In other words,

hopsets will let us cut of distance computation after exploring β hops. Later on we will

explain how we can set the parameters ρ and κ depending on the stretch parameter

for the distance oracle, to get our desired running time.

We need the h-restricted distributed Bellman-Ford subroutine (Algorithm 1) which

is widely used in previous work on distributed distance estimation (e.g. see [69], or

[86]). We use the following lemma that follows from basic properties of Bellman-Ford

algorithm.

Algorithm 1: Distributed Bellman-Ford with hopbound h.
Input : Undirected weighted graph G = (V, E, w), and source node s ∈ V .
Output : h-hop restricted distances from the source s to all nodes u ∈ V ,

d(h)(s, v).
1 Set ∀v ∈ V : d̂(s, v) =∞.
2 for Rounds i = 0 to h do
3 for ∀v ∈ V do
4 if ∃u ∈ N(v) : d̂(s, v) > d̂(s, u) + w(u, v) then
5 Set d̂(s, v) := minu∈N(v)(d̂(s, u) + w(u, v)), and send d̂(s, v) to all

neighbors.

Lemma 2.3.2. There is a distributed variant of the Bellman-Ford algorithm runs

in O(h) rounds in Congested Clique and for all nodes u ∈ V , computes dh(s, u), the

length of the shortest path between s and u among the paths that have at most h edges.

In order to compute the shortest path from s to all nodes, we will need to set

h = Λ, the shortest path diameter. But this can be as large as Ω(n). Hence we will use

a (β, ϵ)-hopset to approximately find the distance in O(β) time only. In other words,

31

by constructing a (β, ϵ)-hopset H, we would know that there is a path of hopbound β

with length (1 + ϵ)d(u, v) among any pair of nodes u, v ∈ V , and hence Algorithm 1

can approximate the distances d(s, v) up to a factor of (1 + ϵ) for all v ∈ V .

We now argue that a distance oracle can be constructed by first preprocessing the

input graph by constructing a (β, ϵ)-hopset (by Theorem 2.3.1) and then running the

algorithm of [86] that was described in Section 2.2.2 for O(β) rounds. Let us first

state the result of [86] in the following theorem.

Next we review the distance oracle algorithm for the Congested Clique model. This

algorithm was proposed by [86] for constructing distance sketches in the CONGEST

model, which can clearly also be implemented in the Congested Clique model.

By extending the result of [86] to Congested Clique, we get the following result:

Theorem 2.3.3 ([86]). Given undirected graph G = (V, E, w) with shortest path

diameter Λ, there is an algorithm that runs in Õ(Λ · kn1/k log n) rounds of Congested

Clique w.h.p. and outputs a Thorup-Zwick distance oracle with stretch (2k − 1) at the

coordinator with high probability.

Since the algorithm in [86] is for the CONGEST model, we are not yet using

the extra power of the Congested Clique model here, rather, we will use this power

for constructing hopsets more efficiently. Moreover, in [86] distance sketches are

constructed at each node. It is easy to see that nodes can then send their sketches to

the coordinator within a constant factor of total number of rounds required to build a

distance oracle consisted of the sketches for all nodes. Next, we will utilize the hopset

construction of [38] to make the preprocessing algorithm more efficient with respect

to time and message complexity. Let G′ = (V, E ∪H, w′) be the graph obtained by

adding a (β, ϵ)-hopset H to the undirected graph G = (V, E, w). By running the

algorithm in Theorem 2.3.3 on G′ we will get the following result.

Corollary 2.3.4. Given a graph G = (V, E, w) and a (β, ϵ)-hopset H for G, there

32

is an algorithm that runs in Õ(β · kn1/k) rounds of Congested Clique and outputs a

Thorup-Zwick distance oracle with stretch (2k−1)(1+ϵ) on the graph G′ = (V, E∪H, w′)

at the coordinator with high probability.

Next we will analyze the message complexity of algorithm of Theorem 2.3.3 and

show that w.h.p. Õ(kmn1/kβ) messages need to be exchanged. It is not hard to see

that the number of messages exchanged for constructing a (β, ϵ)-hopset is Õ(βn1+ρ/ρ)

(this follows by analysis of [38]). Hence the dominant number of messages exchanged

is for running the algorithm of Theorem 2.3.3.

Lemma 2.3.5. Total number of messages exchanged for constructing a Thorup-Zwick

distance oracle (with parameters specified in Corollary 2.3.4) on graph G′ = (V, E ∪H, w′)

is w.h.p. O(βm · kn1/k log n).

Proof. The algorithm of Corollary 2.3.4 runs in O(βkn1/k log n) rounds w.h.p. and

overall for each edge in the graph O(1) messages are exchanged.

We now combine the hopset construction and Theorem 2.3.3 together to obtain

our main result. We will use Theorem 2.3.1 to construct a hopset H on graph

G = (V, E, w), and then run the algorithm of Theorem 2.3.3 on the obtained graph

G′ = (V, E ∪H, w′) and get the following:

Theorem 2.3.6. Given a graph G = (V, E, w), polynomial weights4 and parameters

2 ≤ κ ≤ (log n
4), 1/κ ≤ ρ ≤ 1/2, 0 < ϵ < 1, we can construct a Thorup-Zwick distance

oracle with stretch (2k − 1)(1 + ϵ) and size O(kn1+ 1
k log n) w.h.p. in O(β(nρ

ρ
· log3 n +

n
1
k log n)) time, where β = O(log(n)·(log κ+1/ρ)

ϵ
)log κ+ 1

ρ .

The running time depends both on the parameter ρ and stretch k. In other words,

there is a tradeoff between the stretch k and the running time of this algorithm. When
4Same as in other models this assumption can be relaxed using techniques of [38] in exchange for

extra polylogarithmic factors.

33

stretch k is smaller, we can choose a larger value for ρ and the dominant part of the

running time would still be the distance oracle construction. On the other hand, for

larger values of stretch k, since the distance oracle construction algorithm can be

performed more efficiently, we need to set ρ smaller to balance out the running time

of constructing a hopset and that of constructing the distance oracle over the new

graph. The parameter κ mostly just impacts the hopset size and the constant factor

in the exponent of hopbound β. Let us consider two special cases of k = O(1) and

k = Ω(log n) to understand these bounds better. In the special case of k = Ω(log(n))

the hopset construction step takes more time, and so we use the recent result of [19]

for the hopset construction to get a polylogarithmic running time. They construct a

hopset of size Õ(n3/2) with hopbound O(log2(n)/ϵ) in O(log2(n)/ϵ) rounds.

Corollary 2.3.7. Given a graph G = (V, E, w), and constant 0 < ϵ ≤ 1, we can

construct a Thorup-Zwick distance oracle with stretch (2k− 1)(1 + ϵ) in the Congested

Clique model, s.t.,

• In case k = O(1), w.h.p. we require Õ(n1/k) rounds.

• In case k = Ω(log n), w.h.p. we require Õ(log(n)) rounds.

Proof. For stretch k = O(1) we use Theorem 3.1.1 and set ρ = 1/κ, and κ = k to

get β = Õ(log(n)) and total running time Õ(n1/k). In case k = Θ(log n), we will set

1/κ = ρ =
√︂

log log n
log n

. In both cases, by setting ρ to be a smaller constant, such as

ρ = 1/2 we can have a smaller β (but still polylogarithmic), but the preprocessing

algorithm will use the larger space of Õ(m + n1+ρ) space and communication, rather

than Õ(m + n1+1/k). In the special case k = Ω(log(n)), we use the hopset algorithm

of [19], which takes polylogarithmic time.

34

Communication Reduction with Spanners In this section, we will describe how

spanners can be used as a tool for reducing communication in exchange for an extra

factor in the stretch. Recall, A t-spanner of a graph G is a subgraph H such that

dG(u, v) ≤ dH(u, v) ≤ dG(u, v) for all u, v ∈ V . We will use the spanner construction

of [9] which computes spanners efficiently in the more restricted CONGEST model.

Theorem 2.3.8 ([9]). For any weighted graph, a (2t − 1)-spanner of expected size

O(tn1+1/t) can be computed in the CONGEST model in O(t2) rounds and O(tm)

message complexity.

This construction allows us to turn the input graph for algorithms described in this

section into a sparser graph. By doing so we will lose a factor of t in the approximation

ratio but we only need to run algorithm of Theorem 2.3.3 on a graph with O(n1+1/t)

edges. Hence, we first run the Algorithm of Theorem 2.3.8 to get a spanner Gt, and

then run the algorithm of Theorem 3.1.1 on Gt. Then by Lemma 2.3.5 we have,

Theorem 2.3.9. Given a graph G = (V, E, w), t, k > 1, we can construct a Thorup-

Zwick distance oracle of size O(kn1+1/k log n) with stretch t · (2k − 1)(1 + ϵ) = O(kt)

w.h.p. with total communication of Õ(kn1/t+1/kβ + tm), where β and the running time

are the same as in Theorem 3.1.1.

This implies that there is a direct tradeoff between the approximation ratio and

the amount of communication when size of the distance oracle is fixed. In other

words, when n1/t = o(m) the amount of communication required for distance oracles

of stretch O(kt) is smaller than the amount required for building distance oracles of

stretch O(k), where the size is in both cases O(kn1+1/k log n).

35

2.4 Distance Sketches in Massively Parallel Com-
putation Model

In this section we will focus on the MPC model. First we provide MPC algorithms

for constructing distance sketches that have the same guarantees (with respect to

the stretch/size tradeoff) as the centralized construction of Thorup-Zwick that run in

polynomial (or slightly subpolynomial) time. Then in Section 2.4.1 we show how we

can bring down the running time to polylogarithmic in exchange for a loss in accuracy.

First, we note that it is known from [12] that for dense graphs with O(n2) edges

every Congested Clique algorithm (in which nodes use local memory of O(n)) can be

implemented in the MPC(n) model. Therefore, when memory per machine is Ω(n)

and the graph is dense all the Congested Clique results discussed in Section 2.3 also

hold, except that we store the distance sketches rather than a central distance oracle.

The more interesting case is when memory per machine is strictly sublinear in n. For

the rest of this section we will turn our attention to the case where the memory is nγ ,

where 0 < γ ≤ 1 (i.e., strictly sublinear). For simplicity we assume that we can store

the sketches in a single machine. Namely, we require Õ(n1/k) memory per machine for

stretch O(k) distance sketches. This assumption can be relaxed (and in exchange the

query algorithm will take O(k) rounds instead of 2 rounds).

One main subroutine that we need is the restricted Bellman-Ford algorithm. We

then need to run many instances of this algorithm in parallel and handle other

technicalities both for constructing hopsets, and then the distance sketches. First, we

require following subroutines that will allow us to simulate one round of Bellman-Ford

in MPC(nγ):

Sorting [50]. Given a set of N comparable items, the goal is to have the items

sorted on the output machines, i.e. the output machine with smaller ID holds smaller

items.

36

Indexing [2]. Suppose we have sets S1, S2, ..., Sk of N items stored in the system.

The goal is to compute a mapping f such that ∀i ∈ [k], x ∈ Si, x is the f(Si, x)-th

element of Si. After running this algorithm the tuple (x, f(Si, x)) is stored in the

machine that stores x.

Find Minimum (x, y). Finds the minimum of N values stored over a contiguous

set of machines given ID x of the first machine and ID y of the last machine.

Broadcast (b, x, y). Broadcasts a message b to a contiguous group of machines

given ID x of the first machine and ID y of the last machine.

The sorting and indexing subroutines can be performed in O(1/γ) rounds of

MPC(nγ) ([2, 50]). We argue that we can solve the Find Minimum and Broadcast

problems also in O(1/γ) rounds of MPC(Nγ) in the following theorem. At a high-level

we use an implicit aggregation tree of depth O(logNγ N) = 1
γ
.

Theorem 2.4.1. Given N items over a contiguous range of machines x to y, sub-

routines Find Minimum(x, y) can be implemented in O(1/γ) rounds of MPC(Nγ).

Moreover, the subroutine Broadcast(x, y) can also be implemented in O(1/γ) rounds

of MPC(Nγ).

Proof. We will first define a rooted aggregation tree T with branching factor Nγ where

the machines Mx, ..., My are placed at the leaves (here Mx denotes the machine with

ID x). W.l.o.g assume that the machines in this range have increasing and sequential

IDs. Note that we don’t need to store this tree explicitly, and we only need each node

to know its parent. Consider level ℓ of the tree (leaves have ℓ = 0). Each node in this

level is a machine associated with the label ℓ. For each node in level ℓ− 1 that has

the i-th machine in its subtree, we set as its parent Mp(i,ℓ) where p(i, ℓ) = x + ⌊ i
Nℓγ ⌋.

Thus each machine can compute its parent given the label ℓ. Similarly, each machine

can compute the indices of its children (as a range). In other words, at each level ℓ,

we assign each group of Nγ nodes of this tree to a parent node at level ℓ + 1.

37

The algorithm Find Minimum proceeds as follows: at each round ℓ, each machine

first computes minimum over its the values it knows, and then sends the outcome

to the parent machine. Finally, the minimum will be computed and stored at the

root machine, which may forward the value to another destination. The algorithm

Broadcast will similarly use an aggregation tree, but this time it routes the message

top-down. First message b is sent to the first machine Mx, and then starting from

Mx in each round any machine that receives message b sends this value to all of its

children, which can be determined from the machine’s ID and y. Eventually all the

machines at the leaves will receive b. The number of rounds each of these subroutines

take are the height of the aggregation tree which is O(logNγ N) = 1
γ
.

Running the (restricted) Bellman-Ford algorithm in MPC is not as straightforward

as it is in the Congested Clique. One challenge is that for high-degree nodes, the

edges corresponding to a single node are distributed over a set of machines. Therefore,

for each round of Bellman-Ford these machines must communicate for computing and

updating the distance estimates. Another hurdle is the fact that since nodes have

different degrees, we do not have the range in which edges corresponding to a given

node are stored a priori. To overcome these challenges we need to use the described

subroutines, and for that we need to perform some preprocessing to append each edge

with a tuple that we will describe shortly.

We will show how we can create and maintain the following setting: Given a graph

G = (V, E), the goal is to store all the edges incident to each node v in a contiguous

group of machines, which we denote by M(v). More precisely, let M1, ..., MP , where

P= O(m
nγ), be the list of machines ordered by their ID, and let v1, ..., vn be the list of

vertices sorted by their ID. M(vi) consists of the i-th smallest contiguous group of

machines, such that |M(vi)| = ⌈deg(vi)
nγ ⌉.

Throughout the algorithm, let M(u,v) denote the machine that stores the edge

38

(u, v). Also, for all u ∈ V , let ru be the first machine in M(u), and for any edge

(u, v) ∈ E let iu(v) be the index of (u, v) (based on the lexicographic order) among

all the edges incident to v. We need to compute and store the following information

at M(u,v): deg(u), deg(v), ru, rv, iu, iv (here by storing ru we mean ID of ru, and for

simplicity we refer to iu(v) as iu). We first explain how these labels can be computed

for all edges in O(1
γ
) rounds in the following lemma.

Lemma 2.4.2. Let M(u,v) be the machine that stores a given edge (u, v). We can

create tuples of the form ((u, v), deg(u), deg(v), ru, rv, iu, iv), stored at M(u,v) for all

edges in O(1
γ
) rounds in MPC(nγ), where γ < 1.

Proof. Let N(v) be the set of edges incident on node v. Without loss of generality,

let us assume that both tuples of form (u, v) and (v, u) are present in the system for

each edge and we assume (u, v) ∈ N(u) and (v, u) ∈ N(v) (note that the graph is

still undirected). First, we use the indexing subroutine of [2] on the sets {N(v)}v∈V

to store index iu at M(u,v) and index iv at M(v,u). After this step tuples of form

((u, v), w(u, v), iu) are stored at M(u,v).

Then we sort the tuples based on edge IDs lexicographically, using sorting algorithm

proposed in [50]. This will result in the setting described above in which edges incident

to each node u are stored in a contiguous group of machines M(u). Now in order to

compute deg(u), machines will check whether they are the last machine in M(u) either

by scanning their local memory or communicating with the next machine. Then the

last machine in M(u) sets deg(u) to the maximum index iu it holds. This machine can

also compute ru, ID of the first machine in M(u) (using deg(u)), and then broadcasts

deg(u) and ru to all machines in M(u). At the end of these computations, each tuple

((u, v), w(u, v), iu) will be replaced by the tuple ((u, v), w(u, v), ru, iu, deg(u)). Next,

we sort these tuples again but this time based on the ID of the smallest endpoint.

In other words, for each edge (u, v) ∈ E, both tuples ((u, v), w(u, v), iu, deg(u)) and

39

((v, u), w(v, u), iv, deg(v)) will be at the same machine. Now we can easily merge these

two tuples to create tuples of form ((u, v), w(u, v), iu, iv, deg(u), deg(v)).

After computing the tuples, we use the sorting subroutine again to redistribute

the edges into the initial setting of having contiguous group of machines M(u) for all

u ∈ V . After these preprocessing steps, we are ready to perform updates required for

the restricted Bellman-Ford algorithm. A summary of this algorithm is presented in

Algorithm 2.

Algorithm 2: Restricted Bellman-Ford in MPC(nγ).
Input : Graph G = (V, E) distributed among machines M1, ..., MP and

source s.
Output : h-hop restricted distances from the source s to all nodes u ∈ V ,

d(h)(s, v).
1 Create the tuple ((u, v), iu, iv, ru, rv, deg(u), deg(v)) at M(u,v) for each edge

(u, v) ∈ E (by Lemma 2.4.2).
2 Sort the edges lexicographically so that edges incident to v are stored in a

contiguous group of machines M(v) (by [50]).
3 for i = 0 to h do
4 for v ∈ V do
5 Compute d̂(s, v) by finding (using Theorem 2.4.1

minu∈N(v) d̂(s, u) + w(u, v)).
6 Broadcast updated distances to everyone in M(v) (also by Theorem

2.4.1).
7 Each machine in M(v,u) sends d̂(s, v) to M(u,v) (located at ru + ⌊ iu

nγ ⌋).

Theorem 2.4.3. Given a graph G = (V, E) and a source node s ∈ V the restricted

Bellman-Ford algorithm (Algorithm 2) computes distances d(h)(s, v) for all v ∈ V in

O(h
γ
) rounds of MPC(nγ).

Proof. After storing the tuples (iu, iv, ru, rv, deg(u), deg(v)) at M(u,v) for each (u, v) ∈

E, the restricted Bellman-Ford algorithm proceeds as follows: in each round, for each

node v, we first find the minimum distance estimate for v and send it to rv. Then rv

will broadcast the minimum distance found to all the machines in M(v). By Theorem

40

2.4.1 both of these operations take O(1/γ) rounds. Then for each (v, u) ∈ N(v), M(v,u)

sends the updated distance directly to M(u,v), which islocated at index ru + ⌊ iu

nγ ⌋. All

the operations for each of the h iterations of Bellman-Ford take O(1/γ) rounds.

We now need to argue that hopsets of [38] can be constructed in MPC(nγ). We

show this in the following theorem. Here we assume that the weights are polynomial

in n, which is not unrealistic since in MPC the total memory is assumed to be Õ(m)

bits.

Theorem 2.4.4. For any graph G = (V, E, w) with n vertices, and parameters

ρ ≤ γ ≤ 1, 1 ≤ κ ≤ (log n)/4, 1/2 > ρ ≥ 1/κ and 0 < ϵ < 1, there is an algorithm

in MPC(nγ) model that computes a (β, ϵ)-hopset with expected size O(n1+ 1
κ log n) in

O(nρ

ρ
· log2 n · β) rounds whp, where β = O((log n

ϵ
· (log κ + 1/ρ))log κ+ 1

ρ).

Proof. As explained in Section 2.3, the distributed implementation of this algorithm

just performs multiple restricted Bellman-Ford algorithms in each phase. Recall also

that it is enough to run each of the Bellman-Ford instances only for O(β) rounds, by

using the fact that for constructing hopset edges Hk for a distance scale of (2k, 2k+1],

the hopsets ∪log β−1<j≤k−1Hj can be used recursively.

Each round of a single Bellman-Ford algorithm can be simulated in O(1
γ
) rounds

of MPC(nγ) by running the algorithm of Theorem 2.4.3 on each node, whose edges

may be distributed over multiple machines. Hence each superclustering phase can

be performed in O(β
γ
) rounds. But at each interconnection phase multiple separate

Bellman-Fords will run from each cluster center remaining. Thus we need to argue

that these runs of Bellman-Ford will not violate the memory (and IO memory) limit

of each machine. This can be shown using Lemma 2.2.1, which states that for each

vetex v ∈ V , w.h.p. the number of explorations of interconnection phase that visit

v is at most O(degi · log n). In other words, each node only forwards messages to

at most O(degi · log n) in each depth δi/2 Bellman-Ford explorations performed for

41

an interconnection phase. Moreover, the parameters of their construction is set so

that degi = O(nρ) throughout the algorithm. Hence, each node v ∈ V need to

store and forward distance estimates corresponding to at most O(nρ log n) sources for

O(log(κρ)+ 1
ρ
) iterations, and each Bellman-Ford runs for O(β) rounds. These separate

Bellman-Ford runs can be pipelined. Overall, all of the Bellman-Ford explorations

can be implemented in O(β
γ
· nρ log n).

We can now construct a hopset first and then run the distributed variant of the

algorithm in Section 2.2.2 due to [86] for constructing the distance sketches on the

new graph. The sketch of a given node v can be stored at a machine in M(v).

Proof of Theorem 2.1.2. After constructing a (β, ϵ)-hopset (by setting κ = k), we

store the edges added to each node v by redistributing them among machines M(v)

that simulate v. Let G′ = (V, E ∪ H, w′) be the graph obtained by adding hopset

edges. For constructing distance sketches with stretch 2k− 1, we run the algorithm of

[86] (described in Section 2.3) on G′. We run the restricted Bellman-Ford algorithm

(Algorithm 2) in O(β
γ
) rounds. Overall, O(βnρ log2 n

ργ
) rounds are needed for the hopset

construction (by Theorem 2.4.4), and O(kn1/k log n· β
γ
) rounds for building the distance

sketches on G′. In case k = O(1) we set ρ = 1/κ, and κ = k to get β = O(1) and total

running time Õ(n1/k). In case k = Θ(log n), we will set 1/κ = ρ =
√︂

log log n
log n

.

2.4.1 Polylogarithmic Round Complexity

In this section we describe how we can modify our algorithm to run in a polylogarithmic

number of rounds in exchange for increasing the stretch. We do this by first constructing

a spanner, which sparsifies the graph (“shrinking" the input) and thus allows us to

act as if we have “extra" total space. It turns out that this extra space is incredibly

powerful, and will let us build distance sketches in polylogarithmic time. But in the

end we have to pay for both the stretch of the spanner and the stretch of the sketch, so

42

we only achieve stretch O(k2) rather than stretch 2k − 1 for sketches of size Õ(n1/k).

There are intuitively two reasons why this extra space is so helpful. First, in

MPC having extra space (or extra machines) is equivalent to having larger total

communication bandwidth. This intuitively allows us to speed up the main construction

algorithm by running the Bellman-Ford algorithms “in parallel". There are some

technical details but it is not surprising that extra bandwidth is helpful.

The second reason why extra space is helpful is less obvious. Goodrich et al. [50]

gave a powerful simulation argument, showing that PRAM algorithms can be efficiently

simulated in MPC as long as the total number of processors used and the total space

used by the PRAM algorithm are bounded by the size of the input. This is a very

useful theorem, but the requirement that the number of processors is only the size

of the input is very restrictive. For example, the state of the art PRAM algorithms

for constructing hopsets use Ω(mnρ) processors rather than O(m) (for some value ρ

determined by the parameters of the hopset). It turns out to be easy to extend [50] to

show that if we have extra total space, we can use that extra space and communication

to simulate PRAM algorithms that use slightly more processors or space. Thus by

using a spanner first to sparsify the input, we give ourselves extra space and thus the

ability to efficiently simulate a wider class of PRAM algorithms (hopsets in particular).

MPC with Extra Space. First we define a variant of MPC with extra machines

(and thus extra space) denoted by MPC(S, S ′) where S is memory per machine, the

number of machines is Θ(mS′

S
) and m is the total input size. This also implies the

total memory available is Θ(mS ′) rather than Θ(m). We are first going to analyze

our algorithm in this variant of MPC, and then switch back to the standard setting.

In [50] it was shown that with a small overhead PRAM algorithms can be simulated

in MPC under certain assumptions on the number of processors and the memory used.

We use a simple extension of their result for our new MPC variant.

43

Theorem 2.4.5. Given a PRAM algorithm using P = O(mα) processors that runs

in time T , and uses O(mα) total memory at any time, this algorithm can be simulated

in O(T /γ) rounds of MPC(mγ, α), for any 0 < γ < 1.

This stronger variant of MPC also lets us extend Theorem 2.4.1 for larger message

sizes. We define a generalized variant of Find Minimum that takes a collection of

vectors and computes their coordinate-wise minimum, and a generalizes version of

Broadcast which broadcasts a vector of messages (rather than just a single message).

We get the following lemma.

Lemma 2.4.6. We can compute generalized Find Minimum(x, y) over N vectors

of length α stored on a contiguous range of machines x to y in O(1/γ) rounds of

MPC(Nγ, α). Moreover, the generalized Broadcast(b, x, y) subroutine can also be

implemented in O(1/γ) rounds.

Proof. In the new settings we have Θ(N1−γ · α) machines that can be used for

computation over N items in range (x, y), rather than Θ(N1−γ) machines used in

Theorem 2.4.1. Therefore we can assign each coordinate to a group of N1−γ machines

and then use a similar aggregation tree argument as in Theorem 2.4.1 on all the

coordinates in parallel in O(1/γ) rounds for both problems.

Next, we describe how the algorithm of Theorem 2.3.3 can be modified to utilize

the extra resources in MPC(n, n1/k log n) to improve the round complexity. We use

an argument similar to [86] with a few changes.

Theorem 2.4.7. Given a graph G = (V, E) with shortest path diameter Λ, there is

an algorithm in MPC(nγ, n1/k log n) that runs in time O(kΛ) w.h.p. and constructs

Thorup-Zwick distance sketches of size O(kn1/k log n) with stretch 2k − 1.

Proof. The algorithm is as follows: we have k phases for each level of Thorup-Zwick.

Sampling sets Ak−1 ⊆ ... ⊆ A1 is straightforward. We start from the k-th phase, and

44

we run Bellman-Ford (Algorithm 2) with the following modification: each node u

keeps a vector of size O(n1/k log n) of distance estimates d̃(v, u) for all v ∈ B(u). Then

we run modified variants of the Broadcast and Find Min subroutines (Lemma 2.4.6)

to update distances d̃(v, u) based on a message received from a neighbor u′ ∈ N(u) if

and only if d̃(v, u) + w(u, u′) < d(u, Ai+1) and d̃(v, u′) + w(u, u′) < d̃(v, u).

Based on Lemma 5 in [86], we know that at the end of phase i, each node u ∈ V

knows Bi(u) and its distance to all nodes in Bi(u). In particular, inductively each

node u knows d(u, Ai+1) before starting phase i. Note that algorithm of [86] keeps a

queue for all possible source nodes for their scheduling. We do not have space to store

such a queue for all nodes. Here we simply only store a map of size O(kn1/k log n) for

each node u that corresponds to distance estimates for all v ∈ B(u).

Next, we argue that each phase takes O(Λ
γ
) rounds based on an inductive argument

similar to Lemma 6 in [86]. Let v ∈ Bi(u), and assume that there is a shortest path

with j hops between v and u which we denote by v = v0, ..., vj = u. We use an

induction on j. In the base case, u and v are neighbors and in O(1/γ) rounds the

aggregations can be performed as in Theorem 2.4.1. By inductive hypothesis vj−1

received a message after O((j−1)
γ

) rounds. If vj−1 had found its shortest path to v

before the (j−1)-st iteration of Bellman-Ford, it would have already sent an update to

vj. Otherwise, v computes and broadcasts the updated distance using O(1/γ) rounds

of MPC(nγ, n1/k log n). We showed in Lemma 2.4.6 that this can be done in parallel

for all messages corresponding to sources in B(u) in O(1/γ) rounds. Hence vj receives

the updated distance after O(j/γ) rounds, where j ≤ Λ by definition. Finally, all

nodes will receive the distances from nodes in their bunches after O(kΛ/γ) rounds.

A straightforward extension of Theorem 2.4.7 implies that given a (β, ϵ)-hopset for

a graph, we can compute distance sketches with stretch (1 + ϵ)(2k− 1) in O(β
γ
) rounds

of MPC(nγ, n1/k log n). Next, we show that in addition to proving Theorem 2.4.7, the

45

extra memory also lets us improve the number of rounds for the hopset construction.

To show this, we use a result in [38] that constructs hopsets in PRAM, which is as

follows:

Theorem 2.4.8 ([38]). For any graph G = (V, E, w) with n vertices, and parameters

2 ≤ κ ≤ (log n)/4, 1/2 > ρ ≥ 1/κ and 0 < ϵ < 1, there is a PRAM algorithm that com-

putes a (β, ϵ)-hopset with expected size O(n1+ 1
κ log n) in O(1

ρ
· log2 n · log κ · β) PRAM

time whp, where β = O(log n(log κ+1/ρ)
ϵ

)log κ+ 1
ρ using Õ((m + n1+1/κ)nρ) processors.

We now argue that by having more space/machines, we are can implement the

algorithm in Theorem 2.4.8 with the same guarantees in low-memory MPC settings.

We will not discuss the details of the PRAM construction but the intuition here is

similar to Theorem 2.4.7. At a high level, having more communication/memory will

allows us to perform all the Õ(nρ) Bellman-Ford explorations required in the algorithm

of Theorem 2.4.8 in parallel.

Corollary 2.4.9. For any graph G = (V, E, w), and parameters 0 < ϵ < 1, 1/κ <

γ ≤ 1, κ ≥ 2, there is an algorithm that computes a (β, ϵ)-hopset with size O(n1+ 1
κ log n)

w.h.p. in O((κ/γ) · log2 n · log κ · β) rounds of MPC(nγ, n1/κ), where β = O(log n(log κ)
ϵ

)log κ+κ+1.

Proof. The claim directly follows by setting ρ = 1/κ in Theorem 2.4.8 and then

applying the simulation in Theorem 2.4.5 in MPC(nγ, n1/κ) on the new graph.

Obtaining Extra Space. Our modified algorithm for MPC(nγ) now proceeds as

follows: we first construct a spanner, then construct a hopset on this spanner, and

then use Theorem 2.4.7. Intuitively, by sparsifying the graph we can “buy" more

memory and hence more communication. In other words, by building a spanner we

can extend the results of the extra memory setting to the standard MPC setting.

There are several efficient PRAM algorithms for constructing spanners that we

can simulate in MPC. We use an algorithm proposed by [9] that constructs a (2k− 1)-

46

spanner of size O(kn1+1/k log n) with high probability. We then use Theorem 2.4.5 with

α = 1 (i.e. the original simulation of [50]) to construct the spanner in O(k
γ

log n log∗ n)

rounds of MPC(nγ), and then redistribute the spanner edges (e.g., by sorting), to

make the input distribution uniform over all the machines. We can now put everything

together to get the polylogarithmic construction.

Proof of Theorem 2.1.3. We first construct a 4k − 1-spanner with size O(kn1+ 1
2k).

We denote this spanner by G′. Since G′ has size m′ = O(n1+ 1
2k), while our total

memory (and consequently overall communication bound) is still based on the original

graph. Equivalently, the number of machines is m
nγ = Ω(m′n1/2k log n

nγ) (since m =

Ω(kn1+1/k log n)), and therefore we are exactly in the MPC(nγ, n
1

2k) setting, but where

the input graph is G′. Then we use Corollary 2.4.9 to construct a (β, ϵ)-hopset for

G′ with β = O(k
γ
· (log n·log k

ϵ
)log k+1+k) rounds of MPC(nγ). Finally, after adding the

hopset edges to G′ we use Theorem 2.4.7. The new stretch is clearly O(k2(1 + ϵ)).

2.4.2 Single-source shortest path

In various models (such as PRAM, CONGEST and Congested Clique) hopsets are

used for solving shortest path problems (e.g. [25, 56, 38]), and thus it is natural to see

how they can be used for this application in the MPC model. In particular, we discuss

application of Theorem 2.4.4 in solving the (approximate) single-source shortest path

problem. As stated earlier, while this problem is well-studied in many distributed

models, including the Congested Clique model, we are not aware of any non-trivial

results for this problem in the low memory MPC setting.

Theorem 2.4.10. Given a weighted undirected graph G = (V, E, w), a source node

s ∈ V , and 0 < γ ≤ 1, 0 < ϵ < 1 we can compute (1 + ϵ)-approximate distances from s

to all nodes in V w.h.p. in O(1
γ
) · 2Õ(

√
log n) rounds of MPC with Θ(nγ) memory per

machine.

47

Proof. We first construct a hopset using Theorem 2.4.4 by setting ρ =
√︂

log n
log log n

,

and κ = Θ(log n). This will let us build a hopset with hopbound 2Õ(log n) in time

O(1
γ
) · 2Õ(log n). We then run the restricted Bellman-Ford algorithm (Algorithm 2) in

O(1
γ
) · 2Õ(

√
log n) rounds of MPC(nγ). The idea behind this choice of parameters is the

following: any attempt to improve the running time by getting a smaller hopbound

(e.g. constant) will increase the time required to construct the hopset. In other words,

this choice of parameters will make the time required for preprocessing (construction

of the hopset) almost the same as the time required for running the Bellman-Ford

algorithm.

Finally, we show that we can used the technique in Section 2.4.1 to find constant

approximation to single source shortest path in polylogarithmic time for graphs with a

certain density. In particular, by first constructing a spanner and then using Corollary

2.4.9, we can also solve 4k(1 + ϵ)-approximate SSSP (for any 2 ≤ k ≤ O(log n)) on any

graph with m = Ω(n1+1/k log n) edges in fewer number of rounds. After constructing

a 4k − 1-spanner, we construct a (β, ϵ)-hopset for an appropriate hopbound β using

the extra space and then run a single restricted Bellman-Ford (Algorithm 2) from the

source in O(β/γ) rounds of MPC(nγ). By setting κ = k we get,

Corollary 2.4.11. For any graph G = (V, E, w) with n vertices, m = Ω(n1+1/k) edges,

and 0 < ϵ < 1, 1/k < γ ≤ 1, k > 2, and a source node s ∈ V , there is an algorithm

that w.h.p. finds a 4k(1 + ϵ)-approximation of shortest path distance from s to all

nodes in O(1
γ
· (log n·log k

ϵ
)log k+k+1) rounds of MPC(nγ). In particular, for k = O(1)

the algorithm runs in O(1
γ
· (log n

ϵ
)O(1)) rounds.

2.5 Distance Oracles in the Streaming Model

In this section we will describe how the Thorup-Zwick distance oracles can be con-

structed in the insert-only streaming model. For graph problems, the stream is a

48

sequence of edges (and their weights), and the goal is to solve the problem in space

strictly sublinear in number of edges. For some problems we might need to see multi-

ple passes of the stream. Similar to the distributed settings, we will use the hopset

construction of [38]. They show that in streaming settings a (β, ϵ)-hopset, where with

the following guarantees can be constructed.

Theorem 2.5.1 ([38]). For any graph G = (V, E, w) with n vertices, and any 2 ≤

κ ≤ (log n)/4, 1/2 > ρ ≥ 1/κ, 1 ≤ t ≤ log n and 0 < ϵ < 1/2, there is a streaming

algorithm that computes a (β, ϵ)-hopset with expected size O(n1+ 1
κ log2 n), where β =

O(1
ϵ
· (log(κ) + 1

ρ
) log n))log(κ)+ 1

ρ requiring either of the following resources:

• O(β log n) passes w.h.p. and expected space O(n1+ρ

ρ
+ n1+ 1

κ log2 n),

• O(nρ · β · log2 n) passes w.h.p. and expected space O(n1+ 1
κ log2 n).

We will next explain how the distance oracle can be constructed in O(β) passes

given a hopset with hopbound β. First, we need a variant of restricted Bellman-Ford

for streaming settings. The idea of using Bellman-Ford in streaming settings has been

previously used for shortest path computation (e.g. [38], [56]). This algorithm is

similar to the distributed variant: on receipt of each edge (u, v) ∈ E we will check to

see if the distance from any of the sources in S should be updated. After i passes of

the algorithm, all nodes have the i-restricted distance to nodes in s. The restricted

Bellman-Ford in streaming is presented in Algorithm 3. Note that unlike centralized

Bellman-Ford nodes do not store an initial distance estimate (due to space limitation

in the streaming model). This algorithm uses O(|S| · nh) total space.

After constructing a hopset, using the restricted Bellman-Ford algorithm, we can

construct a Thorup-Zwick distance oracle of stretch (2k − 1)(1 + ϵ) in O(β) passes.

First, we will explain how distance oracles can be constructed in O(Λ) passes, where

Λ is the shortest path diameter. The details of this algorithm is presented in Algorithm

49

Algorithm 3: Restricted Bellman-Ford in the Streaming Model
Input : Undirected weighted graph G = (V, E, w), and source node s ∈ V .
Output : h-hop restricted distances from the source s to all nodes u ∈ V ,

d(h)(s, v).
1 for O(h) passes do
2 for (u, v) ∈ E do
3 if d̂(s, v) = ∅ or d̂(s, u) + w(v, u) < d̂(s, v) then
4 d̂(s, v) = d̂(s, u) + w(v, u)
5 if d̂(s, v) = ∅ or d̂(s, v) + w(v, u) < d̂(s, u) then
6 d̂(s, u) = d̂(s, v) + w(v, u)

4. This algorithm is again similar to the distributed algorithm. Sets A1, .., Ak−1 can

easily be sampled in sublinear space. Here again for finding the distances from each set

Ai to all nodes, we will add a virtual node ai and add an edge of weight 0 between ai

and all the nodes in Ai. We then run the restricted Bellman-Ford algorithm from each

of these sources ai separately. This phase requires O(knΛ) space and O(Λ) passes. In

the final phase, we need to find the distance from each node in s ∈ Ai \ Ai+1 to all

nodes in C(s) = {v | v ∈ B(s)}. We will run a variant of the Bellman-Ford algorithm

in which each node v only stores a distance only if d̂(s, v) < d(v, Ai+1) or if this

condition holds after receiving an update from a neighbor. We will get the following

lemma.

Lemma 2.5.2. There is an algorithm that runs in O(Λ) passes, and w.h.p. con-

structs a 2k − 1 stretch Thorup-Zwick distance oracle of size O(kn1+1/k log n) using

O(kn1+1/k log n) total space.

Proof. It is clear that described algorithm takes O(Λ) passes, and correctly updates

all the distances required for building a Thorup-Zwick distance oracle. We also show

that the space required is the same as the distance oracle size. This follows from the

fact that for each node v, we are only storing distances to the nodes that are in v’s

bunch B(v), and we know from [88] that w.h.p. |B(v)| = O(kn1/k log n). Thus the

50

Algorithm 4: Preprocessing distance oracle of stretch 2k−1 in the streaming
model.

Input : Undirected graph G = (V, E, w) of shortest path diameter Λ.
Output : Approximate distance oracle.

1 Set A0 = V, Ak = ∅.
2 for i = 1 to k − 1 do
3 If v ∈ Ai−1 with probability n−1/k add v to Ai.
4 Run Algorithm 3 in parallel out of each set Ai, 1 ≤ i ≤ k, to find

pi(v) = argminu∈Ai
d(u, v), and set d(v, Ai) := d(pi(v), v).

5 for O(Λ) passes do
6 for (u, v) ∈ E do
7 for i = k − 1 down to 1 do
8 for s ∈ Ai \ Ai+1 do
9 if d̂(s, v) < d(v, Ai+1) or d̂(s, u) + w(u, v) < d(v, Ai+1) then

10 if d̂(s, u) + w(v, u) < d̂(s, v) then
11 d̂(v, s) = d̂(s, u) + w(v, u)

12 if d̂(s, u) < d(u, Ai+1) or d̂(s, v) + w(u, v) < d(u, Ai+1) then
13 if d̂(s, u) + w(v, u) < d̂(s, u) then
14 d̂(s, u) = d̂(s, v) + w(v, u)

total space is w.h.p. O(kn1+1/k log n).

Similar to the distributed case, given a graph G = (V, E, w), we can use the

(β, ϵ)-hopset construction of Theorem 2.5.1 to obtain a graph G′ = (V, E ∪ H, w′)

which has shortest path diameter O(β), and the distances in G are preserved up to a

factor of (1 + ϵ). Then by running Algorithm 4 on G′, we would require O(β) passes

to build a distance oracle with stretch (2k − 1)(1 + ϵ). We set the parameters in such

a way that we have space to store all the hopset edges locally. Thus while running

the algorithm of Theorem 2.5.3 we also consider the hopset edges to decide when to

update the distance. However, for readability of our algorithm, here we assume that

the hopset edges are also appearing in the stream. Hence, by first running the hopset

construction algorithm of Theorem 2.5.1, and then running the algorithm of Theorem

2.5.3, we will get the following result:

51

Theorem 2.5.3. Given a graph G = (V, E, w), there exists a streaming algorithm

that constructs a Thorup-Zwick distance oracle of stretch (2k − 1)(1 + ϵ) of size

O(kn1/k log n) w.h.p. using either of the following resources5:

• O(β log n) passes w.h.p. and expected space O(n1+ρ

ρ
+ n1+ 1

k log2 n),

• O(nρ · β · log2 n) passes w.h.p. and expected space O(n1+ 1
k log2 n),

where β = O(1
ϵ
· (log(k) + 1/ρ) log n))log(k)+ 1

ρ and 1
k
≤ ρ ≤ 1

2 .

In particular, when k = O(1) we will use the first case of Theorem 2.5.3 and set

ρ = 1/k, and when k = Ω(log n) we will use the second case and set ρ =
√︂

log log n
log n

. We

have,

Corollary 2.5.4. Given a graph G = (V, E, w), there exists a streaming algorithm

that constructs a Thorup-Zwick distance oracle of stretch (2k − 1)(1 + ϵ) of size

O(kn1/k log n) w.h.p. and expected space O(n1+1/k · log2 n), such that:

• If k = O(1), we require O(logk n) passes with high probability.

• If k = Ω(log n), we require 2Õ(
√

log n) = no(1) passes with high probability.

2.6 Comparison with Alternative Methods

In this section we discuss how storing a distance oracle is compared with alternative

methods for distance computation in distributed settings. In the Congested Clique,

rather than computing a Thorup-Zwick distance oracle we could instead compute a

graph spanner and store this at the coordinator node. A (2k − 1)-spanner of G is

simply a subgraph which preserves distances up to a (2k − 1) factor, so once such

spanner is at the coordinator, a classical centralized shortest-path algorithm would
5All the bounds expressed in expectation can be turned into high probability bound with an

additional factor of log n in the number of passes.

52

yield a distance estimate that is accurate up to (2k − 1) (as with our distance oracle).

A similar approach can be used in the streaming model. While a reasonable approach,

there are a few drawbacks.

First, the local computation time becomes superlinear, rather than O(k) as in

our oracle. While computation is generally extremely cheap compared to network

communication, there is still an enormous gap between superlinear and O(k) (since

k is at most logarithmic). And for large graphs, this may indeed rise to the level of

network delay time scales.

The more important drawback, though, is that spanners cannot be used in the

MPC model. Even an extraordinarily sparse spanner would not fit into the memory

of a single server in low-memory MPC, so the spanner would (just like the original

graph) have to be stored in a distributed fashion. So we would still have the same

problem that we started with: how to compute distance estimates in a distributed

graph. Only distance sketches allow us to answer such queries in such a small number

of rounds (in particular, two rounds after the sketches have been computed).

Another direction that one could take is running an all-pairs shortest path algorithm

(APSP). This approach has multiple drawbacks: First, for fast queries we will need

to store the whole adjacency matrix, which clearly uses much more space. Secondly,

such algorithms are slower and use more resources.

2.7 Discussion and Future Work

Fist we note that our results in this section can be extended in two directions: After

constructing a (β, ϵ)-hopset in MPC, we can use it to compute a (1 + ϵ)-approximate

multi-source-shortest path from s-sources in O(β) rounds, and with an extra factor

of s in total memory consumption. Depending on the number of sources and desired

total memory we can find the appropriate β. For instance, if the number of sources is

53

large, we can use a total of O(sm) memory and set β to be polylogarithmic.

Another application of our techniques is in constructing distance oracles also in

PRAM, and dynamic streams with some additional technicalities within the same

bounds given here for MPC and streaming respectively.

One future direction is in computing k-approximate shortest paths using hopsets

with larger stretch directly. One would hope that such hopsets can have smaller

hopbound, and lead to better tradeoffs.

In a recent related work [17], we obtain a Õ(log log k) round algorithm for con-

structing O(k)-spanners in low and linear memory MPC. This leads to a log n1+o(1)-

approximate all-pairs-shortest-path algorithm in Õ(log log n)-rounds of linear memory

MPC. While this algorithm is exponentially faster than other known results, the

approximation ratio is larger than desired. One natural open problem is to see whether

hopsets could lead to better tradeoffs in the linear memory MPC regime.

54

Chapter 3

Sparse Hopsets in Congested
Clique

3.1 Introduction

In this chapter we propose a new algorithm for constructing sparse hopsets in the

Congested Clique model. Our construction time improves over the previous state-of-

the-art sparse hopsets of Elkin and Neiman [38](used in Chapter 2), and [41] in this

model. The results in this chapter are published in [77]. Recall the definition of a

hopset. Informally, given a graph G = (V, E), a (β, ϵ)-hopset H with hopbound β, is

a set of edges such that for any pair of nodes u and v in G, there is a path with at

most β hops in G∪H with length within (1 + ϵ) of the shortest path between u and v

in G (see the more formal definition in Chapter 1). We generally want to have sparse

hopsets with small hopbound. As we discussed in Chapter 1 hopsets are theoretically

interesting, and are connected to many other important objects, but in this chapter

the following perspective on their application is helpful: In the distributed models

that we consider, once a hopset is preprocessed, we can use it for computing distance

queries, and the query time (number of distributed rounds) will be the hopbound.

There is a natural tradeoff between the size and the hopbound (or the distributed

query time) of a hopset. In an extreme case one could store the complete adjacency

list-or equivalently add O(n2) edges, and then query distances in constant time. Other

55

than the fact that computing all-pairs shortest-path is generally slow, we often do not

have enough space to store the whole adjacency list for large-scale graphs. There is a

line of work that focuses on designing data structures with small size, say Õ(n1+1/k),

in which distances can be estimated up to O(k) stretch in small query time. Examples

of such structures are Thorup-Zwick distance oracles [88], which we focused on in

Chapter 2. Hopsets offer a different tradeoff: a hopset gives an accuracy of 1 + ϵ

(rather than O(k)) at the expense of a larger query time (polylogarithmic in distributed

settings instead of a small constant in centralized settings). It is therefore crucial to

keep the hopbound as small as possible, since the hopbound will basically determine

the query time and is more important than the preprocessing time. However, even in

centralized settings there are existential limitations in this tradeoff. The lower bound

result by [1] states that there are graphs for which we can not have a hopbound of

o(log(k)/ϵ)log(k) and size O(n1+1/k)), for arbitrary 0 < ϵ < 1.

In a recent result, Censor-hillel et al. [19] gave a fast Congested Clique algorithm

that constructs a hopset with hopbound O(log2(n)/ϵ) and size Õ(n3/2). While we

can use their hopsets to compute distances efficiently, one shortcoming of such a

construction is the large space. In particular, if the original graph has size o(n3/2),

their algorithm requires storing more edges than the initial input. This is undesirable

for large scale graphs, where we do not have any additional space available. It is

therefore natural to find algorithms that use less space, possibly in exchange for

a slightly weaker hopbound (but still polylogarithmic). This is our main goal in

this chapter. We extend the result of [19] by constructing sparse hopsets with size

Õ(n1+1/k) for a constant k ≥ 2 and polylogarithmic hopbound in polylogarithmic

time in Congested Clique. This is the first Congested Clique construction of sparse

hopsets with polylogarithmic hopbound that uses only polylogarithmic number of

rounds. Hence we can store a sparse auxiliary data structure that can be used later

to query distances (from multiple sources) in polylogarithmic time.

56

Our hopset construction is based on a combination of techniques used in Cohen

[25] (with some modifications) and the centralized construction of Huang and Pettie

[58]. We also use another result of [19] that allows us to efficiently compute (1 + ϵ)-

approximate multi-source shortest path distances from O(
√

n) sources.

One tool that we use in our construction is a hop-limited neighborhood cover con-

struction, which may be of independent interest. Roughly speaking, a W -neighborhood

cover is a collection of clusters, such that there is a cluster that contains the neighbor-

hood of radius W around each node, and such that each node is contained in at most

O(log(n)) clusters. In an ℓ-limited W -neighborhood cover only balls with radius W

using paths with at most ℓ-hops are contained in a cluster.

Connections with other chapters. One technique that we use in our construction

is a scaling idea by [64] that allows us to construct neighborhood covers more efficiently.

Interestingly, we also use this idea in our dynamic hopset construction in Chapter 4.

While this idea is used in a different primitive and model in these two places, in both

cases it is based on the intuition that by restricting our attention to pairs of nodes

in a specific distance scale, scaling based ideas can improve the performance of these

algorithms.

We also note that our neighborhood cover algorithm is based on constructing

padded decompositions, a tool that we also use in Chapter 5 (see Section 5.3), for a

very different purpose of solving linear programs in the LOCAL model.

3.1.1 Our contribution

While our main focus on hopsets in the Congested Clique model, we also get several

side results in other models. In this section, we summarize our results and their

connection with related work.

57

Congested Clique. Before this work, the state-of-the-art construction of sparse

hopsets in Congested Clique was the results of Elkin and Neiman [41] (and similar

bounds in [38]), but these algorithms require polynomial number of rounds for con-

structing hopsets with polylogarithmic hopbound. The construction of Censor-Hillel et

al. [19] is a special case of hopsets of [41]. They construct hopsets of size Õ(n3/2) with

O(log2(n)/ϵ) hopbound. They can construct such a hopset in O(log2(n)/ϵ) rounds of

Congested Clique using sparse matrix multiplication techniques. However, [19] does

not provide any algorithm for sparser hopsets. Here we use a new hopset construction

that has a very different structure than hopsets of [41] and with improved guarantees.

Not only does our hopset construction run in polylogarithmic rounds, but it also

yields a better size and hopbound tradeoff over the state-of-the-art Congested Clique

construction of [41]. Prior to [38] and [19] the hopsets proposed for Congested Clique

had superpolylogarithmic hopbound of 2Õ(
√

log(n)) [56] or polynomial [76] hopbound.

More formally, we provide an algorithm with the following guarantees:

Theorem 3.1.1. Given a weighted1 graph G = (V, E, w), for any k ≥ 2, 0 <

ϵ ≤ 1, there is a Congested Clique algorithm that computes a (β, ϵ)-hopset of size

O(n1+ 1
2k log(n) + n log2(n)) with hopbound β = O(log2(n)

ϵ
(log(n) log(k)

ϵ
)log(k+1)−1) with

high probability in O(β log2(n)) rounds.

To see how this result compares to the efficient variant of the Congested Clique

hopsets of [38], we note that for a hopset of size O(n1+ 1
k log(n)), we have a hopbound of

O(log2(n)
ϵ

(log(n) log(k)
ϵ

)log(k+1)−2), whereas [38] gets a hopbound of Ω((log(n) log(k)
ϵ

)log(k)+2).

Thus we get a Θ(log2−o(1)(n)(log(k)
ϵ

)4−o(1)) factor improvement over the construction

of [38]. Also, their more efficient algorithm runs in Õ(nρ) rounds of Congested Clique,

where 0 < ρ ≤ 1
2 is a parameter that impacts the hopbound (ρ is a constant when

their hopbound is polylogarithmic). They also propose a second algorithm that uses
1For simplicity, we assume that the weights are polynomial. This assumption can be relaxed using

standard reductions that introduce extra polylogarithmic factors in time (and hopbound) (e.g. see
[64],[74], [38]).

58

an extra polynomial factor in the running time to obtain constant hopbound2. We

note that the construction of [41] has similar guarantees to [38], with two differences:

it eliminates a log(n) factor (or more generally the dependence on aspect ratio) in the

hopset size, but has a slightly worse hopbound in their fastest regime.

Our construction is mainly based on the ideas of [25] with a few key differences

that take advantage of the power of Congested Clique. While the hopsets of [38]

improve over hopsets of [25] existentially in centralized settings, the construction of

[25] has certain properties that makes it adaptable for a better Congested Clique

algorithm. In particular, [25] uses a notion of small and big clusters, and we can

utilize this separation in Congested Clique. We change the algorithm of [25], in such a

way that leads to adding fewer edges for small clusters. This leads to sparser hopsets

and improves the overall round complexity. The key idea is that by using the right

parameter settings, in Congested Clique we can send the whole topology of a small

cluster to a single node, the cluster center, and then compute the best known hopset

locally. It is possible to perform these operations specifically in Congested Clique due

to a well-known routing algorithm by Lenzen [68]. We can then combine Theorem

3.1.1 with a source detection algorithm by [19] (formally stated in Lemma 3.2.2) to

get the following result for computing multiple-source shortest path queries.

Corollary 3.1.2. Given a weighted graph G = (V, E, w) there is a Congested Clique

algorithm that constructs a data structure of size O(m+n1+ 1
2k) in O(β log2(n)) rounds,

where β = O(log2(n)
ϵ

(log(n) log(k)
ϵ

)log(k+1)−1), such that after construction we can query

(1 + ϵ)-stretch distances from O(
√

n) sources to all nodes in V in O(β) rounds with

high probability.
2If we allow extra polynomial factors in the running time we may also get a constant hopbound

(we would need to change the parameters of the neighborhood cover construction, and change how
we iteratively use smaller scales). However, we do not study this regime, as it is not aligned with our
main motivation of getting polylogarithmic round complexity.

59

Neighborhood and Pairwise Covers. In Section 3.3, we focus on an efficient

construction of a limited pairwise cover (or neighborhood cover) in the CONGEST

model, which is a tool that we use in our hopset construction. Given a weighted graph

G = (V, E), a W -pairwise cover, as defined by [24], is a collection C of subsets of V

with the following properties.

1. The diameter of each cluster is O(W log n);

2. We have ∑︁C∈C |C| = O(n), ∑︁C∈C E(C) = Õ(m), in other words, the sum of the

sizes of all clusters is O(n), and the sum of all edge occurrences in the clusters

is Õ(m);

3. For every path p with (weighted) length at most W , there exists a cluster C

where p ⊆ C.

Pairwise covers are similar to neighborhood covers of Awerbuch and Peleg [4] with

two differences: in a W -neighborhood cover, there must be a cluster that contains

the neighborhood of radius W around each node rather than only paths of length W .

Neighborhood covers also need an additional property that each node is in at most

O(log(n)) clusters. While for our purposes the path covering property is enough, in

distributed settings we need the property that each node overlaps with few clusters to

ensure that there is no congestion bottleneck. The main subtlety in constructing a

general W -pairwise (or neighborhood) cover is that we may need to explore paths of

Ω(n) hops, and thus it is not clear how this can be done in polylogarithmic time. To

resolve this, [24] proposed a relaxed construction called ℓ-limited W -pairwise cover.

This structure has all the above properties but only for paths with at most ℓ-hops.

More formally, the third property will be relaxed to require that for every path p of

weight at most W with at most ℓ hops there exists a cluster C where p ⊆ C. We can

define an ℓ-limited W -neighborhood cover similarly.

60

A randomized algorithm that constructs ℓ-limited pairwise covers with high prob-

ability in O(ℓ) depth in the PRAM model was given by [24]. The ideas used in

[74] for constructing work-efficient PRAM hopsets, can also be used to construct

ℓ-limited pairwise and neighborhood covers in PRAM. However, they do not explicitly

construct limited pairwise covers. In distributed settings, a recent construction for

sparse neighborhood covers in unweighted graphs in the CONGEST model was given

by [79]. However, even by generalizing their result to weighted graphs, in order to

cover distances for large values of W the algorithm would take Ω̃(W) rounds for

reasons described above.

To the best of our knowledge, an efficient algorithm for constructing ℓ-limited

pairwise-covers (or limited neighborhood covers) is not directly studied in the CON-

GEST and Congested Clique literature. Our first contribution is such an algorithm:

we use the low-diameter decomposition construction of Miller et al. [74] for weighted

graphs, combined with a rounding technique due to [64] to construct ℓ-limited W -

pairwise covers in O(ℓ log2(n)) rounds in the CONGEST model. Importantly, ℓ is a

parameter independent of W , which we will set to a polylogarithmic value throughout

our hopset construction. Our algorithm is similar to the algorithm of [74], but with

some adaptations needed for implementation in the CONGEST model. Formally, we

get the following result:

Theorem 3.1.3. Given a weighted graph G = (V, E, w), there is an algorithm that

constructs an ℓ-limited W -pairwise cover in O(ℓ log2(n) log(W)) rounds in the CON-

GEST model, with high probability. Moreover, a pairwise cover for paths with ℓ-hops

with length in [W, 2W] 3 can be constructed in O(ℓ log2(n)) rounds with high probability.
3The algorithm and analysis can easily be extended to paths with length [W, cW] for any constant

c.

61

MPC. As a side result4, we note that pairwise covers can also be constructed

efficiently in the Massively Parallel Computation model (MPC) (even when memory

per machine is strictly sublinear). This in turn leads to a better running time for

(1+ ϵ)-MSSP from O(
√

n) sources (and consequently SSSP), in O(log2(n)/ϵ) rounds in

a variant of the model where we assume the overall memory of Õ(m
√

n) (equivalently,

we have more machines than in the standard MPC model). We consider this variant

since in practice it is plausible that there are more machines, while due to the large-

scale nature of data in these settings, using less memory per machine is often more

crucial.

In Chapter 2 (which is based on [30]) we constructed a (β, ϵ)-hopsets (based on

hopsets of [38]) with polylogarithmic hopbound when the overall memory is Õ(m), but

we argued that using the existing hopset constructions, this would take polynomial

number of rounds in MPC. We further showed that if the overall memory is by

a polynomial factor larger (i.e. if the overall memory is Θ̃(mnρ) for a constant

0 < ρ ≤ 1/2), then hopsets with polylogarithmic hopbound can be constructed in

polylogarithmic time. We can also use this extra-memory idea, first to argue that

using the hopsets of [25] instead of the hopsets of [38] we can get a smaller hopbound

when the overall memory is O(m
√

n). Then we observe that if we use a faster ℓ-limited

pairwise cover algorithm (based on the construction of [74]) instead of the pairwise

covers that [25] uses, we can shave off a polylogarithmic factor in the construction time.

This ℓ-limited W -pairwise cover construction may also be of independent interest in

MPC. More formally, we get faster algorithms for (1 + ϵ)-MSSP:

Theorem 3.1.4. Given an undirected weighted graph G, we can compute (1 + ϵ)-

MSSP from O(n1/2) sources in O(log2(n)
γϵ

) rounds of MPC, when memory per machine

is Õ(nγ), 0 < γ ≤ 1 and the overall memory is Õ(mn1/2) (i.e. there are Θ(mn1/2−γ)
4Our MPC results can be seen as a straight-forward combination of results of [25], [74], [30]

(Chapter 2) and simulation of [50]. But since both the construction and the model are closely relevant
to our Congested Clique algorithms, we find it useful to include this discussion.

62

machines).

The difference between this result and that of Chapter 2 [30] is that they give a

more general result where the overall memory is Õ(mnρ) for a parameter ρ > 0. But

in the special case of ρ = 1/2, we get a hopbound of O(log2(n)
ϵ

), whereas in this case

they get a hopbound of O((log(n)
ϵ

)3). We also note that the main focus in Chapter 2 is

constructing Thorup-Zwick distance sketches. As explained earlier, these structures

offer a different tradeoff: much weaker accuracy (O(k)-stretch), but better query

time (constant rounds rather than polylogarithmic) and less space after preprocessing

(Õ(n1+1/k) instead Õ(m) in the case of hopsets). More details on the MPC algorithm

can be found in Section 3.5.

Further related work on distributed distance computation. In a related

result, the problem of single-source shortest path (SSSP) in Congested Clique was

also studied in [11], where they use continuous optimization techniques for solving

transshipment. Firstly, their algorithm takes a large polylogarithmic round complexity,

and has a high dependence on ϵ. But we can have a significantly smaller running time

depending on the hopset size. In other words, for hopsets with a reasonable density

(e.g. with size n1+µ, where µ < 0.1) we get a much smaller polylogarithmic factor for

computing (1 + ϵ)-SSSP. This can be further reduced if we allow denser hopsets.

More importantly, an approach such as [11] is mainly suited for SSSP. One limitation

with their approach is that for computing multiple distance queries we need to repeat

the algorithm for each query. For example, for computing the shortest path from s

sources to all nodes, we have to repeat the whole algorithm s times. But constructing

a hopset will let us run many such queries in parallel in O(β + s) rounds, where β

is the hopbound. Moreover, we can compute multi-source shortest path from O(
√

n)

sources in parallel for all the sources using the source detection algorithm of [19].

63

Subsequent work. After this work [77] was published, [33] proposed a Congested

Clique algorithm for unweighted graphs that runs in Õ(log log(n)) rounds and computes

(2 + ϵ)-approximate all-pairs-shortest-paths.

In this work, we are not taking full advantage of sparse hopsets since we use the

result of [19] as a black-box. A natural direction is to combine the sparse matrix

multiplication techniques of [19] with our sparse hopset algorithm. This may lead

to an efficient approximate multi-source shortest path algorithm for a larger set of

sources, and further results for approximate all-pairs-shortest paths. Indeed, in a very

recent work, Elkin and Neiman [42] used sparse matrix multiplication, combined with

a different hopset construction to obtain a (1 + ϵ)-MSSP algorithm from up to roughly

n0.65 sources in polylogarithmic rounds of Congested Clique. We leave it as an open

problem whether our hopset techniques allows a further increase in the number of

sources.

3.1.2 Overview of techniques.

Our hopset has a similar structure to hopsets of [25], but with some changes both

in construction and the analysis. We also take advantage of multiple primitives that

are specific to Congested Clique such as message routing algorithm by Lenzen [68]

and a recent result of [19]. First, we explain the ℓ-limited W -neighborhood cover

construction and then we explain the hopset algorithm.

ℓ-limited neighborhood covers. As described earlier, our algorithm for con-

structing a W -neighborhood cover is based on a combination of the low-diameter

decomposition of [74], and a rounding technique originally proposed by [64]. At a high

level, in the low-diameter decomposition algorithm of [75, 74], each node u chooses

a radius ru based on an exponential random variable. Then each node u joins the

cluster of node v that minimizes the shifted distance from u, which is defined as

64

d(u, v)− rv. This leads to a partition of the graph, and we can show that by repeating

this process we will get a W -neighborhood cover. Since partitions for constructing a

W -neighborhood covers directly will be slow for large values of W , we focus on the

ℓ-limited W -pairwise covers. To construct these, consider all pairs of nodes within

distance [w, 2w], w ≤ W in each iteration. We round up the weights of each edge in the

graph based on values w and ℓ. We then construct a low-diameter-decomposition based

on the new weights, such that the diameter of each cluster is O(ℓ log(n)) (rather than

O(W log(n)) based on the original weights). The rounding scheme is such that the

ℓ-limited paths with length [w, 2w] in the original graph will be explored. Intuitively,

this means that on the rounded graph we need to explore a neighborhood with fewer

hops, which will lead to a faster construction. We can then repeat this process for

O(log(W)) times for different distance intervals. The details of this rounding scheme

can be found in Section 3.3.

Hopset Construction. First we describe the sequential hopset construction

and will then choose the parameters appropriately for our distributed construction.

Let µ be a a parameter that we will set later. The (sequential) structure of the

hopset is as follows: In each iteration we consider pair of nodes u, v ∈ V such that

R ≤ d(u, v) < 2R, and we call the interval [R, 2R) a distance scale. Then for distance

scales [R, 2R) we set W = O(ϵR/(log n)) and construct a W -pairwise cover. We let

big clusters be the clusters that have size at least nµ and small clusters have size less

than nµ, where 0 < µ < 1 is a constant parameter. Then we construct a hopset with

small hopbound on each of the small clusters. This is the main structural difference

with the construction of [25] that adds a clique for the smallest hopsets. We then add

a star from the center node of each big cluster to every other node in that cluster,

and add a complete graph at the center of large clusters. Whenever we add an edge,

we set the weight to be the distance between the two endpoints. In the distributed

65

construction, the weight will be an estimate of this distance that we will describe

later.

Roughly speaking, constructing a hopset on small clusters rather than constructing

a clique as [25] does, allows us to set the size threshold of small clusters larger, while

keeping the number of edges added small. This in turn reduces the number of big

cluster centers we have to deal with. Such a modification can be very well tuned to

the Congested Clique model. By setting µ = 1/2, we will have small cluster that will

at most O(n) edges. Then a well-known routing algorithm by Lenzen [68] can be used

to send all these edges to the cluster center. The cluster center can then compute a

hopset locally. For this we use current best-known centralized construction by [58].

The other challenge is that we need to compute pairwise distances between all big

cluster centers. In [25] this step is done by running Bellman-Ford instances from

different sources in parallel. But directly implementing this in distributed settings

would need Ω(
√

n) rounds due to congestion. This is where we use a recent result by

[19] stating that we can compute (1 + ϵ)-approximate distances from O(
√

n) sources in

O(log2(n)/ϵ) time. We point out that in [25], in order to get sparse hopsets, they use a

recursive construction for small clusters. Such a recursion would introduce significant

overhead in the hopbound guarantee. Here we show that in Congested Clique by

using the tools described above we can avoid using the recursive construction and still

compute sparse hopsets.

We explain briefly why the constructed hopset has the size and hopbound properties

stated in Theorem 3.1.1. To see this, we use similar arguments as in [25]: for a distance

scale [R, 2R) consider a shortest path of length at most 2R, and consider O(log(n)/ϵ)

segments of length W on this path. By definition of a W -pairwise cover, each such

segment is contained in a cluster. If this segment is in a small cluster, there is a

corresponding path with at most β′ edges, where β′ is the hopbound of the local

construction. For big clusters, we either add a single edge, or if there is more than

66

one big cluster, the whole segment between these clusters has a corresponding edge in

the hopset. By similar considerations and by the triangle inequality we can show that

the stretch of the replaced path is (1 + ϵ). We need a tighter size analysis than the

one used in [25] to prove the desired sparsity. We use a straight-forward bucketing

argument as follows: for each cluster of size Θ(s), Θ(s1+1/k) edges will be added. Then

by noting that are at most O(n/s) clusters with this size we can bound the overall

size.

Bounding the exploration depth. For large values of R, the shortest path

explorations up to distance R could take Ω(n) rounds in distributed settings. To

keep the round complexity small, we use the following idea from [25] (also used in

[38] and [19]): we can use the hopset edges constructed for smaller distance scales

for constructing hopset edges for larger distance scales more efficiently. The intuition

behind this idea is that any path with length [R, 2R) can be divided into two segments,

such that for each of these segments we already have a (1 + ϵ)-stretch path with β

hops using the edges added for smaller distance scales. This allows us to limit the

explorations only to paths with 2β + 1 hops in each iteration. This process will impact

the accuracy, and so in order to keep the error small we have to construct the hopsets

for a fixed scale at a higher accuracy. This is where a factor polylogarithmic in n will

be introduced in the hopbound, which can generally be avoided in the centralized

constructions (e.g. see [25, 38]). This idea is formalized in Lemma 3.2.1.

3.1.3 Preliminaries

We review the notation and review the models considered here again. Given a weighted

undirected graph G = (V, E, w), and a pair u, v ∈ V we denote the (weighted) shortest

path distance by d(u, v). We denote by d(ℓ)(u, v) the length of the shortest path

between u and v among the paths that use at most ℓ hops, and call this the ℓ-hop

67

limited distance between u and v. For each node v ∈ V , we denote the (weighted)

radius r neighborhood around v by B(v, r), and we let Bℓ(v, r) be the set of all nodes

u ∈ V such that there is path π of (weighted) length at most r between u and v such

that π has at most ℓ hops.

Models. We construct limited neighborhood covers in the more classical CON-

GEST model, in which we are given an undirected graph G = (V, E), and in each

round nodes can send a message of O(log(n))-bits to each of their neighbors in G

(different messages can be sent along different edges). Recall, that in the Congested

Clique model, we are given a graph with n nodes, where all nodes can send a message

with O(log(n))-bits to every other node in the graph in each round [72]. In other words,

this is a stronger variant of the CONGEST model, in all nodes can communicate with

each other directly.

We also consider a variant of the low memory Massively Parallel Computation

model. In the standard MPC model, for graph problems the total memory N is

O(m), m = |E| words. But here we allow the total memory to be larger, while the

memory per machine is still strictly sublinear in n. In other words, each machine has

O(nγ), γ < 1 memory, where n = |V |, but the overall memory is going to be Ω(mnα),

for a specific constant 0 < α < 1.

Even though we do not give any new PRAM results, we use multiple tools from

PRAM literature. In the PRAM model5, a set of processors perform computations by

reading and writing on a shared memory in parallel. The total amount of computation

performed by all processors is called the work, and the number of parallel rounds is

called the depth.
5We just use a simple abstraction without details of the exact parallel model (EREW, CRCW,

etc), since PRAM is not our focus and there are reductions with small overhead between these
variants.

68

3.2 Algorithmic Tools.

In this section we describe several algorithmic tools from previous work that we will

be using.

Bounding the shortest path exploration. As explained earlier, for an effi-

cient hopset construction, we need to first compute hopsets for smaller distance scales

and then use the new edges for computing future distances. This will let us limit

the shortest path explorations to a logarithmic number of hops in each round. More

formally,

Lemma 3.2.1 ([25, 38]). Let Hk be the hopset edges for distance scale [2k−1, 2k) with

hopbound β. Then for any pair u, v where d(u, v) ∈ [2k, 2k+1), there is a path with

2β + 1 hops in G ∪ (∪k
i=log(β)H

i) with length (1 + ϵ)-approximate of the shortest path

between u and v.

Roughly speaking, the above lemma implies that we can use previously added

edges and only run Bellman-Ford for 2β + 1 rounds for each iteration of our algorithm.

Lenzen’s routing. Given a set of messages such that each node is source and

destination of at most O(n) messages, these messages can all be routed to their

destination in O(1) time in Congested Clique [68].

Multi-source shortest path and source detection in Congested Clique.

We use the following two results by [19]. First result is a multi-source shortest path

algorithm that we use as a subroutine in our hopset construction:

Lemma 3.2.2 (MSSP, [19]). Given a weighted and undirected graph, there is an algo-

rithm that computes (1 + ϵ)-approximate distances distances from a set of O(
√

n log n)

sources in O(log2(n)
ϵ

) rounds in the Congested Clique model.

69

The second result solves a special case of the so-called source-detection problem

that we use to prove Corollary 3.1.2:

Lemma 3.2.3 (Source detection, [19]). Given a fixed set of O(
√

n) sources S, we

can compute ℓ-hop limited distances from all nodes to each of the nodes in S in O(ℓ)

rounds in the Congested Clique model.

3.3 Neighborhood covers using low-diameter de-
composition

In this section, we describe an algorithm for constructing pairwise covers in the

CONGEST model. We first give an algorithm for W -pairwise covers in weighted

graphs that runs in O(W log2(n)) rounds. We then provide an ℓ-limited W -pairwise

cover that runs in O(ℓ log2(n)) rounds. Clearly, the CONGEST algorithm can also be

used in Congested Clique with the same guarantees. We will use the low-diameter

decomposition algorithm that was proposed in [75] and extended (to weighted graphs)

in [74] for computing pairwise covers in PRAM. First we state their PRAM result:

Theorem 3.3.1 (MPX [74, 75]). Given a weighted an undirected graph G = (V, E, w),

there is a randomized parallel algorithm that partitions V into clusters X1,X2, ... such

that w.h.p. the (strong) diameter of each cluster Xi is at most O(log(n)
α

). This algorithm

has O(α−1 log(n)) depth6 w.h.p. and O(m) work.

We denote the algorithm of [74] for a parameter 0 < α < 1 by LDD(α), which

is as follows: each node u ∈ V first chooses a random radius ru based on an ex-

ponential distribution exp(α). Each node v ∈ V joins the cluster of node u =

arg minx∈V (d(v, x)− dx). Ties can be broken aribtrarily. It is easy to see that based

on simple properties of exponential random variables the weak diameter of each cluster
6Depending on the exact PRAM model considered the depth may have a small extra factor of

O(log∗(n)).

70

is O(α−1 log(n)) with high probability. But it can be shown that the clusters also

have strong bounded diameter of O(α−1 log(n)) (as argued in [75, 74]). This means

the diameter of the subgraph induced by each cluster is O(α−1 log(n)) as opposed to

the weak diameter guarantee, which bounds the diameter with between each pair of

nodes in the cluster based on distaces in G. The second property is that we can lower

bound the probability that the neighborhood around each node is fully contained

inside one cluster by a constant. This was shown in [74], but we give a proof sketch

for completeness.

Lemma 3.3.2 (Padding property7, [74]). Let X be a partition in support of the

LDD(α) algorithm. For each node u ∈ V , the probability that there exists C ∈ X such

that B(u, r) ⊆ C is at least exp(−2rα).

Proof sketch. For each node u we will consider the subgraph induced by B(u, r). For

each node v ∈ V , consider the random variable Yv := rv − d(u, v). Let Y1 denote the

largest Yv over v ∈ B(u, r), and let Y2 denote the second largest value. We argue that

the probability that B(u, r) intersects more than one cluster is at most 1− exp(−2rα).

This event occurs when Y1 and Y2 are within 2r of each other. Therefore we only

need to bound the probability that Y1 − Y2 < 2r. This now follows from Lemma 4.4.

of [75] that claims the following: given a sequence of exponential random variables

r1, r2, ..., rn, and arbitrary values d1, d2, ..., dn the probability that largest and second

largest values ri − di are within δ of each other is at most 1− exp(−δα). This implies

the probability that B(u, r) intersects more than one cluster is at most 1− exp(−2rα)

and this proves the claim. For more details see [75], [74].

In order to compute W -neighborhood covers sequentially, we can use the above

theorem by setting α = 1/W and repeating the partition algorithm O(log(n)) times.

It follows from a standard Chernoff bound that the desired properties hold with high
7Lemma 2.2 in [74] upper bounds the probability that a ball overlaps with k or more clusters, but

Lemma 3.3.2 is a straightforward corollary of this claim.

71

probability. Implementing this algorithm in distributed settings may take Ω(n) rounds

for large values of W . To resolve this, we use a relaxed notion similar to the notion of

ℓ-limited W -pairwise cover proposed in [25]. This structure has all the properties of a

W -pairwise cover but the path covering property only holds for paths with at most

ℓ-hops. More formally, the third property will be relaxed to require that for every path

p of weight at most W with at most ℓ hops there exists a cluster C where p ⊆ C. We

define an ℓ-limited W -neighborhood cover similarly: for each node u, there is a cluster

C such that Bℓ(u, W) ⊆ C. In [25], Cohen shows that we can construct ℓ-limited

W -pairwise covers in O(ℓ) parallel depth, independent of W . We will show that this

concept can also be utilized to limit the number of rounds for LDD(α) partitions to

O(ℓ).

ℓ-limited W -pairwise cover. Since running LDD(α) by setting α = 1/W will

require many rounds, we cannot directly use the weighted variant of LDD(α). Instead,

we use a rounding idea that allows to run LDD(α) on the graph obtained from rounded

weights, only for α = O(1/ℓ), at the cost of a small loss in accuracy. This idea was

proposed by [64] and is used widely in PRAM literature (e.g. [25], [74]). In the context

of distributed algorithms a similar approach was used by [76] in CONGEST, but

directly applying the result of [76] to our settings will require a polynomial running

time, since we would need to run the algorithm from many (polynomial) sources.

The idea is based on the following observation: consider a path π with at most ℓ

hops, such that R ≤ w(π) ≤ 2R for a fixed R > 0. Then by slightly changing

the weights of each edge e ∈ π by a small additive factor such that for the new

weight ŵ it holds w(e) ≤ ŵ(e) ≤ w(e) + ϵ0R
ℓ

for an arbitrary ϵ0 > 0. We then get

ŵ(π) ≤ w(π) + Rϵ0 ≤ (1 + ϵ0)w(π). This can be achieved by setting ŵ(e) = ⌈w(e)
η
⌉,

where η = ϵ0R
ℓ

. We note that this scaling lemma is also going to be used in Chapter 4,

Lemma 4.2.4, for constructing hopsets more efficiently in dynamic settings.

72

Lemma 3.3.3 ([64]). Given a weighted graph G = (V, E, w), and a parameter R,

there is a rounding scheme that constructs another graph Ĝ = G = (V, E, ŵ) such that

any path π with at most ℓ hops and weight R ≤ w(π) ≤ 2R in G, has ŵ(π) ≤ ⌈2ℓ/ϵ0⌉

in Ĝ. Moreover, w(π) ≤ η(R, ℓ) · ŵ(π) ≤ (1 + ϵ)w(π), where η(R, ℓ) = ϵ0R/ℓ.

We can now run LDD(α) for α = O(ℓ) on Ĝ, and each path π with at most ℓ hops

will be fully contained in some cluster with probability at least exp(−ℓ·O(1/ℓ)) = Ω(1).

We can then recover an estimate to the original length w(π) by setting w̃(π) = η(R, ℓ) ·

ŵ(π), and we have w(π) ≤ w̃(π) ≤ (1 + ϵ0) ≤ w(π). Same as before, by repeating the

LDD(α) algorithm O(log(n)) times we will get an ℓ-limited W -neighborhood cover.

We first argue that this algorithm can be implemented O(α log2(n)) rounds of the

CONGEST model. A similar construction was used in [79] for W -neighborhood covers

in CONGEST. But the result of [79] only focuses on unweighted graphs, and would

take O(W log(n)) rounds.

Theorem 3.3.4. Given a weighted graph G = (V, E, w), there is an algorithm that

constructs an ℓ-limited W -pairwise cover in O(ℓ log2(n) log(W)) rounds in the CON-

GEST model, with high probability. Moreover, a pairwise cover for paths with ℓ-hops

with length in [W, 2W] can be constructed in O(ℓ log2(n)) rounds with high probability.

Proof. As we argued by using the rounding technique of [64], for any pair of nodes

u, v such that d(ℓ)(u, v) ∈ [W, 2W) we can restrict our attention to another graph Ĝ

with rounded weights. We construct a pairwise cover on Ĝ by running the LDD(α),

α = ϵ0/2ℓ = Θ(1/ℓ) algorithm O(log(n)) times independently.

We argue that each run of LDD(O(1/ℓ)) takes O(ℓ) rounds in the CONGEST model.

First we observe that each node u only needs to broadcasts the value ru to all the nodes

within its ru neighborhood, since a node x will not join the cluster of u if ru−d(u, x) < 0.

We can now use a simple induction to prove the claim. In each round, each node u

will forward the radius and distances corresponding to the node umax that maximizes

73

rumax−d(u, umax) among over all the messages that u has received. We now argue that

each node u will receive the message from the node c = arg maxv∈V rv − d(u, v) in rc

rounds. Consider any path π = {c = u0, u1, ..., uj = u}, where j ≤ rc. If j = 1 then in

one single round c sends (rc, w(c, u1)) to u1. Assume now that ui receives the message

(rc, d(u, ui−1)) in round i. Then ui will compute d(u, ui) (after receiving distance

estimates from all neighbors), and forwards (rc, d(c, ui)) to all neighbors including

ui+1. Therefore in round i = j ≤ rc), uj has received the message rc− d(u, c), and can

compute d(u, c). Therefore this algorithm will terminate after maxv∈V rv rounds. Since

ru is an exponential random variable with parameter O(1/ℓ), we know that maximum

of these O(n) exponential random variables is O(ℓ log(n)) with high probability. Now

we need to repeat the partition algorithm O(log(n)) times and will pipeline the

broadcasts for different runs. Clearly, each node is in at most in O(log(n)) clusters. A

standard Chernoff bound in combination with Lemma 3.3.2 implies that with high

probability after O(log(n)) repetition of the ℓ-limited LDD(O(1/ℓ)) algorithm, for

each path π with at most ℓ hops and length w(π) ∈ [R, 2R], there will be a cluster C

such that π ⊆ C. We then repeat this process for O(log(W)) distance scales to get an

ℓ-limited W -pairwise cover.

As we will see, since in our hopset construction we consider different distance

scales and need to compute pairwise for a fixed scale, this step takes only O(ℓ log(n))

rounds.

Diameter guarantee. For constructing pairwise covers, we need the diameter

guarantee of O(W log(n)) for all clusters. While running LDD(O(1/ℓ)) gives a diameter

guarantee of O(ℓ log(n)) on Ĝ, we note that the construction ensures that clusters

have diameter O(W log(n)) on G. Since we argued that every ℓ hop path with length

W will fall into a cluster with high probability, the diameter guarantee of O(ℓ log(n))

on Ĝ will imply that the corresponding cluster in G will have length O(W log(n)).

74

More formally, for any pair of nodes there is a path with length O(ℓ log(n)) in Ĝ. Let

C denote the cluster that contains this path. Consider each segment of length O(ℓ) in

Ĝ is in C and will be have length O(W) in G (by Lemma 3.3.3), and thus there will

be a path of length O(W log(n)) based on weights in G in C.

Extension to neighborhood covers. While Cohen shows that for the parallel

construction of hopsets pairwise covers are enough, for the distributed implementation

we need one more property: each vertex should overlap with at most O(log(n)) clusters.

Moreover, the algorithm used in Theorem 3.3.4 provides the stronger guarantee that

there will be a cluster that contains the neighborhood of (weighted) radius W from each

vertex with high probability, rather than only containing paths of length W . In other

words, a similar analysis shows that with high probability an ℓ-limited neighborhood

cover can be constructed in O(ℓ log(n)) rounds of the CONGEST model. That is, for

each node u, the ℓ-limited W -neighborhood of u will be fully contained in a cluster

with high probability. However, for our purposes the path covering property suffices.

3.4 Congested Clique Hopset Construction

In this section we describe our main algorithm. Similar to the sequential construction

described we consider different distance scales [R, 2R), and handle each scale separately.

In each iteration, we construct a sparse ℓ-limited 2R-neighborhood cover as described

in Section 3.3. Then the clusters will be divided into small and big clusters, and each

case will be handled differently. So far the construction is similar to [25]. The key new

idea is that for Congested Clique, by setting the parameters carefully we can send the

topology corresponding to a small cluster to the cluster center, and build a hopset

locally. Here we need to use the fact that each node is in at most O(log(n)) clusters,

which is a property that we get from our neighborhood cover construction. We will

also need to compute pairwise distances between big clusters centers. For this step,

75

we use the algorithm of [19] that computes (1 + ϵ)-multi-source shortest path from

O(
√

n log n) sources (Lemma 3.2.2). We note that while during our construction we

construct the denser hopsets of [19] as auxiliary structure, these extra edges will be

removed at the end of each distance scale.

Finally, we use Lemma 3.2.1 to use the hopset edges added for smaller distance

scales to construct the larger distance scales. For this to give us a (1 + ϵ) for an

arbitrary ϵ, we first let ϵ′ be the error parameter. Since we use paths with error (1 + ϵ′)

for each scale, to compute distances for the next scale, a multiplicative factor in the

stretch will be added in each iteration. This means that after i iterations the error

will be (1 + ϵ′)i. We can simply rescale the error parameter by setting ϵ′ = O(ϵ
log(n))

to get arbitrary error overall of ϵ > 0.

Throughout our analysis w.l.o.g we assume the minimum edge weight is one.

Otherwise, we can scale all the edge weights by the minimum edge weight. We also

assume the aspect ratio is polynomial. Otherwise, we can use reductions from previous

work to reduce the aspect ratio in exchange in polylogarithmic depth (this will be a

preprocessing step and will not dominate the overall running time).

An overview of the construction is presented in Algorithm 8. By defining small

clusters to have size at most
√

n, we have that the number of edges in each small

cluster C is O(n), and hence all the nodes C can send their incident edges to the

cluster center in constant rounds using Lenzen’s routing [68]. Then the cluster center

computes a hopset with size O(n1/2+1/2k) and hopbound β0 = O(log(k)/ϵ′)log(k)−1

locally using Huang-Pettie [58] centralized construction. The center of a small cluster

C can send the edges incident to each node in that clusters. Since the size of the

hopset on small clusters is always O(n 1
2 + 1

2k) = O(n), this can also be done in constant

time using Lenzen’s routing.

As explained in Lemma 3.2.1, using hopset edges added for smaller scales we can

limit all the shortest path explorations to 2β + 1. So we can add the star edges, by

76

Algorithm 5: Congested Clique construction (β, ϵ)-hopset of size Õ(n1+ 1
2k)

1 Let Hi denote the hopset edges for scale (2i, 2i+1], and set ϵ′ = O(ϵ
log(n)).

2 for (R, 2R], where R = 2κ, log(β) ≤ κ ≤ O(log(n)), on G ∪κ−1
i≥log(β) Hi do

3 Set W = ϵ′R
4(log n) , and and build β-limited W -pairwise covers (by Theorem

3.3.4).
4 Let Cb be the set of big clusters that have size at least

√
n and Cb small

clusters with size less than
√

n.
5 for each C ∈ Cs do
6 All the nodes in cluster C send their incident edges to the center.
7 The center locally computes a hopset of size O(n1/2+1/2k) (construction

of [58]) with (β0, ϵ′)-hopsets with β0 = O(log k
ϵ′)log(k+1)−1.

8 The center sends the new hopset edges to the corresponding nodes
(endpoints) in C.

9 for each C ∈ Cb do
10 Add a star on C by adding edges from the cluster center x to all v ∈ C

(that are within ℓ = 2β + 1 hops), and set the weight of (x, v) to
d(ℓ)(x, v).

11 Add an edge between any pair u1, u2 of centers of big clusters that are
within ℓ = 2β + 1 hops of each other, and set the weight to d(ℓ)(u1, u2).

running 2β + 1 rounds of Bellman-Ford. For adding a clique between centers of large

clusters, we will use the (1 + ϵ)-MSSP algorithm of Censor-Hillel et al. 2019 [19] (using

Lemma 3.2.2. This is possible since there are at most O(
√

n log n) big cluster centers.

We disregard all the other edges added in this step for computing these distances after

the computation. We now analyze the algorithm and show that it has the properties

stated in Theorem 3.1.1.

Size. Recall that large clusters have size at least
√

n. The stars added for each

big cluster will add O(n log2(n)) edges overall since they are consisted of unions of

O(log(n)) forests for each scale. The (clique) edges added between centers of big

clusters will add O(n) edges overall. For small clusters of size s = O(
√

n), we added a

hopset of size s1+1/k (this is the guarantee we get by using Huang-Pettie hopsets), for

a parameter k ≥ 2. On the other hand, we have at most O(n
s
) clusters of size within

77

[s, 2s]. Therefore we can estimate the overall number of edges added for these small

clusters in each scale by summing over different values s ∈ [2r, 2r+1) for small clusters

as follows:

∑︂
s∈[

√
n]

O(n

s
· s1+1/k) =

log(
√

n)∑︂
r=1

O(n

2r
· (2r)1+1/k) =

log(
√

n)∑︂
r=1

O(n · 2 r
k) = O(n1+ 1

2k).

Therefore, the overall size for all scales is O(n1+ 1
2k log(n) + n log2(n)).

Hopbound and Stretch. Fix a distance scale (R, 2R], R = 2k and consider a

pair of nodes u, v ∈ V where d(u, v) ∈ (R, 2R]. If R ≤ log β, since we assumed the

minimum edge weight is one, this implies that the shortest path has at most O(β)

hops and no more edges is needed for this pair.

We argue that for any pair of nodes u, v, where d(u, v) ≤ (R, 2R]. We argue that

after the hopset edges added for scale (R, 2R], means there is a path with at most

β-hops and stretch 1 + ϵ′.

Let π be the shortest path between u and v in G. We divide π to log(n)
8ϵ′ roughly

equal (of at most W = ϵ′R/4 log n) length segments. Note that we may have some

segments containing a single edge.

The properties of a neighborhood cover imply that each of these segments are w.h.p.

contained in one cluster. First assume that all these clusters are small. Then the

segment in this cluster has a corresponding path with hopbound at most β′, obtained

by local hopsets for the cluster, where β0 = O((log(k)/ϵ′)log(k+1)−1). In this case, we

have replaced each segment of length W with a path of stretch (1+ ϵ′). By the triangle

inequality, overall we get a (1 + ϵ′)-stretch.

Otherwise assume that there is only one big cluster, and all other segments

correspond to small clusters. Then the segment corresponding to this cluster can

be replaced with two edges, going through the center of this cluster. The segment

78

corresponding to this single cluster will just add a single additive W log n = ϵ′R cost

to our distance estimate.

Finally, assume that there are more than one big clusters corresponding to π.

Consider the two furthest big clusters (based on their centers) on π, and let their

centers be x (corresponding to the segment closest to u and y (corresponding to the

segment closest to v). Since x corresponds to the first big cluster, we can use an

argument similar to the first case to show that there each cluster over the whole

segment between u and x, has a corresponding path with stretch (1 + ϵ′) of length

β0. We can use a similar argument for the small clusters that appear after y. What

remains is therefore the segment between x and y on π. But note that by construction,

we have added one single edge with (1 + ϵ′)k-stretch of d(x, y) that covers the whole

segment between these two centers (the errors multiply, since we are using smaller

hopsets) . Therefore, we have shown that all segments of π have a corresponding path

within (1 + ϵ′)-stretch.

As argued, combining this with the idea that we are using hopsets for smaller scales

to compute distances on larger scales, we see that each scale incurs a multiplicative

factor of (1 + ϵ′) in the stretch, and thus by setting ϵ′ = O(ϵ/ log(n)), and since we

assumed that the weights are polynomial we can get (1 + ϵ)-stretch for all scales.

Hence the hopbound for all scales is,

β = O(log(n)
ϵ′ (log(k)

ϵ′)log(k+1)−1)) = O(log2(n)
ϵ

(log(n) log(k)
ϵ

)log(k+1)−1).

Round Complexity. For each of the O(log(n)) distance scales, it takes O(β log2(n))

rounds to compute 2β + 1-limited neighborhood covers (Lemma 3.3.4). Once the

covers are constructed for small clusters we need to run a Bellman-Ford with O(β)

hops from the center of each big cluster and since each node may overlap with at

most O(log(n)) clusters this phase takes O(β log(n)) (each node can pipeline the

computation over the clusters it overlaps with). For small clusters, we argued that in

79

O(1) rounds (using Lenzen’s routing) the whole small cluster topology can be sent to

the cluster center, and after local computation another O(1) rounds will be enough

for cluster center to send back the new hopset edges to the destination node. Finally,

using the result of [19] we can compute (1 + ϵ′)-approximation from big cluster centers

(O(
√

n log n) sources) in O(log2(n)
ϵ′) = O(log3(n)

ϵ
) time. Therefore the overall running

time is O(β log2(n)).

Application to multi-source queries. We can now combine our hopset con-

struction with Lemma 3.2.2 (source detection algorithm of [19]) to show that we can

compute queries from O(
√

n) sources in O(β) time, by maintaining a sparse hopset of

size Õ(n1+ 1
2k), while [19] has to store a hopset of size Õ(n3/2). Corollary 3.1.2 follows

from this observation.

3.5 Massively Parallel Hopsets and MSSP

In this section, we argue that in a variation of the MPC model where the overall

memory is O(mn1/2) we can construct hopsets with small hopbound efficiently, and

this in turn gives us a fast algorithm for multi-source shortest path in this case.

This result relies on an observation made in Chapter 2, stating that the PRAM

hopset constructions (e.g. [25], [38]) that use O(mα) processors with depth t can be

implemented in MPC, even when the memory per machine is strictly sublinear, in O(t)

rounds if we assume that the overall memory available is O(mα). Once a (β, ϵ)-hopset

is constructed, the Bellman-Ford subroutine described in Chapter 2 can be used to

compute (1 + ϵ)-stretch distances from O(
√

n log n) nodes to all other nodes in V .

The construction we have in Chapter 2 are based on hopsets of [38], and their

constructions may use less overall memory in general, but they get a worse hopbound

than ours in the special case that the total memory is Ω̃(m
√

n). In this case, we

get an improved hopbound of O(log2(n)/ϵ), whereas their result gives a hopbound of

80

O((log(n)/ϵ)3). In particular, we use the PRAM hopset construction of [25] (instead

of [38]), which can be simulated in the MPC model with strictly sublinear memory per

machine (using a reduction of [50]) to construct hopsets with hopbound O(log2(n)/ϵ).

The only difference between our construction and [25] is using a faster algorithm

for constructing ℓ-limited pairwise covers based on the algorithm of [74]. First we

note that our ℓ-limited W -neighborhood cover construction can be constructed in

MPC based on a very similar algorithm and analysis as in Section 3.3. This step

can be done only using O(m log2(n)) overall memory (or O(m log(n)) memory for a

single-scale) in O(ℓ log(n)) rounds. Observe that the construction of W -neighborhood

covers for different scales [W, 2W] can all be done in parallel with an extra logarithmic

overhead in the total memory. Similarly since each of the low diameter partitions

are independent, the repetitions of the LDD algorithm can also be parallelized. This

result is also implied by results in [74], combined with goodrich [50]. We have,

Lemma 3.5.1. There is an algorithm that runs in O(ℓ
γ
· log(n)) rounds of MPC and

w.h.p. computes an ℓ-limited W -neighborhood cover, where memory per machines is

O(nγ), 0 < γ ≤ 1 and the overall memory is O(m log2(n)).

(1 + ϵ)-MSSP. Given a pairwise cover, assuming that in MPC we have Õ(mn1/2)

total memory, we can construct a (log2(n)/ϵ, ϵ)-hopset of size O(n3/2 log(n)). This

hopset is a special case of hopsets of [25]: we add a clique for small clusters, a star

centerd at each big cluster, and a clique between big cluster centers. As stated, the main

difference in our algorithm is that we use the algorithm of Lemma 3.5.1 for constructing

pairwise covers, rather than the algorithm of [24]. This leads to a construction time

of O(β log(n)), whereas a direct reduction from [25] would have construction time

of O(β log3(n)), which is how long it takes to construct their limited pairwise covers.

Hence combining Lemma 3.5.1 with simulating the PRAM construction of [25], and

the Bellman-Ford primitives described in Chapter 2, we can construct a hopset of size

81

O(n3/2 log(n)) in O(β log(n)) time with hopbound β = O(log2(n)/ϵ).

Theorem 3.5.2. Given an undirected weighted graph G, and parameters ϵ > 0, 0 <

γ ≤ 1, we can w.h.p. construct an (β, ϵ)-hopset of size O(n3/2 log(n)) in O(log3(n)
γϵ

)

rounds of MPC, using O(nγ) memory per machine, and the overall memory of O(mn1/2)

(i.e. there are O(mn1/2−γ) machines), where hopbound is β = O(log2(n)
γϵ

).

The analysis is very similar to the arguments in previous sections and previous

work. Similarly, for (1 + ϵ)-MSSP we get,

Theorem 3.5.3. Given an undirected weighted graph G, after a preprocessing step of

O(log3(n)
γϵ

) rounds, we can w.h.p. compute (1 + ϵ)-multi source shortest path queries

from O(n1/2) sources in O(log2(n)
γϵ

) rounds of MPC, when the memory per machine is

O(nγ), 0 < γ ≤ 1, and the overall memory required for preprocessing is O(mn1/2).

At a high-level since we have overall memory of Õ(mn1/2), to each node u, we can

assign a block of memory of size O(deg(u).n1/2). Then using aggregations primitives

(e.g. see Chapter 2), we can store and update the distances from up to O(n1/2) sources.

Therefore given a hopset with hopbound O(log2(n)/ϵ), we can compute distances from

O(n1/2) sources by running parallel Bellman-Ford.

3.6 Conclusion and Open Problem

In this chapter we used the results by [19] as a black-box to construct sparse hopsets

with low hopbound. While this leads to a sparser data structure, such an approach

does not allow us to handle shortest path computation from a larger number of sources

than [19]. A natural direction is to use more fine-grained properties of their sparse

matrix multiplication techniques, and try to combine them with our sparse hopset

construction. This may let us handle more sources, as a recent work by [42] showed

using a different algorithm.

82

Chapter 4

Dynamic Hopsets

4.1 Introduction

In this chapter, we consider a model of computation that captures a different phe-

nomenon in modern massive data sets. In many practical scenarios, the input is not

accessible in one shot. Instead it is evolving over time, and we only have access to the

changes or updates to the input over time. We consider a centralized dynamic model,

i.e. as opposed to most the other models in this thesis, the input is not distributed

over different machines.

Recall, a graph algorithm is called dynamic if it supports answering queries about

a graph which is undergoing modifications, or, as we say in the following, updates.

Each update is an edge deletion, insertion, or a weight change. In this chapter, we

focus on designing decremental algorithms for distance problems in weighted graphs.

In the decremental setting, the updates are only edge deletions or weight increases.

This is as opposed to an incremental setting in which edges can be inserted, or a fully

dynamic setting, in which we have both insertions and deletions. For simplicity in

stating our results, we only consider edge deletions rather than weight increases, but

it is not hard to see that our amortize update time bounds also hold for a sequence of

weight increases. We use the term total update time to refer to the update time of a

sequence of m deletions.

83

Our focus is on fast decremental algorithms for constructing hopsets. We provide

a near-optimal algorithm for maintaing decremental hopset in a wide range of settings.

We then apply our hopset construction to obtain faster shortest path algorithms. In

particular, we consider the problem of maintaining shortest paths from a fixed set S of

sources. We consider different variants of the problem which differ in the size of S: the

single-source shortest paths (SSSP) problem (|S| = 1), all-pairs shortest paths (APSP)

problem (|S| = n, where n is the number of vertices of the input graph), as well as

the multi-source shortest paths (MSSP) problem (S is of arbitrary size), which is a

generalization of the previous two. Specifically, given a weighted graph G = (V, E, w),

we want to support the following operations: Delete((u, v)), where (u, v) ∈ E, which

removes the edge (u, v), Distance(s, u), which returns an (approximate) distance

between a source s and any u ∈ V , and Increase((u, v), δ), which increases the

weight of the edge (u, v) by δ > 0.

The best known algorithm for maintaining exact distances under deletions takes

O(mn) total update time [87, 62], even if we limit ourselves to unweighted and

undirected graphs. In fact, this bound matches a widely believed conditional lower

bound [57]. Hence a large body of work [15, 16, 21, 55] focused on maintaining

approximate distances. Allowing approximate distances enabled significant speedups

in the running time.

Following this line of work, we provide efficient decremental algorithms for main-

taining (1 + ϵ)-approximate SSSP and MSSP and (2k − 1)(1 + ϵ)-approximate APSP

in weighted undirected graphs.

While prior to this work, hopsets were extensively studied in other models of

computation (e.g. distributed and parallel settings), their applicability in dynamic

settings was not very well-understood. The few exceptions include, utilizing hopsets in

the state-of-the art decremental SSSP algorithm for undirected graphs by Henzinger,

Krinninger and Nanongkai [55], and implicit hopsets considered in [15, 21]. We use

84

some of the hopset techniques from parallel and distributed settings, and show that

they can be useful for obtaining efficient dynamic algorithms. A manuscript of the

results in this chapter is also available [67].

Technical connection to previous chapters. In this chapter, similar to Chapter

2, we use hopsets to get better algorithm for maintaining distance oracles. In particular,

our APSP result relies on simultaneously maintaining a low-hop hopset and a Throup-

Zwick [88] distance oracle. The hopset algorithm used in this section is new, and is

tuned to the dynamic settings. Interestingly, we use the same scaling idea as we used

in Chapter 3 in improving the running time. The difference is that there we used this

scaling idea to obtain faster distributed algorithms for limited neighborhood covers,

whereas here we use them to get a faster algorithm for approximately maintaining

Thorup-Zwick style clusters.

4.1.1 Preliminaries and Notation

We review the notation that is needed for this section. Given a weighted undirected

graph G = (V, E, w), and a pair u, v ∈ V we denote the (weighted) shortest path

distance by dG(u, v). We denote by d
(h)
G (u, v) the length of the shortest path between

u and v among the paths that use at most ℓ-hops, and call this the h-hop limited

distance between u and v. We have defined hopsets in previous chapters, but in this

section we define a notion of restricted hopset (also used in Chapter 3). Formally:

Definition 4.1.1. Let G = (V, E, w) be a weighted undirected graph. Fix d, ϵ > 0 and

an integer β ≥ 1. A (d, β, 1 + ϵ)-hopset is a graph H = (V, E(H), wH), such that: for

all u, v ∈ V , such that dG(u, v) ≤ d, we have dG(u, v) ≤ d
(β)
G∪H(u, v) ≤ (1 + ϵ)dG(u, v).

We say that β is the hopbound of the hopset and 1 + ϵ is the stretch of the hopset.

We also use (β, 1 + ϵ)-hopset to denote a (∞, β, 1 + ϵ)-hopset. Finally, for any finite d,

we say that a (d, β, 1 + ϵ)-hopset is a d-restricted hopset.

85

In analyzing dynamic algorithms we sometimes also use a time subscript t to

denote a distance (or a weight) after the first t updates. In particular we use dt,G(u, v)

to denote the distance between u and v after t updates, and similarly use d
(h)
t,G(u, v) to

denote h-hop limited distance between u and v at time t.

4.1.2 Summary of Results

We first state a summary of our results before describing a high-level overview of our

techniques.

Decremental Hopsets. The main technical component of our result is a new

decremental hopset algorithm. Formally we show the following.

Theorem 4.1.1. Given an undirected graph G = (V, E) with polynomial weights1,

subject to edge deletions, we can maintain a (β, 1 + ϵ)-hopset of size Õ(n1+ 1
2k−1) in

total expected update time Õ(β
ϵ
· (m+n

1+ 1
2k−1)nρ), where β = O(log n

ϵ
· (k +1/ρ))k+1/ρ+1,

0 < ϵ < 1 and 2
2k−1 < ρ < 1.

Note that the above algorithm, as well as all our results, which use the above

construction, are randomized and work against an oblivious adversary.

Our decremental hopset construction covers a wide range of time/hopbound

tradeoffs. Importantly, by setting ρ to be a constant, we get the first hopset with

polylogarithmic hopbound, with a total update time of Õ(mnρ) which matches (up to

polylogarithmic factors) the running time of the best known static algorithm [41, 40]

for computing a hopset with polylogarithimic hopbound and (1 + ϵ) stretch.

In the decremental setting, to the best of our knowledge, the state-of-the art hopset

construction [55] has a hopbound of 2Õ(log3/4 n), and can be maintained with 2Õ(log3/4 n)

amortized update. By setting ρ = log log n√
log n

, we can maintain a hopset with hopbound
1If weights are not polynomial a factor the log n factor will be replaced with log W in the hopbound,

and a factor of log W will be added to the update time, where W is the ratio between largest to
smallest edge weight.

86

2Õ(
√

log n) in 2Õ(
√

log n) amortized time. Thus, compared to [55] we improve both the

hopbound and the amortized update time.

The starting point of our decremental hopset algorithm is a static hopset con-

struction by [41]. However, since computing this hopset in the static setting requires

computing potentially long shortest paths, it is not clear how to efficiently maintain

this hopset in the decremental setting. To deal with that, we construct a new hopset

that combines some of the properties of [41] with various dynamic tools. Specifically,

to compute our hopset, it suffices to run a number of single-source shortest paths

computations up to small depth in a sequence of graphs that we build iteratively. We

provide an overview of this construction in Section 4.2.

SSSP. By using our decremental hopset construction, we obtain an algorithm for

decremental single-source shortest paths.

Theorem 4.1.2. Given an undirected and weighted graph G = (V, E), there is data

structure for maintaining (1 + ϵ)-approximate distances from a source s0 ∈ V under

edge deletions, where 0 < ϵ < 1 is a constant and |E| = n ·2Ω̃(
√

log n). The total expected

update time of the data structure is Õ(m · 2Õ(
√

log n)), and the query time is O(1).

The amortized update time of our algorithm over all m deletions is 2Õ(
√

log n). This

improves upon the state-of-the art algorithm of [55], whose amortized update time

is 2Õ(
√

log n). While the improvement is only by a no(1) factor, it is super-polynomial,

since for any constant c > 0, 2Õ(
√

log n) = O((2Õ(log3/4 n))c).

MSSP. Our next result is a near-optimal algorithm for multi-source shortest paths.

Theorem 4.1.3 (MSSP). There is a data structure which given a weighted undirected

graph G = (V, E) explicitly maintains (1 + ϵ)-approximate distances from a set of s

sources in G under edge deletions. Assuming that |E| = n1+Ω(1) and s = nΩ(1), the

87

total expected update time is Õ(sm). The data structure is randomized and works

against an oblivious adversary.

The total update time matches (up to polylogarithmic factors) the running time

of the best known static algorithm for computing (1 + ϵ)-approximate distances from

s sources for a wide range of graph densities. While for very dense graphs, using

algorithms based on fast matrix multiplication is faster, the running time of our

decremental algorithm matches the best known results in the static settings (up to

polylogarithmic factors) whenever ms = nδ, for a constant δ ∈ (1, 2.37).

In the dynamic setting, our algorithm improves upon a solution obtained by

running the algorithm of Henzinger, Krinninger and Nanongkai [55] independently

from each source, giving a total update time of O(sm · 2Õ(log3/4 n)). The advantage of

our algorithm is that it decrementally maintains a hopset of polylogarithmic hopbound

in mno(1) time, which then allows it to maintain approximate SSSP in Õ(m) time. In

contrast, the algorithm of [55] maintains a hopset of hopbound 2Õ(log3/4 n), which, if

one simply applies existing techniques, results in a total update time of m2Õ(
√

log n).

In the general case, i.e., for sparse graphs, the update bound of our algorithm is

sm2Õ(
√

log n), which is still better than the bound obtained by [55].

APSP. Finally, we show that by maintaining both a hopset and a Thorup-Zwick

distance oracle we can get the following tradeoffs for approximating distance between

any pair of nodes.

Theorem 4.1.4 (Approximate APSP). For any constant integer2 k ≥ 2, there is a

data structure that can answer (2k − 1)(1 + ϵ)-approximate distance queries in a given

a weighted undirected graph G = (V, E, w) subject to edge deletions. The total expected

update time over any sequence of edge deletions is Õ(mn1/k) and the expected size of
2The k here should not be confused with the parameter k in the hopset size.

88

the data structure is Õ(m + n1+1/k). Each query for the distance between two vertices

is answered in O(k) worst-case time.

The currently best known bound for decremental APSP with a similar stretch

is due to Chechik [21]. The total update time in [21] is Õ(mn1/k)(1/ϵ)O(
√

log n), and

the query time is O(log log(nW)), where W is the largest weight. Our update time

improves over this bound by eliminating the (1/ϵ)
√

log n. Note that the improvement

in the running time holds for constant k. When k = ω(1), the running time of our

algorithm roughly matches the one obtained in [21]. Our results match the best known

static algorithm with the same tradeoff (up to (1+ϵ) in the stretch and polylog in time)

by Thorup-Zwick [88]. In addition, the query time of our algorithm is independent of

n or the aspect ratio (the ratio between largest and smallest edge weight).

Prior to [21], Roditty and Zwick [85] gave an algorithm for maintaining Thorup-

Zwick distance oracles in total time Õ(mn), stretch (2k − 1)(1 + ϵ) and O(k) query

time for unweighted graphs. Later on, Bernstein and Roditty [16] gave a decremental

algorithm for maintaining Thorup-Zwick distance oracles in O(n2+1/k+o(1)) time using

emulators also only for unweighted graphs.

Hopsets vs. emulators Unlike our work, most of the previous work on dynamic

distance computation are based on algorithms constructing a sparse emulator (e.g. [15,

16, 21]). For a graph G = (V, E), an emulator H ′ = (V, E ′) is a graph such that for any

pair of nodes x, y ∈ V , there is a path in H ′ that approximates the distance between x

and y on G (possibly with both multiplicative and additive factors). While there are

some similarities between construction of these objects, their analysis is different. More

importantly, the efficient dynamic algorithms for maintaining emulators and hopsets

have some significant differences. At a high-level, an emulator approximates distances

without using the original graph edges and hence we can restrict the computation

to a sparser graph, whereas for using and maintaining hopsets we need to use the

89

edges in the original graph as well. On the other hand, hopsets allow for faster

computation because we can restrict our attention to paths with few hops, which

is utilized differently than an emulator in dynamic settings. One challenge in the

decremental implementation of both of these objects is the fact that removing an

edge from the graph may lead to both edge deletions and insertions in the hopset or

emulator. How we handle such insertions is also different for these two objects. In case

of emulators, one would argue that the overall decrease in distances after each update

is bounded. This is harder to argue for hopsets since we are not only considering a

sparse graph. But we see that there are structural properties of the insertions in our

specific hopsets that along with ideas similar to the monotone ES tree of [55] can be

utilized to handle insertions.

4.2 Overview of Our Algorithms

The starting point of our algorithm is a known static hopset construction [41, 58].

We first review this construction. As we shall see, maintaining this data structure

dynamically directly would require update time of up to O(mn). We therefore give

another new decremental hopset that captures some of the properties of the hopsets of

[41, 58], but can be maintained efficiently in a decremental setting. Our new hopset

is consisted of the union of restricted hopsets on a sequence of scaled graphs. Our

main contribution is this new hopset and a hierarchical algorithm for maintaining

a sequence of data structures that together lead to a near-optimal time and stretch

tradeoff.

90

4.2.1 Static Hopset Construction

In this section we outline the (static) hopset construction of Elkin and Neiman [41]3

(which is similar to [58]). We will later explain how we can make modifications that

allows us to maintain a similar hopset dynamically.

Given a weighted graph G = (V, E, w), an integer 1 ≤ k ≤ log log n and ρ > 0,

we show the construction a (β, ϵ)-hopset of size O(n1+ 1
2k−1) and hopbound β =

O((k+1/ρ+1
ϵ

)k+1/ρ+1).

We define sets V = A0 ⊇ A1 ⊇ ... ⊇ Ak+1/ρ+1 = ∅. Let ν = 1
2k−1 . Each set Ai+1 is

obtained by sampling each element from Ai with probability qi = max(n−2i·ν , n−ρ),

where ρ is a parameter that determines a tradeoff between hopbound and running

time.

Fix 0 ≤ i ≤ k + 1/ρ + 1. Then, for every vertex u ∈ Ai \ Ai+1, let p(u) ∈ Ai+1

be the node of Ai+1, which is closest to u. We define a bunch of u to be a set

B(u) := {v ∈ Ai : d(u, v) < d(u, Ai+1)}. Also, we define a set C(v), called the cluster

of v ∈ Ai \ Ai+1, defined as C(v) = {u ∈ V : d(u, v) < d(u, Ai+1)}. Note that if

v ∈ B(u) then u ∈ C(v), but the converse does not necessarily hold. The way we define

the bunches and clusters here follows [41], but differs slightly from the definitions

in [88, 85], where each vertex has a separate bunch and cluster defined for each level i

(and stores the union of these for all levels).

The clusters are connected in a sense that if a node u ∈ C(v) then any node z on

the shortest path between v and u is also in C(v) since d(z, v) ≤ d(u, v) < d(u, Ai+1).

Claim 4.2.1. Let u ∈ C(v), and let z ∈ V be on a shortest path between v and u.

Then z ∈ C(v).

Proof. Let v ∈ Ai. If z ̸∈ C(v) then by definition d(z, Ai+1) ≤ d(v, z). On the
3In [41] two algorithms with different sampling probabilities are given, where one removes a factor

of k in the size. This factor does not impact our overall running time, so we will use the simpler
version.

91

other hand, since z is on the shortest path between u and v: d(u, Ai+1) ≤ d(z, u) +

d(z, Ai+1) ≤ d(u, z) + d(z, v) = d(u, v), which contradicts the fact that u ∈ C(v).

As we will see, this property is important for bounding the running time. The hopset

is then obtained by adding an edge (u, v) for each u ∈ Ai \Ai+1 and v ∈ B(u)∪{p(u)},

and setting the weight of this edge to be d(u, v). These distance can be computed

by maintaining the clusters. As we will see in maintaining the clusters (rather than

bunches) we scan more edges than what is stored in the hopset. Hence the update time

of our dynamic algorithms is determined by the number of clusters a node belongs to,

rather than the size of the hopset. This is because unlike an emulator, for maintaining

the distances using a hopset, we also need to consider the edges in G, and the small

hopbound is the key to efficiency rather than sparsity.

Theorem 4.2.2 ([41]). There is an algorithm that given a weighted and undirected

graph G = (V, E), and 2 ≤ k ≤ log log n − 2, 2
2k−1 < ρ < 1 computes a (β, 1 + ϵ)-

hopset of size O(n1+ 1
2k−1), where β = O((k+1/ρ

ϵ
)k+1/ρ+1). It runs in O(nρ

ρ
(m + n log n))

expected time.

We do not directly use this static construction, so we do not give proofs of stretch

and hopbound guarantees. As we shall see, the stretch analysis of our decremental

hopset uses a similar structure, but combined with stretch arguments needed for

scaling and monotone ES tree techniques.

Size. We rely on the fact that the hopset size is not denser than the original graph.

This is why our main bounds do not hold for very sparse graphs. For analyzing

the size, [41] argues that for each u ∈ Ai \ Ai+1 we have E[|B(u)|] ≤ 1/qi for the

following reason: Consider an ordering of vertices in Ai based on their distance to u.

By definition, size of B(u) is bounded by the number of vertices in this ordering until

the first vertex in Ai+1 is visited. This corresponds to a geometric random variable

92

with parameter qi and thus in expectation it is 1/qi = n2iν . Hence for all i the number

of edges added is in expectation

k−2∑︂
i=1

E[|Ai|]n2i·ν = O(kn1+ν).

Efficient Construction via Modified Dijsktra’s algorithm. For an efficient

construction of these hopsets, [41] used the modified Dijsktra’s algorithm, which

was proposed by Thorup-Zwick [88]. This algorithm the bunches for level i can be

constructed in O(m+n log n)/qi. At a high-level this is done by making a modification

to Dijkstra. In the original Dijkstra for each source u ∈ Ai \ Ai+1, at each iteration

we consider an unvisited vertex v, and “relax" each incident edge (v, z) by setting

d(u, z) = min{d(u, z), d(u, v) + w(v, z)}. But in the modified algorithm this is done

only if d(u, v) + w(v, z) < d(z, Ai+1). In other words each node z only “participates"

in a shortest-path exploration from a source u only if z ∈ B(u). Note that if z ∈ B(u),

all the nodes on the shortest path between u and z are considered. Since |B(u)| ≤ 1
qi

,

this allows us to bound the running time by O(mnρ).

Related objects. The hopset of [41] has some structural similarities with emulators

of [89]. One main difference, as we discussed, is that the sampling probabilities are

adjusted (bounded by n−ρ) to allow for efficient construction of these hopsets in various

models, at the cost of slightly weaker size/hopbound tradeoffs. We also need these

adjustment for our efficient decremental algorithms.

4.2.2 Maintaining Restricted Hopsets Dynamically

Before we give our full hopset construction, we show how we can construct a d-restricted

hopset, i.e. a hopset that guarantees hopbounded paths only between nodes within

distance d. We then use this algorithm to construct a sequence of d-restricted hopsets

for exponentially increasing values of d, at each step using the hopsets constructed so

93

far. In order to maintain a d-restricted hopset dynamically, we start with a decremental

algorithm of Roditty and Zwick [85]. Their techniques allow us to maintain the clusters

and bunches as defined in Section 4.2.1. However we need to modify their algorithm

in several ways. The first modification is adjusting sampling probabilities to match

the probabilities we gave in Section 4.2.1. Note that while the clusters we consider

are slightly different than what was used in [85] (even if we ignore the difference in

sampling probabilities), we use a subset of the clusters defined in [85] uses.

By extending their algorithm and analysis to our setting, we can maintain a d-

restricted hopset decrementally in Õ(dmnρ) total time, where 0 < ρ < 1
2 is a parameter

that balances the tradeoff between the hopbound and time as discussed in Section

4.2.1. This means we can efficiently maintain a d-restricted hopset, when d is small.

However, for large d, such running time is prohibitive.

The main new technical component of our construction is providing a hierarchical

algorithm that iteratively constructs restricted hopsets on a sequence of scaled graphs.

Next, we explain this hierarchical construction.

Path doubling. Our algorithm maintains a sequence of graphs H0, . . . , Hlog W with

the following property. For each 0 ≤ j ≤ log W , ⋃︁j
r=0 Hr is a (2j, β, (1 + ϵ)j)-hopset of

G. Note that for 0 ≤ j ≤ log β we can set Hj = ∅, since G covers these scales (w.l.o.g

the weights in G are at least 1, so if dG(u, v) ≤ β, there is a shortest path between u

and v of at most β hops). To maintain the graphs Hi, we prove the following lemma.

Lemma 4.2.3. Consider a graph G = (V, E, w) subject to edge deletions. Assume that

we have maintained H̄j := H1, ..., Hj, which is a (2j, β, (1 + ϵ)j)-hopset of G. Then,

there is a data structure, that given the sequence of changes to G and H̄j, maintains

a graph Hj+1, such that H̄j ∪Hj+1 is a (2j+1, β, (1 + ϵ)j+1)-hopset of G.

The data structure can be maintained in Õ((m + ∆)nρ · β
ϵ
) total time, where m is

the initial size of G, ∆ is the total number of edges inserted to H̄j over all updates,

94

β = (1
ϵ·ρ)O(1/ρ), and 0 < ϵ < 1, ρ < 1

2 are parameters.

Note that the lemma does not hold for any restricted hopset, and we need to use

special properties of our construction to prove this.

In our construction we use G∪j−1
r=0 Hr to construct Hj . Note that by our assumption

it suffices if Hj is a hopset for paths of length in the range [2j−1, 2j), since shorter

paths are already taken care of by H1, . . . , Hj−1. The important observation is that

each path π of length ∈ [2j−1, 2j) in G can be approximated (within a (1+ ϵ)j−1 factor)

by a path of 2β + 1 hops in G ∪j−1
r=0 Hr. This follows from the fact that any such π

can be obtained by concatenating paths π1, π2 and π3, where π1 and π3 have length at

most 2j−1 (so we can apply the property of a 2j−1-restricted hopset) and π2 consists

of a single edge. Hence, a subproblem that we need to solve for each distance scale

[2j−1, 2j) is computing a hopset for distances between [2j−1, 2j), knowing that the

length of each such shortest path in G can be approximated by a path in G ∪j−1
r=0 Hr

consisting of at most 2β + 1 hops.

The path doubling idea has been used in hopset constructions in distributed/-

parallel models (e.g. [25, 40, 41]), but to the best of our knowledge this is the first

use of this approach in a dynamic setting. While implementing using this idea in

parallel/distributed settings is relatively straight-forward, it is not immediately clear

how to utilize this in dynamic settings. To do this we need to maintain the hopsets

on a sequence of scaled graphs. We first review a scaling idea and then define this

sequence.

Scaling. We review a scaling algorithm widely used in dynamic settings (e.g. [15,

16, 55] repeatedly and iteratively during the process of adding hopset edges.

This idea can summarized in the following scaling scheme due to Klein and

Subramanian [64], which, roughly speaking, says that finding shortest paths of length

∈ [2j−1, 2j) and at most ℓ hops, can be (approximately) reduced to finding paths of

95

length at most O(ℓ) in a graph with in integral weights. This is done by a rounding

procedure that adds a small additive factor ϵ0w(e)
ℓ

to each edge e. Then for a path of ℓ

hops the overall stretch will be (1 + ϵ0).

Lemma 4.2.4 ([64]). Let G = (V, E, w) be a weighted undirected graph. Let R ≥

0 and ℓ ≥ 1 be integers and ϵ0 > 0. We define the scaled graph to be a graph

Scale(G, R, ϵ0, ℓ) := (V, E, ŵ), such that ŵ(e) = ⌈ w(e)
η(R,ϵ0)⌉, where η(R, ℓ) = ϵ0R

ℓ
.

Then for each edge e ∈ E we have ŵ(e) ≤ w(e) + ϵ0R, and for any path π in G

such that π has at most ℓ hops and weight R ≤ w(π) ≤ 2R, we have

• ŵ(π) ≤ ⌈2ℓ/ϵ0⌉,

• w(π) ≤ η(R, ϵ0) · ŵ(π) ≤ (1 + ϵ0)w(π).

By using the above scaling in the construction of the data structure of Lemma 4.2.3,

we can effectively reduce the problem that the data structure is solving to the problem

of maintaining a O(β)-restricted hopset in a graph with integral weights in a dynamic

setting. Note that we set β = poly log n. Since there are edge insertion into the

hopset, and hence each scaled graph, there are further challenges in how these ideas

can be combined in decremental settings. We will explain later that for handling edge

insertion we need to use another data structure called the monotone ES tree ([56]).

We need to show that by combining the estimates from these different data structures

we still get a hopset with the desired properties.

Handling insertions. While the algorithm of Roditty and Zwick [85] only works in

the decremental setting, in our case we need to extend it to handle edge insertions. This

is because we run it on a graph G ∪ ⋃︁j−1
r=0 Hr (after applying scaling of Lemma 4.2.4).

While edges of G can only be deleted, new edges may be added to some hopsets Hr.

We deal with this issue as follows. The algorithm of Roditty and Zwick [85]

decrementally maintains a collection of single-source shortest path trees (up to a

96

bounded depth) using the Even-Shiloach algorithm (ES-tree) [87]. We modify the

algorithm by effectively replacing each ES-tree, by a monotone ES-tree proposed

by [55, 56]. The monotone ES-tree, in addition to supporting edge deletions, also

supports edge insertion operation in a limited way. Namely, whenever an edge (u, v)

is inserted and the insertion of the edge causes a distance decrease in the tree, we

do not update the currently maintained distance estimates. This change keeps the

running time roughly the same as in the decremental setting.

The main challenge here lies in analyzing the hopset stretch. While [55] analyzed

the stretch incurred by running monotone ES-trees on a hopset, the proof relied on

the properties of the specific hopset used in their algorithm. Since the hopset we use is

quite different, we need a different analysis, which combines the static hopset analysis,

with the ideas used in [55], and also take into account the stretch incurred due to

the fact that the restricted hopsets are maintained on the scaled graphs. In our final

algorithm, we need to run this restricted hopset algorithm on the sequence of scaled

graphs, so that we can utilize the smaller scale hopsets in a hierarchical way to get

our improved update time.

Putting it together. We now go back to the setting of Lemma 4.2.3. Given a

2j-restricted hopset H̄j = H1 ∪ ... ∪Hj for distances up to 2j, we can now construct

a graph Gj by applying the scaling of Lemma 4.2.4 to G ∪ H̄j and setting R = 2j,

ℓ = 2β + 1. Then we can efficiently maintain an ℓ-restricted hopset on Gj. Then by

Lemma 4.2.3 we can use this to update Hj+1. Importantly, ℓ is independent of R, and

thus we can eliminate the factor R to get Õ(βmnρ) total update time.

Our final algorithm is a hierarchical construction that maintains the restricted

hopsets on scaled graphs and the original graph simultaneously. Since we are main-

taining hopsets on scaled graphs, we will lose small factors in the stretch, but we can

show that this has little impact on our overall hopbound/update time tradeoff. For

97

obtaining our near-optimal time and hopbound tradeoff, we need to carefully combine

the ideas described and show that the monotone ES tree ideas can be applied to these

specific insertions.

We rely on a threefold inductive construction and analysis that combines the pieces

we have described.

1. An induction on the i, the iterations of the base hopset, which controls the

sampling rate and the resulting size and hopbound tradeoffs.

2. An induction on the scale j, which allows us to cover all ranges of distances

[2j, 2j+1] by maintaining distances in the appropriate scaled graphs.

3. An induction on time t that allows us to handle insertions by using the estimates

from previous updates in order to keep the distances monotone.

The overall stretch argument needs to deal with several error factors in addition to

the base hopset stretch. First, the error incurred by using hopsets for smaller scales,

which we deal with by maintaining our hopsets by setting ϵ′ = ϵ
log n

. This introduces

polylogarithmic factors in the hopbound. The second type of error comes from the

fact that the restricted hopsets are maintained for scaled graphs, which implies the

clusters are only approximately maintained on the original graph. This can also be

resolved by further adjusting ϵ′. Finally, since we use an idea similar to the monotone

ES tree of [55, 56], we may set the level of nodes in each tree is to be larger than what

it would be in a static hopset. But we argue that the specific types of insertions in

our algorithm will still preserve the stretch. At a high-level this is because in case of a

decrease we use an estimate from time t− 1, which we can show inductively has the

desired stretch.

We note that while the use of monotone ES tree and the structure of the clusters

in our construction are similar to [55], our algorithm has several important differences.

98

Other than using a different and more general base (static) hopset, we use a different

approach to maintain the hopset efficiently by using path doubling and maintaining

restricted hopsets on the scaled graphs. Among other things, in [55] a different

notion of approximate ball is used that is rather more lossy4 with respect to the

hopbound/stretch tradeoffs. By maintaining restricted hopsets on scaled graphs, we

are also effectively preserving approximate balls in the original graph, but as explained

above the error accumulation combines nicely with the path-doubling idea.

Finally, [55] uses an edge sampling idea to bound the update time, which we can

avoid by utilizing the sampling probability adjustments in [41], and the ideas in [85].

4.2.3 Decremental Approximate Distances

Our algorithms for maintaining approximate distances under edge deletions are as

follows. First, we maintain a (β, 1 + ϵ)-hopset. Then, we use the hopset and Lemma

4.2.4 to reduce the problem to the problem of approximately maintaining short

distances from a single source. For our application in MSSP and APSP the best

update time is obtained by setting the hopbound to be polylgarithmic whereas for

SSSP the best choice for is β = 2Õ(
√

log n). Using this idea for SSSP and MSSP

mainly involves using the monotone ES tree ideas described earlier. Maintaining the

APSP distance oracle is slightly more involved but uses the same techniques as in our

restricted hopset algorithm. This algorithm is based on maintaining Thorup-Zwick

distance oracle [88] more efficiently. At a high-level, we maintain both a (β, 1 + ϵ)-

hopset and Thorup-Zwick distance oracle simultaneously, and balance out the time

required for these two algorithms. The hopset is used to improve the time required

for maintaining the distance oracle from O(mn) (as shown in [85]) to O(βmn1/k), but

with a slightly weaker stretch of (2k − 1)(1 + ϵ). Querying distances is then the same

as in the static algorithm of [88], and takes O(k) time.
4This is also on reason we get an improvement in amortized single-source shortest path update

time.

99

4.3 Decremental Hopset

In this section we provide our decremental hopset algorithms. Our goal is to implement

the hopset algorithm described in Section 4.2.1 dynamically. In Section 4.3.1, we

explain how we can adapt ideas by Roditty-Zwick [85] to obtain an algorithm for

computing a d-restricted hopset. The total running time of this algorithm is O(dmnρ)

(where ρ < 1 is a constant), which is undesirable for large values of d. We will then

improve the running time to Õ(mnρ) using scaling and path-doubling ideas. Recall

that our algorithm maintains a sequence of graphs H0, . . . , Hlog W , where for each

1 ≤ j ≤ log W , H0 ∪ . . . ∪ Hj is a 2j-restricted hopset of G. Instead of computing

each Hj separately, we use G ∪ ⋃︁j−1
r=0 Hr to construct Hj. We observe that at the

cost of some small approximation errors, any path of length ∈ [2j−1, 2j) in G can be

approximated by a path of at most 2β + 1 hops in G ∪ ⋃︁j−1
r=0 Hr. To use this idea we

will prove the following main lemma as a building block for our final hopset.

Lemma 4.3.1. Consider a graph G = (V, E, w) subject to edge deletions. Assume that

we have maintained H̄j := H1, ..., Hj, which is a (2j, β, (1 + ϵ)j)-hopset of G. Then,

there is a data structure, that given the sequence of changes to G and H̄j, maintains

a graph Hj+1, such that H̄j ∪Hj+1 is a (2j+1, β, (1 + ϵ)j+1)-hopset of G.

The data structure can be maintained in Õ((m + ∆)nρ · β
ϵ
) total time, where m is

the initial size of G, ∆ is the total number of edges inserted to H̄j over all updates,

β = (1
ϵ·ρ)O(1/ρ), and 0 < ϵ < 1, ρ < 1

2 are parameters.

There are two main challenges that we need to address for proving this lemma.

First, we would like to make the running time independent of the scale bound 2j,

which is what we would get by directly using the algorithm of [85]. To that end, we

are going to run our algorithm on a rescaled graph, which would allow us to only

maintain distances up to depth O(β/ϵ). This relies on having the 2j-restricted hopset

H̄j, which allows us to maintain the hopset H̄j+1. Second, while G is undergoing

100

deletions, Hj may be undergoing edge insertions. In Section 4.3.2 we explain how

such insertions can be handled using the monotone ES tree algorithm (based on [55]).

In Section 4.3.3 we use the properties of this algorithm to prove Lemma 4.2.3.

4.3.1 Maintaining a Restricted Hopset

In this section, our goal is to maintain a decremental restricted hopset. We start by

adapting the decremental algorithm by [85] that maintains the Thorup-Zwick distance

oracles [88] with stretch (2k − 1) for pairs of nodes within distance d in Õ(dmn1/k)

total time, but instead use their techniques for constructing hopsets. In the next

sections, we give a variant of this algorithm that also handles insertions.

In order to turn their algorithm into a restricted hopset algorithm, we make

two modifications. First, we change the sampling probabilities based on the hopset

algorithm described in Section 4.2.1. Second, in addition to computing clusters we also

construct the hopset by adding the corresponding edges. We argue that by choosing

the parameter appropriately this extension leads to a (d, β, 1 + ϵ)-hopset, with update

time Õ(dmnρβ).

Since this is slow for large value of d, in Section 4.3.2, we give a new hopset

algorithm. First, we combine the construction of [85] with the monotone ES tree ideas

by [55] to generalize this construction to handle certain insertions. We will then run

this algorithm on a sequence of scaled graphs, and show how our new hopset can be

maintained efficiently using the previously added hopset edges.

First, we briefly review the algorithm of [85] here. A similar algorithm will also

presented in Section 4.3.2, Algorithm 7, but with the additional property that certain

types of insertions are also taken into account.

Recall the hopset algorithm discussed in Section 4.2.1. We sample sets V = A0 ⊇

A1 ⊇ ... ⊇ Ak+1/ρ+1 = ∅ initially. The sets remain unchanged during the updates.

Next, we need to maintain values d(v, Ai), 1 ≤ i ≤ k + 1/ρ + 1 for all nodes v ∈ V .

101

This can be performed by computing a shortest path tree rooted at a dummy node

si connected to all nodes in Ai. We denote the estimate obtained by maintaining

this distance by L(v, Ai+1), and let d̂ = (1 + ϵ)d. We use a well-known algorithm to

maintain a single-source shortest path trees rooted at a source node up to depth d in

O(md) total time, called an Even-Shiloach [87, 62] tree. We will review a variant of

this algorithm (that also handles insertions) in Section 4.3.2. We can maintain these

shortest path trees from the dummy nodes up to depth d̂ in O(d̂m) total update time.

The pivots p(v),∀v ∈ V can also be maintained in this process.

Maintaining the clusters based on [85]. The more involved step is maintaining

the clusters. At a high-level, the idea is to maintain Even-Shiloach [87] trees rooted

at each node z ∈ Ai \ Ai+1 to compute C(z). Recall that for z ∈ Ai \ Ai+1 we have

v ∈ C(z) if and only if d(z, v) < d(v, Ai+1). The algorithm of [85] can be summarized

as follows (see Algorithm 7 for a similar algorithm that also handles insertions): After

each deletion, for each node v and the cluster centers z we first check whether the

distance d(z, v) has increased. If d(z, v) ≥ d(v, Ai+1), v will be removed from C(z).

The more subtle part is adding nodes to new clusters. For each 0 ≤ i < k, we define

a set Xi consisted of all vertices whose distance to Ai is increased as a result of a

deletion, but where this distance is still at most d̂. The sets Xi can be computed while

maintaining d(v, Ai).

In order to bound the running time, we use the same modification as in the modified

Dijkstra algorithm [85], which allows us to bound the number of shortest path trees

that each node belongs to. However there are few challenges in using these ideas.

First, while in the static algorithm each node overlaps with at most Õ(nρ) clusters, in

dynamic settings this holds at any point in time but does not immediately hold for a

sequence of updates, since nodes keep on changing clusters. This is how [85] handles

this:

102

Note that a node v would join C(w) only after an increase in d(v, Ai+1). Using

this observation, after each deletion for every v ∈ Xi+1, z ∈ Bi(u) \ Bi(v), and each

edge (u, v) ∈ E we check if d(z, u) + w(u, v) < d(v, Ai+1). If yes, then v joins C(z).

We push v to a priority queue Q(z) with key d(z, u) + w(u, v). If v was already in the

queue the key will be updated if this distance is smaller than the existing estimate.

In this case we mark v. The marked nodes join clusters z, but there may be other

nodes that also need to join C(z) as a result of this change.

Hence after this initial phase, for each z ∈ Ai \ Ai+1 where Q(z) ̸= ∅, we run the

modified Dijkstra’s algorithm. Recall that in the modified Dijkstra’s algorithm when we

explore neighbors of a node x, we only relax an edge (x, y) if d(x, y)+w(x, y) < d(x, Ai).

Then [85] show that this process correctly maintains the clusters. We then repeat this

process for all the k+1/ρ+1 iterations. We add a hopset edge between each z ∈ Ai\Ai+1

and all nodes v ∈ C(z) and set the weight of this edge to w(v, z) = dG(v, z).

Lemma 4.3.2. For every v ∈ V and 0 ≤ i ≤ k + 1/ρ + 1, the expected total number

of times the edges incident on v are scanned over all trees for each w ∈ Ai (i.e. trees

on C(w)) is O(d̂/qi), where qi is the sub-sampling probability.

Proof. Let w ∈ Ai \ Ai+1. The edges of a node v ∈ V is scanned when v joins C(w),

and any given time d(v, w) is increased until v leaves C(w). We start by analyzing the

total cost of joining new clusters. Recall that C(w) = {v ∈ V : d(v, w) < d(w, Ai+1)}.

Since we are in a decremental setting, v can join C(w) only when d(w, Ai+1) increases,

and this can happen at most d̂ times per tree. As in the static setting, at any time, v

joins at most Õ(1/qi) trees, since the number of clusters v belongs to is dominated by

a geometric random variable with parameter qi. We will use a similar argument for

analyzing the total number of clusters each node belongs to over time. Hence the total

time for nodes joining new clusters is Õ(d̂m/qi). Next, we consider the case when

after the deletion the distance between v and the center increases. This will let us

103

bound the number of times the edges incident on v are scanned for a tree rooted at

some node in Ai. Let dt(w, v) denote the distance between v and w at time t (after

t deletions), and let Ct(w) denote the cluster rooted at w at time t. We bound the

number of indices t for which v ∈ Ct(w) and dt(w, v) < dt+1(w, v). Let wt,1, wt,2, ... be

the sequence of nodes in Ai sorted based on their distance from v at time t. Ties will

be broken by ordering based on pairs (dt(v, w), dt+1(v, w)), i.e. nodes with the same

distance from v at time t will be sorted based on their distance at time t + 1. This

ensures that if dt(v, wt,j) < dt+1(v, wt,j), then dt(v, wt,j) < dt+1(v, wt+1,j). Same as

before Pr[v ∈ Ct(wt,j)] ≤ (1− qi)j−1, since v ∈ Ct(wt, j) only if for all j′ < j we have

wt,j′ ∈ Ai \ Ai+1. Let I = {(t, j) | dt(v, wt,j) < dt+1(v, wt,j) ≤ d̂}. Then since edges

incident to v are scanned only if their distance increases, the expected number of times

they are scanned over all trees rooted at centers in Ai is at most ∑︁(t,j) Pr[v ∈ Ct(wt,j)].

Also, by definition for a fixed j there can be at most d̂ pairs of form (t, j). In other

words, the distance to the j-th closest vertex can increase at most d̂ times, and hence,

∑︂
(t,j)

Pr[v ∈ Ct(wt,j)] ≤ d̂
∑︂
j≥1

(1− qi)j−1 ≤ d̂/qi.

By combining the analysis of the modified Dijkstra algorithms of [88], Theorem

4.2.2, and Lemma 4.3.2, we see that in iteration i, edges incident to each node are

scanned at most O(d/qi) times in total. Using a standard argument as in [87], the

total update time is Õ(md/qi) (see Lemma 4.3.4 for a more detailed description of

this time of argument). Hence we show that a d-restricted hopset with the following

guarantees can be constructed:

Theorem 4.3.3. Fix ϵ > 0, k ≥ 2 and ρ ≤ 1. Given a graph G = (V, E, w) with

integer and polynomial weights, subject to edge deletions we can maintain a (d, β, 1+ϵ)-

hopset, with β = O
(︂
(1

ϵ
· (k + 1/ρ))k+1/ρ+1

)︂
in O(d(m + n

1+ 1
2k−1)nρ) total time. The

algorithm works correctly with high probability.

104

Next, we use this algorithm for obtaining an efficient algorithm for maintaining a

sequence of restricted hopsets. Our final algorithms needs to handle edges insertion

(from smaller scales). For handling these insertions we need to use a different approach

that is similar to the monotone ES tree ideas in [55]. We first start describe the

algorithm of [55] for a single-source. Then we explain how their algorithm, combined

with [85] can be used to maintain restricted hopsets with certain insertions.

4.3.2 New Hopsets with Improved Running Time.

The algorithm in Theorem 4.3.3 is too slow. Therefore in the rest of this section we

described how we can get improved running time using a hierarchical construction of

restricted hopsets on a sequence of scaled graphs. As explained one idea is that we can

add hopset edges for smaller scales and use the added edges in computing distances

for larger scales. Before describing our main algorithm, we review the monotone ES

tree technique proposed by [55]. Note that the correctness (stretch) argument depends

on other components of our hopset analysis and will be covered later in Theorem

4.3.7. We first explain the algorithm and running time for maintaining a single-source

shortest path based on montone ES tree, and later explain how it is combined with

the restricted hopset algorithm in the previous section.

We are going to use the algorithm of [85], described earlier, in combination with

the monotone ES tree, in our main algorithm in 7) and in presence of edge insertions.

However, before explaining how these two algorithms are combined, we review the

algorithm of [85] for maintaing clusters, and how it can be used to maintain the

hopset described in Section 4.2.1. As discussed, we will see that the update time for

maintaining this specific construction is larger than desired. We will later explain

how a new hopset, consisted of a series of restricted hopsets on scaled graphs lead to

improved update time.

105

Handling edge insertions. In this section, we explain the monotone ES tree idea

and how it can be used for maintaining single-source shortest path up to a given depth

D. In Section 4.3.1 we explain how this idea can be used in maintaining a restricted

hopset. Using the monotone ES tree ideas may impact the stretch, and clearly do not

apply to all types of insertions but only for insertion of certain structural properties. In

Section 4.3.3, we will prove that specifically for the insertions in our restricted hopset

algorithm the stretch guarantee holds. We show how to handle edge insertions by

using a variant of the monotone ES-tree algorithm [55] (and further used in the hopset

construction of [56]). This algorithm is given as Algorithm 6. The idea in a monotone

ES tree is that if an insertion of an edge (u, v) causes the level of a node v to decrease,

we will not decrease the level. In this case we say the edge (u, v) and the node v are

stretched. More formally, a node v is stretched when L(v) > min(x,v)∈E L(x) + w(x, v).

We observe multiple properties of the monotone ES tree algorithm as observed by

[55, 56] that will be helpful in analyzing the stretch later:

• The level of a node never decreases.

• Only an inserted edge can be stretched.

• While an edge is stretched, its level remains the same. In other words, a stretched

edge is not going to get stretched again unless it is deleted.

Also observe that we never underestimate the distances. This is clearly true for

any edge weights obtained by the rounding in Lemma 4.2.4. It is also easy to see this

is true for the stretched edges for the following reason: For any node v, the algorithm

maintains the invariant that L(s, v) ≥ min(x,v)∈EL(s, x) + w(x, v). In other words,

L(s, v) is either an estimate based on rounding that is at least dG(s, v) or it is larger

than such an estimate.

Lemma 4.3.4. Algorithm 6 processes any sequence of updates in O((m+∆)D) overall

update time on a graph with m edges, where ∆ is the number of edge insertions.

106

Algorithm 6: Maintaining a monotone ES tree up to depth D on G. Note
that edge deletion can be achieved by setting the edge weight to ∞.
1 Function Init(G, s, D)
2 E := E(G) ∪ {ev = (s, v) : v ∈ V (G) \ {s}, w(ev) = D + 1} /* This

ensures that distances are maintained up to level D */
3 for v ∈ V do
4 L(s, v) := 0
5 for v ∈ V do
6 Update(T (s), v)

7 Function InsertEdge(T (s), (a, b), c)
/* Insert an edge in the tree rooted at s */

8 E := E ∪ {(a, b)}
9 w(a, b) := c

10 Update(T (s), b)
11 Function Update(T (s), v)
12 upd := min(x,v)∈E L(s, x) + w(x, v)
13 if v = s or L(s, v) ≥ upd then

/* Node v is stretched. */
14 return
15 L(s, v) := upd
16 for (v, y) ∈ E(G) do
17 Update(T (s), y)

Proof. The running time analysis of the algorithm follows based on an argument

similar to the analysis of the classic ES tree algorithm [87, 62]. The total time for

updating distances up to a depth D is O((m + ∆)D): the edges incident to each node

v are scanned any time level of v changes in an update. This happens when a node

on the shortest path tree from source s to v undergoes a distance increase. Since

distances can only increase, this can occur at most D times for nodes with depth at

most D to the source. Furthermore, ∆ is the number of added edges that also need to

be scanned in each update. By summing over all edges incident to all nodes, including

the added edges, the claim follows.

107

Restricted hopsets with insertions. Next, in Algorithm 7, we show how the

algorithm of [85]- also described in Section 4.3.1- is modified to handle insertions by

combining it with the monotone ES tree algorithm (Algorithm 6) for each tree inside a

cluster. Using this we can bound the update time, however proving the stretch is more

involved, and depends on the specific structure of insertions over a sequence of graphs,

and it does not hold for any set of insertions. We prove the stretch later when we

describe our overall hopset that is consisted of a sequence of hopsets for different scales.

108

Algorithm 7: Monotone d-restricted hopset. Adaptation of [85].
1 Sample sets V = A0 ⊇ A1 ⊇ ... ⊇ Ak+1/ρ+1 = ∅.
2 Function UpdateClusters(G, E−, E+, d)
3 Add edges (x, y) ∈ E+ to any tree T (z) s.t. (x, y) ∈ T (z)
4 for i = 0 to k + 1/ρ + 1 do
5 C = ∅.
6 Remove edges E− from the ES tree maintaining distances L(·, Ai+1)
7 Remove hopset edges (z, v), and remove v from T (z) where

L(z, v) ≥ L(v, Ai+1)
8 Xi+1 := set of nodes whose distances to Ai+1 have increased due to removal

of E−, yet remained at most d
9 for ∀v ∈ Xi+1 do

10 for (u, v) ∈ E do
11 for ∀z ∈ Bi(u) \Bi(v) do
12 if L(z, u) + w(u, v) < L(v, Ai+1) then
13 C = C ∪ {z}
14 Relax((Q(z), u, v))/* Update the estimate from z to

v */

15 for ∀z ∈ C do
16 Dijkstra(z)

17 return (E−, E+)
18 Function Dijkstra(z)
19 while Q(z) ̸= ∅ do
20 u = ExtractMin(Q(z))
21 B(u) = B(u) ∪ {z}
22 for ∀(u, v) ∈ E : z ̸∈ B(v) do
23 if L(z, u) + w(u, v) < L(v, Ai+1) then
24 Relax(Q(z), u, v)/* Update the estimate from z to v */

25 Function Relax(Q(z), u, v)
/* Distances L(z, v) for each tree T (z) are maintained in Q(z) */

26 d′ := L(z, v) + w(z, v)
27 if d′ ≤ d then
28 if v ∈ Q(z) then
29 decrease-key(Q(z), v, d′)
30 else if L(z, u) > d′ then
31 Insert(Q(z), v, d′)
32 Add node v to T (z)
33 InsertEdge(T (z), (z, v), d′)/* As defined in Algorithm 6 */
34 E+ = E+ ∪ {(z, v)}
35 Add (z, v) to E− if L(z, v) has increased.

109

By combining these two algorithm we can keep the running time the same as in

Theorem 4.3.3 despite the insertions:

Theorem 4.3.5. Assume that we are given a set of ∆ updates including a set E− of

deletions and a set E+ of insertions, and parameters d, and ϵ, w.h.p. the total update

time of Algorithm 7 is O((m + ∆ + n
1+ 1

2k−1)dnρ).

Proof sketch. The proof of this theorem is almost exactly the same as the proof of

Theorem 4.3.3. We rely on Lemma 4.3.2 again to show the over a sequence of updates,

for each iteration i, each node v is only in Õ(1/qi) clusters. Since monotone ES tree

ensures that distances are not decreasing the level of a node, the number of times

edges incident to v are scanned is still Õ(d/qi) = Õ(dnρ). We now have m + ∆ edges,

and the theorem follows by summing overall nodes.

We showed that we can handle a set of insertions within the same the running

time. But as discussed, directly using algorithm 7 still does not lead to our desired

update time. Therefore in the rest of this section we described how we can get

improved running time by using this algorithm to maintain a hierarchical construction

of restricted hopsets on a sequence of scaled graphs. As explained one idea is that

we can add hopset edges for smaller scales and use the added edges in computing

distances for larger scales. Once we specify the set of insertion into each of the scaled

graphs considered, we will show that such insertions will also preserve the hopset

stretch (with small polylogarithmic overhead) in the original graph.

Path doubling and scaling. We first state the path doubling idea more formally

for a static hopset in the following lemma. However for utilizing this idea dynamically

we need to combine it with other structural properties of our hopsets.

Lemma 4.3.6. Given a graph G = (V, E), 0 < ϵ1 < 1, the set of (β, 1 + ϵ1)-hopsets

Hr, 0 ≤ r < j for each distance scale (2r, 2r+1], provides a (1+ϵ1)-approximate distance

110

for any pair x, y ∈ V , where d(x, y) ≤ 2j+1 using paths with at most 2β + 1 hops.

Proof. We can show this by an induction on j. Let π be the shortest path between x

and y on . Then π can be divided into two segments, where for each segment there is a

(1 + ϵ1)-stretch path using edges in G ∪ ⋃︁j−1
r=0 Hr. Let [x, z] and [z′, y] be the segments

on π each of which has length at most 2j−1. In other words, z is the furthest point

from x on π that has distance at most 2j−1, and z′ is the next point on π. Then we

have,

d
(2β+1)
G∪
⋃︁j−1

r=1 Hr
(x, y) ≤ [d(β)

G∪
⋃︁j−1

r=1 Hr
(x, z) + w(z, z′) + d

(β)
G∪
⋃︁j−1

r=0 Hr
(z′, y)]

≤ (1 + ϵ1)dG(x, z) + w(z, z′) + (1 + ϵ1)dG(z′, y)

≤ (1 + ϵ1)dG(x, y)

This implies that it is enough to compute (2β+1)-hop limited distances in restricted

hopsets for each scale. For using this idea in dynamic settings we have to deal with

some technicalities. We should show that we can combine the rounding with the

modification needed for handling insertions. In Algorithm 7, we presented a restricted

hopset construction obtained by combinatining of [85] with Algorithm 6 (monotone

ES tree).

We define a scaled graph using Lemma 4.2.4 as follows: Gj := Scale(G ∪⋃︁j
r=0 Hr, 2j, ϵ2, 2β + 1). Here we set R = 2j, ℓ = 2β + 1, and ϵ2 is a parameter that we

tune later. We first describe the operations performed on this scaled graph. We then

explain how we can put things together for all scales to get the desired guarantees.

The key insight for scaling G∪⋃︁j
r=0 Hr, 2j is that we can obtain Hj+1 by computing

an O(ℓ)-restricted hopset of Gj (using the algorithm of Lemma 4.2.3) and scaling back

the weights of the hopset edges.

111

In addition to the graph G undergoing deletions, our decremental algorithm

maintains for each 1 ≤ j ≤ log W :

• The set H̄j = ⋃︁j
r=0 Hr, union of all hopset edges for distance scales up to

[2j, 2j+1].

• The scaled graphs G1, ..., Gj.

• Data structure obtained by constructing an O(β/ϵ2)-restricted hopset on Gj by

running Algorithm 7 for the appropriate parameter ϵ2 < 1. We denote this data

structure by Dj.

The data structure Dj is maintained by running Algorithm 7 on Gj , and maintaining

the clusters and hence the bunches B(v) for all v ∈ V . Given Dj, we can maintain

Hj+1, where the edge weights in clusters are assigned by computing approximate

distances based on Algorithm 6 on each cluster as follows: In a tree rooted at a

cluster center z, we set the weight wj on an edge (z, v) to be minj−1
r=1 η(2r, ϵ2)Lr(z, v),

where Lr(z, v) is the level of v on Gr after running the monotone ES tree up to depth

D = ⌈2(2β+1)
ϵ2
⌉. We the maintain a restricted hopset on the scaled graph Gj, and by

unscaling its weights we get Hj+1.

Once each data structure Dj is initialized with a graph, it can execute a single

operation Update(E−, E+), which updates the maintained graph by removing the

edges of E− and adding edges E+ by running Algorithm 7. The set E− is the set the

edges corresponding to nodes leaving clusters. The operation returns a pair of edges

(E−, E+) that are edges that should be removed or added from Dj. Additionally, by

multiplying these distance by η(2j, ϵ2) for the appropriate ϵ2, we can recover a pair

(H−, H+) of edge sets, where H− is the set of edges that are removed from the hopset

and H+ is the set of edges added to the hopset as a result of the update. Note that a

change in the weight of a hopset edge is equivalent to removing the edge and adding

it with a new weight.

112

In Algorithm 8 we update the data structures described as follows: we run

Algorithm 7 for distances bounded by d = ⌈2(2β+1)
ϵ2
⌉ starting on j = 0, ..., log W in

increasing order of j to compute hopset edges Hj. After processing all the changes in

scaled graph Gj, we add the inserted edges to Gj+1. Then we process the changes in

Gj+1 by running the algorithm of Section 4.3.1 and repeat until all distance scales

of covered. As explained, when the distances increase a node may join a new cluster

which will lead to a set of insertions in H and in turn insertions in a sequence of

graphs Gj. We use an argument similar to Lemma 4.3.2 on each scaled graph to get

the overall update time. In a way we can see the added edges passed to each scale as

a set of batch distance increases, between the corresponding endpoints. This means

we are not exactly in the setting of [85] where only one deletion occurs at each time,

but the exact same analysis as in Lemma 4.3.2 still holds.

Algorithm 8: Updating the hopset after deleting an edge e.
1 Input: 0 < ϵ, 0 < ϵ2 < 1, set d = ⌈2(2β+1)

ϵ2
⌉.

2 (E−, E+) := ({e}, ∅)
3 for j = 0, . . . , ⌊log W ⌋ do
4 (E−, E+) := UpdateClusters(Gj, E−, d, ϵ)/* Run Algorithm 7 on

Gj */
5 Update Hj+1 by unscaling weights of E+ and removing E− (Lemma 4.2.4)

/* add edges for the next scale */
6 Update Gj+1 based on Lemma 4.2.4 to reflect changes to Hj+1

We summarized the algorithm obtained by maintaining this data structure over

all scales in Algorithm 8. Note that we need to update both the restricted hopsets Dj

on the scaled graphs and the hopset Hj obtained by scaling back the distances using

Lemma 4.2.4.

Running time (proof of Lemma 4.2.3). We can now put all the steps discussed

to maintain the data structure of Lemma 4.2.3. In particular, for obtaining a 2j+1-

restricted hopset, we maintain the data structure of Lemma 4.2.3 on Gj for each

113

cluster rooted at a node z ∈ Ai\Ai+1 and by setting ℓ = 2β +1. By using Lemma 4.3.4

and Theorem 4.3.3 to compute d-restricted hopsets for d = O(β/ϵ). When weights

are polynomial we get the running time of Õ(β
ϵ
(m + ∆)nρ), where ∆ is the overall

number of hopset edges added over all updates.

4.3.3 Hopset stretch

In this section, we first prove the stretch incurred for a single-scale by combining

properties of the monotone ES-tree algorithm of Section 4.3.2 with the static hopset

argument and the rounding framework. We will then show that by setting the

appropriate parameters we can prove the overall stretch and hopbound tradeoffs

described in Lemma 4.2.3.

In the following, we extend the static hopset argument to dynamic settings. We

use the path doubling observation in Lemma 4.3.6 and properties of monotone ES

tree described in Section 4.3.2 to prove the stretch incurred in each scale. We denote

the stretch of H̄j to be (1 + ϵj). Then for getting the final stretch and hopbound we

will set the parameters ϵ2 = ϵ′ (error incurred by rounding), and δ = ϵ
8(k+1/ρ+1) .

The stretch argument is based on a threefold induction on i, j-th scale, and time

t. By fixing i, j, t, and a source node s, we show that there is a (1 + ϵj)-stretch

path between s and any other node with β hops (or if we are using previous scale

2β + 1-hops) such that based each segment of this path has the desired stretch based

on the inductive claim on one of these three factors. At a high level induction on

i and j follows from static properties of our hopset. To show that bounded depth

monotone ES tree maintains the approximate distances, we note that any segment of

the path undergoing an insertion consistent of a single shortcut and the weight on

such an edge is a distance estimate between its endpoints.

Theorem 4.3.7. Given a graph G = (V, E), assume that we have maintained a

(2j, β, (1 + ϵj))-restricted hopset H̄j, and let Hj+1 be the hopset obtained by running

114

Algorithm 8 for any given 0 ≤ ϵ2 < 1 on G∪ H̄j. Fix 0 < δ ≤ 1
8(k+1/ρ+1) , and consider

a pair x, y ∈ V where dt,G(x, y) ∈ [2j, 2j+1]. Then for 0 ≤ i ≤ k + 1/ρ + 1, either of

the following conditions holds:

1. d
((3/δ)i)
G∪H̄j+1

(x, y) ≤ (1 + 8δi)(1 + ϵj)(1 + ϵ2)dt,G(x, y) or,

2. There exists z ∈ Ai+1 such that,

d
((3/δ)i)
G∪H̄j+1

(x, z) ≤ 2(1 + ϵj)(1 + ϵ2)dt,G(x, y).

Moreover, by running Algorithm 6 on Gj+1 up to depth ⌈2(2β+1)
ϵ2
⌉, and applying the

rounding in Lemma 4.2.4, we can maintain (1 + ϵj+1)-approximate single-source dis-

tances up to distance 2j+2 from a fixed source s on G, where 1 + ϵj+1 = (1 + ϵj)(1 +

ϵ2)2(1 + ϵ) and β = (3/δ)k+1/ρ+1.

Proof. We use a double induction on i and time t, and also rely on distance computed

up to scaled graph Gj. First, using these distance estimates for smaller scales, we

argue that when we add an edge to H̄j+1 it has the desired stretch. Let Lt,j(u, v)

denote the level of node v in the tree rooted at u after running Algorithm 7 up to

depth D = ⌈2(2β+1)
ϵ2
⌉ on graph Gj . This proof is based on a cyclic argument: assuming

we have correctly maintained distances up to a given scale using our hopset, we show

how we can compute the distances for the next scale. In particular, we first assume

that based on the theorem conditions we are given H̄j and have maintained all the

clusters and the corresponding distances in G1, ..., Gj with stretch 1 + ϵj. This lets

us analyze Hj+1. Then to complete the argument, we show how given the hopsets of

scale [2j, 2j+1], we can compute approximate SSSP distances for the next scale based

on the monotone ES tree on Gj+1.

First, in the following claim, we observe that the edge weights inserted in the latest

scale have the desired stretch by using our assumption that all the shortest path trees

on each cluster on G1, ..., Gj are approximately maintained. We use such distance to

115

add edges in each cluster to construct Hj+1, and we observe the following about the

weights on these edges:

Observation 4.3.1. Let v ∈ B(u) such that dt,G(u, v) ≤ 2j+1. Consider an edge

(u, v) added to Hj+1 after running Algorithm 7 on G1, ..., Gj for D = ⌈2(2β+1)
ϵ2
⌉ rooted

at node v. Let wj+1(u, v) := minj
r=1 η(2r, ϵ2)Lr(u, v), that is the unscaled edge weight.

Then we have dt,G(u, v) ≤ wj+1(u, v) ≤ (1 + ϵj)(1 + ϵ2)dt,G(u, v).

This claim implies that the weights of hopset edges assigned by the algorithm corre-

spond to approximate distance of their endpoints. Let dt,j(x, y) := minj
r=1 η(2r, ϵ2)Lt,j(x, y)

which would be the estimate we obtain by for distance between x and y after scaling

back distances on Gj. In other words this is the hop-bounded distance after running

monotone ES tree on Gj and scaling up the weights.

For any time t and the base case of i = 0, we have three cases. If y ∈ B(x) then

edge (x, y) is in the hopset Hj+1, and by Observation 4.3.1 the weight assigned to

this edge is at most (1 + ϵj)(1 + ϵ2)dt,G(x, y). In this case the first condition of the

theorem holds. Otherwise if x ∈ A1, then z = x trivially satisfies the second condition.

Otherwise we have x ∈ A0/A1, and by setting z = p(x) we know that there is an edge

(x, z) ∈ H̄j such that dt,j(x, z) ≤ (1 + ϵ2)dG∪H̄j
(x, y) (by definition of p(x) and using

the same argument as above). Hence the second condition holds.

By inductive hypothesis assume the claim holds for i. Consider the shortest path

π(x, y) between x and y. We divide this path into 1/δ segments of length at most

δdt,G(x, y) and denote the a-th segment by [ua, va], where ua is the node closest to x

(first node of distance at least aδdt,G(x, y)) and va is the node furthest to x on this

segment (of distance at most (a + 1)δdt,G(x, y)).

We then use the induction hypothesis on each segment. First consider the case

where for all the segments the first condition holds for i, then there is a path of

(3/δ)i(1/δ) ≤ (3/δ)i+1 hops consisted of the hopbounded path on each segment. We

116

can show that this path satisfies the first condition for i + 1. In other words,

d
((3/δ)i+1)
t,G∪H̄j+1

(x, y) ≤
1/δ∑︂
a=1

d
((3/δ)i)
t,G∪H̄j+1

(ua, va)+d
(1)
t,G(va, ua+1) ≤ (1+8δi)(1+ϵj)(1+ϵ2)dt,G(x, y)

Next, assume that there are at least two segments for which the first condition

does not hold for i. Otherwise, if there is only one such segment a similar but simpler

argument can be used. Let [ul, vl] be the first such segment (i.e. the segment closest

to x, where ul is the first and vl is the last node on the segment), and let [ur, vr] be

the last such segment.

First by inductive hypothesis and since we are in the case that the second condition

holds for segments [ul, zl] and [ur, vr], we have,

• d
((3/δ)i)
t,G∪H̄j+1

(ul, zl) ≤ 2(1 + ϵ2)(1 + ϵj)dt,G(ul, vl), and,

• d
((3/δ)i)
t,G∪H̄j+1

(vr, zr) ≤ 2(1 + ϵ2)(1 + ϵj)dt,G(ur, vr)

Again, we consider two cases. First, in case zr ∈ B(zl) (or zl ∈ C(zr)), we

have added a single hopset edge (zr, zl) ∈ H̄j+1. Note that dt,G(zr, zl) ≤ 2j+1, since

dt,G(zr, zl) ≤ dt,G(x, y) ≤ 2j+1. Hence by Observation 4.3.1 the weight we assign to

(zr, zl) is at most (1 + ϵ2)(1 + ϵj)dt,G(zr, zl).

On the other hand, by triangle inequality, and the above inequalities (which are

based on the induction hypothesis) we get,

d
(1)
H̄j+1

(zl, zr) ≤ (1 + ϵ2)(1 + ϵj)dG(zl, zr) (4.1)

≤ (1 + ϵ2)(1 + ϵj)[d((3/δ)i)
G∪H̄j+1

(ul, zl) + dG(ul, vr) + d
((3/δ)i)
G∪H̄j+1

(zr, vr)] (4.2)

By applying the inductive hypothesis on segments before [ul, vl], and after [ur, vr],

we have a path with at most (3/δ)i for each of these segments, satisfying the first

condition for the endpoints of the segment. Also, we have a 2(3/δ)i + 1-hop path

going through ul, zl, zr, vr that satisfies the first condition for ul, vr.

117

Putting all of these together, we argue that there is a path of hopbound (3/δ)i+1

satisfying the first condition. In particular, we have (the subscript t is dropped in the

following),

d
(3/δ)(i+1)
G∪H̄j+1

(x, y) ≤
l−1∑︂
a=1

[d((3/δ)i)
G∪H̄j+1

(ua, va) + d
(1)
G (va, ua+1)] + d

((3/δ)i)
G∪H̄j+1

(ul, zl) (4.3)

+ d
(1)
H̄j+1

(zl, zr) + d
((3/δ)i)
G∪H̄j+1

(zr, vr) + d
(1)
G (vr, ur+1) (4.4)

+
1/δ∑︂

a=r+1
[d((3/δ)i)

G∪H̄j+1
(ua, va) + d

(1)
G (va, ua+1)] (4.5)

≤ (1 + 8δi)(1 + ϵj)(1 + ϵ2)[dG(x, ul) + dG(vr, y)] + dG(ul, vr) (4.6)

+ (1 + ϵ2)(1 + ϵj)[2dG(ul, zl) + 2dG(zr, vr)] (4.7)

≤ (1 + ϵ2)(1 + ϵj)[8δdG(x, y) + (1 + 8δi)dG(x, y)] (4.8)

≤ (1 + 8δ(i + 1))(1 + ϵ2)(1 + ϵj)dG(x, y) (4.9)

In the first inequality we used the induction on i for each segment, and triangle

inequality.

In the second inequality we are using the fact that nodes uj, vj for all j are on the

shortest path between x and y in G, and we are replacing d
(1)
H̄j+1

(zl, zr) with inequality

4.2. In line 4.8 we used the fact that the length of each segment is at most δ · dG(x, y).

Hence we have shown that the first condition in the lemma statement holds.

Finally, consider the case where zr ̸∈ B(zl). If zl ̸∈ Ai+2, we consider z = p(zl),

where zl ∈ Ai+2. We now claim that this choice of z satisfies the second lemma

condition.

We have added the edge (zl, z) to the hopset. Since zr ̸∈ B(zl), we have

dt−1,G(zl, p(zl)) ≤ dt−1,G(zl, zr) ≤ dt,G(x, y) ≤ 2j+1. Therefore we can use Obser-

118

vation 4.3.1 on the edge (zl, p(zl)).

d
(3/δ)(i+1)
G∪H̄j+1

(x, y) ≤
l−1∑︂
a=1

[d((3/δ)i)
G∪H̄j+1

(ua, va) + d
(1)
G (va, ua+1)]

+ d
((3/δ)i)
G∪H̄j+1

(ul, zl) + (1 + ϵ2)(1 + ϵj)d(1)
H̄j+1

(zl, z)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)dG(x, ul) + d
((3/δ)i)
G∪H̄j+1

(ul, zl) + (1 + ϵ2)(1 + ϵj)dH̄j+1(zl, zr)

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)dG(x, ul) + d
((3/δ)i)
G∪H̄j+1

(ul, zl)

+ (1 + ϵ2)(1 + ϵj)[2d
((3/δ)i)
G∪H̄j+1

(zl, ul) + dG(ul, vr) + d
(3/δ)i

G∪H̄j+1
(vr, zr)]

≤ (1 + 8δi)(1 + ϵ2)(1 + ϵj)d((3/δ)i)
G∪H̄j+1

(x, vr) + 6δ(1 + ϵj)dG(x, y)

≤ 2(1 + ϵ2)(1 + ϵj)dG(x, y)

In the last inequality we used the fact that we set δ < 1
8(k+1/ρ+1) and thus 8δi < 1.

The only remaining case is when zℓ ∈ Ai+2, in which case a similar reasoning follows

by setting z = zl.

Finally, we prove that after adding hopset edges Hj+1 we can maintain approximate

single-source shortest path distances from a given source s. This enables us to show

that Observation 4.3.1 can be used for the next scale, i.e. that we can set the weights

for the next scale by maintaining the clusters and (1 + ϵj+1) approximate distance

rooted at a source s when we have d(s, v) ∈ [2j+1, 2j+2], and hence close the inductive

cycle in the argument.

We run the monotone ES tree algorithm (Algorithm 6) up to depth ⌈2(2β+1)
ϵ
⌉ on

all of the scaled graphs G1, ..., Gj+1. We let set the distance estimate dt,j+1(s, v) to

be minr η(2r, ϵ2)Lt,r(s, v) where Lt,r(s, v) is the level of v on Gr on the ES tree up to

depth ⌈2(2β+1)
ϵ2
⌉ rooted at s. Note that by running Algorithm 7 we are also maintaining

the same distances on each cluster while also maintaining the nodes that leave and

join a cluster. We analyze the estimate for any v ∈ V such that dG(s, v) ≤ 2j+2.

W.l.o.g. assume that d(s, v) ∈ [2j+1, 2j+2], since if d(s, v) ∈ [2r, 2r+1], r ≤ j, we can

use the same argument for the ES tree on Gr. Let Lt,j+1(s, v) be the level of v in the

119

monotone ES tree of Gj+1 maintained up to depth ⌈2(2β+1)
ϵ2
⌉. Our goal is to show,

dt,j+1(s, v) := η(2j+1, ϵ2)Lt,j+1(s, v) ≤ (1 + ϵj+1)dt,G(s, v)

As discussed in Lemma 4.3.6, we consider the shortest path between s and v in G,

and first divide it into two segments π1 and π2 each with length at most 2j+1. Then

divide each one of π1 and π2 into segments and consider the case by case inductive

analysis as we did before for showing the stretch in Hj+1. We argue why the levels in

tree rooted at s corresponding to π1 have the desired stretch, then a similar reasoning

with a factor 2 in the number of hops follows for π2.

We use a case-by-case analysis similar to what we used for showing properties of

H̄j+1, and consider the paths that were inductively constructed for each segment H̄j+1.

Using that structure, we argue that in the monotone ES tree on Gj+1 we can maintain

the levels such that for each 0 ≤ i ≤ 1/ρ + k + 1 one of the following conditions holds:

1. We have dt,j+1(s, v) ≤ η(2j, ϵ2)L(s, v) ≤ (1 + ϵj+1)dt,G(s, v), where this estimate

corresponds to a path with βi = (3/δ)i in Hj+1 (and hence Gj+1).

2. There exists z1 ∈ Ai+1, such that dt,j+1(s, z1) ≤ η(2j+1, ϵ2)L(s, z1) ≤ 2(1+ϵj)(1+

ϵ2)dt,G(s, v) that corresponds a path with βi = (3/δ)i hops.

Then we can use this to show that after all iterations there either exists a path

of depth at most ⌈2(2β+1)
ϵ2
⌉ on Gj+1 between s and v with stretch (1 + ϵj+1), or the

monotone ES tree returns and estimate with this stretch.

We briefly review the different cases, same as before. First assume that we have

s ∈ B(v) for some iteration 1 ≤ i ≤ 1/ρ + 1 + k, which implies we have added a hopset

edge with weight wj+1 to H̄j+1. In this case the edge (s, v) was directly added to

Hj+1. If edge (s, v) is stretched then we set Lt,G(s, v) = Lt−1,G(s, v), and by induction

on time we have

η(2j+1, ϵ2)Lt,j+1(s, v) = η(2j+1, ϵ2)Lt−1,j+1(s, v) ≤ (1 + ϵj+1)dt,G(s, v).

120

If this edge is not stretched then by Lemma 4.2.4 after scaling we get distance at most

(1 + ϵj)(1 + ϵ2)2dt,G(s, v), where the additional factor of (1 + ϵ2) is due to scaling of

G ∪ H̄j+1.

Now consider the case s ̸∈ B(v). Recall that we inductively showed one of the two

theorem conditions hold for each i for length in Hj+1, and we now argue that this

corresponds to one of the two conditions above for the same i, but now on Gj+1. Let

πi be the path in Hj+1 that satisfies one the theorem conditions for a fixed i.

First assume that no edge on this path is stretched. Then the stretch argument

for L(s, v) clearly holds based on the earlier arguments and Lemma 4.2.4. Now let

us argue about the possible insertions on this path, i.e. when an edge added on πi

is strecthed with respect to s. Note that by our construction, and in all cases we

considered in our hopset argument, an edge (x′, y′) was inserted into Hj+1 only when

x′ ∈ B(y′) for some 0 ≤ i ≤ k + 1/ρ + 1, and the weights were assigned based on

Observation 4.3.1. Using these weights, we prove a claim that allows us to reason

about possible insertions on πi. At a high level, we show that the level of y′ is either

determined an estimate at time t− 1 for d(s, y′) or by the level of a node x′, and a

single edge between (x′, y′) with weights satisfying Observation 4.3.1. In other words,

in the second case using a case by case analysis same as before, we know that for any

node y′ there exists another node, in this case x′, that shortcuts the path from s to y′

using one edge.

Claim 4.3.8. Let (x′, y′) be an edge added to Hj+1 and hence Gj+1 with weight

wGj+1(x′, y′) due to the fact that x′ ∈ B(y′). Then either of the following holds for the

level of node y′ in the monotone ES tree rooted at s:

• Lt,j+1(s, y′) = Lt−1,j+1(s, y′) and thus η(2j+1, ϵ2)Lt,j+1(s, y′) ≤ η(2j+1, ϵ2)Lt−1,j+1(s, y′) ≤

(1 + ϵj+1)dt,G(s, y′); or,

• We have Lt,j+1(s, y′) ≤ Lt,j+1(s, x′) + wGj+1(x′, y′).

121

Proof. The first case is when the edge (x′, y′) is stretched in the tree rooted at s on

Gj+1. Note that this is different from the setting in Observation 4.3.1, where we were

reasoning about the node y′ being stretched in the tree rooted at x′ on Gj. In this

case we set Lt,j+1(s, y′) = Lt−1,j+1(s, y′). Since we have maintained distances up to

depth ⌈2(2β+1)
ϵ2
⌉ on Gj+1 with stretch (1 + ϵj) at time t− 1, and since we are in the

decremental setting this means that after scaling back we get the desired stretch.

The second case is when the edge (x′, y′) is not stretched in the tree rooted at s.

The claim follows by definition of an edge that is not stretched.

Note that if dt,G(x′, y′) belonged to a smaller scale, we have already added an edge

that satisfied a similar condition for the corresponding scale.

Going back to the hopset argument, we note that every insertion into Hj+1 on

path πi (and edge that is stretched with respect to s) satisfies the conditions in Claim

4.3.8. In other words, for any node on the path, say y′, there exists a node x′ that is

directly connected to y′, satisfying the stretch in Claim 4.3.8. This combined with

what we proved inductively on the structure of segments of path π1 in Hj+1, implies

that for any node v, d(s, v) ≤ 2j+1 we have a path with the desired stretch that is

consisted of all the edges added for different i. Finally, after the scaling we can obtain

the desired stretch in which we lose another factor of (1 + ϵ2).

We briefly review the cases that, at a high-level, shows that a such a node x′,

satisfying Claim 4.3.8 exists that appropriately shortcuts the distance from s to y′ for

any node y′ on πi stretched with respect to s.

Recall the hopset argument for i: an insertion into one of the segments (of length

δd(s, v)) can only occur when condition two of the theorem is satisfied for some node

in z ∈ Ai+1. Let [z′
l, z′

r] be the segment for which the new edge was inserted. We

argued that either z′
r ∈ B(z′

l) or there is another node z′ for which the second theorem

condition holds and z′ ∈ B(z′
l).

122

In any case we inserted a single edge in Hj+1 on this segment with weights satisfying

Observation 4.3.1. Then using Claim 4.3.8, and similar calculation as we did for Hj+1

we can show that the second condition also holds on Gj+1, but there is an additional

error factor of (1 + ϵ2) from scaling.

At a high level, we have shown that the inserted edge on πi has a length that

appropriately shortcuts the last segment, otherwise no new edges were added in

iteration i (when the first theorem condition holds for all segment).

We argued earlier that this path πi has stretch (1 + ϵj)(1 + ϵ)(1 + ϵ2) in G ∪ H̄j+1.

Hence after scaling and running Algorithm 6 on Gj+1, we know that path πi has depth

⌈2(2β+1)
ϵ
⌉ and we have the following estimate for v:

dt,j+1(s, v) ≤
j+1
min
r=1

η(2j+1, ϵ2)Lt,r(s, v) ≤ (1 + ϵj)(1 + ϵ2)2(1 + ϵ)dt,G(s, v)

Then after all the iterations 1 ≤ i ≤ 1/ρ + 1 + k, the second condition cannot hold

(since A1/ρ+1+k = ∅), the first condition must hold, which states that there is a path

with β = (3/δ)1/ρ+1+k-hops and stretch (1 + ϵj+1)dt,G(s, v) in G∪ H̄j+1 between s and

v. Also by path doubling of Lemma 4.3.6 we argued that this also means that there is

a path with 2β + 1 hops and (1 + ϵj)(1 + ϵ2)(1 + ϵ)-stretch in G∪ H̄j+1 between s and

v that is consisted of two paths satisfying the first theorem condition for Hj+1, and

that this corresponds to a path with stretch 1 + ϵj+1 in Gj+1. The concatenation of

this same paths in Gj+1 approximates πi and after scaling and unscaling we will have

an additional factor of (1 + ϵ2).

Theorem 4.3.7 allows us to hierarchically use the restricted hopsets for smaller

scales to compute the distance for larger scales, that is in turn used to update the

hopset edges in the larger scales.

In the following lemma, we will show that by setting δ = O(ϵ
(k+1/ρ+1)) we get

the desired stretch for Lemma 4.2.3. Next, we use Lemma 4.2.3 for all scales and

123

by setting the appropriate error parameters we can prove our overall stretch and

hopbound tradeoffs. We also prove the overall update time using the running time of

the monotone ES tree algorithm to run the restricted hopset algorithm on the hopsets

obtained for each scale.

Single scale stretch. We will now use the stretch argument in Section 4.3.3 to get

the hopbound and stretch for each scale by setting the appropriate parameters. As

discussed, there are two error factors incurred in each scale. One is caused by the fact

that we are using previously added hopset edges, which we denoted by (1 + ϵj) for

scale j, and another is caused due to the rounding error, which we denote by (1 + ϵ2).

To get an overall stretch of (1 + ϵ), we will set ϵ′ = ϵ
6 log W

and ϵ2 = ϵ′.

Corollary 4.3.9. After each update t, and for all j, 0 ≤ j ≤ log W and any pair

x, y ∈ V , where 2j ≤ dt,G(x, y) ≤ 2j+1, we have dt,G(x, y) ≤ dt,G∪H̄j
(x, y) ≤ (1 + 3ϵ′)j ·

d
(β)
t,G(x, y).

Proof. We use an induction on j. The base case (j = 0) is satisfied by the paths in

G, since we can assume with out loss of generality that the edge weights are at least

one. First, by induction hypothesis, we have a (2j, β, (1 + 3ϵ′)j)-hopset, and hence

1 + ϵj = (1 + 3ϵ′)j .

We then use Theorem 4.3.7, for ϵ2 = ϵ′, and δ = ϵ′

8(k+1/ρ+1) . For the final iteration

i = 1
k+1/ρ+1 since Ai+1 = ∅, the second item can not hold. Hence the first item should

hold, and since 8δi < ϵ′ we have,

d
(β)
t,G∪H̄j

(x, y) ≤ (1 + 3ϵ′)j−1(1 + ϵ′)(1 + ϵ′)dt,G(x, y) ≤ (1 + 3ϵ′)jdt,G(x, y).

Proof of stretch and hopbound in Lemma 4.2.3. Now by simply setting ϵ′ = ϵ
3

in Corollary 4.3.9 we get the desired stretch and hopbound.

124

Putting it together. We now use the stretch argument of Corollary 4.3.9 with the

update time followed by Lemma 4.2.3 to get the following hopset guarantees.

Theorem 4.3.10. The total update time in each scaled graph Gj, 1 ≤ j ≤ log W , over

all deletions is Õ((ℓ/ϵ′)(n1+ν +m)nρ), and hence the total update time5 for maintaining

a (β, 1 + ϵ)-hopset with hopbound β = O(log W
ϵ
· (k + 1/ρ))k+1/ρ+1 is Õ(β

ϵ
·mnρ).

Proof. First we use Corollary 4.3.9 to prove the stretch and hopbound, by setting j =

log W . For the final scale we have dt,log W (u, v) = (1 + 3ϵ′)log W dG(u, v) ≤ (1 + ϵ) log W .

The hopbound obtained is

O(1
ϵ′ · (k + 1/ρ))k+1/ρ+1 = O(log W

ϵ
· (k + 1/ρ))k+1/ρ+1.

The running time follows by Lemma 4.2.3 where ∆ = O(n1+ν), we get an overall

running time of Õ(mnρ · β
ϵ
) time.

Hence the total update Õ(mnρ) and the hopbound β is polylogarithmic when ρ

and k are constant.

4.4 Applications

In this section we explain two applications of our decremental hopsets to get improved

bounds for (1+ ϵ)-approximate SSSP and MSSP and (2k−1)(1+ ϵ)-APSP. For both of

these problems we first construct a hopset, where we choose the appropriate hopbound

depending on the number of source. We then use the scaling scheme in Lemma 4.2.4

on the obtained graph.

Our algorithm for (2k − 1)(1 + ϵ)-APSP involves maintaining two data structures

simultaneously: A (β, 1 + ϵ)-hopset, and a Thorup-Zwick distance oracle [88]. At

a high-level the hopset will let us maintain the distance oracle much faster, at the

expense of a (1 + ϵ)-factor loss in the stretch.
5If weights are not polynomial the log n factor will be replace with log W , and a factor of log2 W

will be added to the update time.

125

4.4.1 (1 + ϵ)-approximate SSSP and (1 + ϵ)-MSSP

Given a graph G = (V, E) and a set S of size of sources, our goal is to maintain the

distance from each source in Õ(sm + mnρ), total update time (where ρ is a constant),

and constant query time.

Once a (β, ϵ)-hopset is constructed, we can run Algorithm 6 on all the scaled

graphs G1, G2, ..., Glog W up to depth O(β), scale back the distances, and return the

smallest value to each source. Similar approaches for h-limited SSSP have also been

used in previous work such as [15, 55, 59].

In the next theorems we argue that using the same techniques as we used for

maintaining the hopset (that are similar to framework of [56]), namely by combining

monotone ES tree and scaling, we get our SSSP and MSSP results. In particular after

constructing the hopset we can use Theorem 4.3.7 and Theorem 4.3.10 to get,

Theorem 4.4.1. Given an undirected and weighted graph G = (V, E), there is

a decremental algorithm for maintaining (1 + ϵ)-approximate distances from a set

S of sources in total update time of Õ(β(|S|(m + n
1+ 1

2k−1) + mnρ)), where β =

O(log W
ϵ
· (k + 1/ρ)k+1/ρ+1), and with O(1) query time.

Proof. We maintain a (β, ϵ
3)-hopset H based on Theorem 4.3.10. Then we run

Algorithm 6 on G ∪H from all the s for all scaled graphs. The the claim follows by

the argument in Theorem 4.3.7. In particular, after adding all the hopset edges at

time t for all scales, we will run the monotone ES tree algorithm rooted at each source

again on the union of all scaled graphs G1 ∪ ... ∪ Glog W (by setting ϵ0 = ϵ/3) and

let the level L(s, v) of a node be minj η(2j, ϵ
3)Lj(s, v) where Lj(s, v) is the level of v

on Gj after running the monotone ES tree that is run up to depth β. By item 3 of

Theorem 4.3.10, we get an overall stretch of (1 + ϵ/3)2 ≤ (1 + ϵ).

The time required for maintaining the hopset is Õ((m + n1+ν)nρ) and by setting

nρ = s the time required for maintaining h-SSSP from all sources is O(sm·β) = Õ(sm),

126

when s = nΩ(1).

We next state two specific consequences. First implication is that when the number

of sources is a polynomial, and the graph is not very sparse, we can get a near-optimal

(up to polylogarithmic factors) algorithm for (1 + ϵ)-MSSP.

Corollary 4.4.2. Given an undirected and weighted graph G = (V, E), where |E| =

n1+Ω(1), there is a decremental algorithm for maintaining (1+ ϵ)-approximate distances

from s sources, where s = nΩ(1) in total update time of Õ(sm), and with O(1) query

time.

When the number of sources s = no(1) (e.g. in case of SSSP), the best tradeoff

can be obtain by setting ρ = log log n√
log n

. We will then have β = 2Õ(
√

log n) and also

nρ = 2Õ(
√

log n). In this case we get improved bounds over the result of [55], which has

a total update time of is mnÕ(log3/4 n).

Corollary 4.4.3. Given an undirected and weighted graph G = (V, E), there is a

decremental algorithm for maintaining (1 + ϵ)-approximate distances from s sources,

when 0 < ϵ < 1 is a constant and |E| = n · 2Ω̃(
√

log n), with total update time of Õ(sm ·

2Õ(
√

log n)), and with O(1) query time. Hence, we can maintain (1 + ϵ)-approximate

SSSP in 2Õ(
√

log n) amortized time.

4.4.2 APSP distance oracles

It is known that in static settings for any weighted graph G = (V, E), we can construct

a Thorup-Zwick [88] distance oracle of size (w.h.p.) Õ(n1+1/k), such that after the

preprocessing time of Õ(mn1/k), we can query (2k − 1)-approximate distances for any

pair of nodes in O(k) time. In this section we show that in decremental settings we

can maintain these distance oracles in total update time of Õ(mn1/k) (for graphs that

are not too sparse), and we can query (2k − 1)(1 + ϵ)-approximate distances in O(k)

time. This can be done by maintaining a (β, 1 + ϵ)-hopset and a distance oracles for

127

G at the same time, where β is polylogarithmic in n. Intuitively, the hopset will allow

us to update distances faster on the distance oracles.

Distance oracle construction via hopsets. Assume that we are given a (β, 1+ϵ)-

hopset for G. The algorithm for constructing the Thorup-Zwick distance oracle is

as follows: Similar to the algorithm in Section 4.2.1, we define sets V = A0 ⊇ A1 ⊇

... ⊇ Ak = ∅6. But here each set Ai+1 is obtained by sampling each element from

Ai with probability pi = n−1/k. Same as before, for every node u ∈ Ai \ Ai+1, let

pi(u) ∈ Ai+1 be the closest node to set Ai+1. We the bunch of a node u is the set

B(u) = ∪k
i=1Bi(u) = {v ∈ Ai : d(u, v) < d(u, Ai+1)} ∪ {p(u)}, C(v) called the cluster

of v such that if v ∈ B(u) then u ∈ C(v). The distance oracle is consisted of bunches

B(v) for all v ∈ V , and the distances associated with them. Note that the information

stored here are also different from the hopset algorithm described in Section 4.2.1,

since there we only added edges for nodes v ∈ Ai and their bunches. Thorup and Zwick

[88] show that this distance oracle has the following properties (in static settings):

Theorem 4.4.4 ([88]). There is a distance oracle of expected size O(kn1+1/k), that

can answer queries (2k − 1)-approximate distance queries for a given weighted and

undirected graph G = (V, E) in O(k) time for any k ≥ 2. The preprocessing time in

static settings is w.h.p. Õ(mn1/k).

As discussed in Section 4.3.1, Roditty and Zwick [85] showed how to maintain this

data structure in O(mn) update time for unweighted graphs, but where the size is

increased to Õ(m + n1+1/k). For weighted graphs their updates time can be as large

as O(mn1+1/k). We will argue that by maintaining a (β, 1 + ϵ)-hopset along with the

distance oracle we can improve the total update time to Õ(βmn1/k). This combined

with our hopset construction in Section 4.3.1 will lead to the desired bounds. More
6This k should not be confused with the size parameter in the hopset algorithm of Section 4.2.1.

Here we only use the fact that the hopset size can be bounded based on the graph density.

128

formally,

Theorem 4.4.5. Given a weighted and undirected graph G = (V, E) and a (β, 1 + ϵ)-

hopset H for G, and a parameter k ≥ 2, we can maintain a distance oracle of size

Õ(m + n1+1/k) and with stretch (1 + ϵ)(2k − 1) in Õ(β
ϵ
·mn1/k) total update time.

Proof. We will again use the scaling idea described in Section 4.3.1. Similar to

Theorem 4.4.1, we consider the sequence G1, ..., Gj, where Gr, r ≤ j is scaling of

the graph G ∪ H̄r as defined in Section 4.3.1, where ϵ0 = ϵ
3 and H̄j is a (2j, β, ϵ

3)

hopset. We then run the algorithm of Roditty-Zwick [85] on G up to depth ⌈3β/ϵ⌉

for maintaining the clusters and the bunches. The algorithm and the running time

analysis is similar to the restricted hopset algorithm described in Section 4.3.1. The

main differences in the algorithm are the sampling probabilities and the information

stored. Therefore using the argument in Lemma 4.3.2 we can show that by running

this algorithm on G with depth ⌈3β/ϵ⌉ we can maintain a bunch Bi(u) for all nodes

u ∈ V, 1 ≤ i ≤ k − 1 in Õ(ℓm
ϵqi

) = Õ(β
ϵ
mn1/k) total update time. This algorithm lets

us maintain clusters. We also maintain the distances in clusters and hence bunches as

follows: For each v ∈ V, u ∈ B(v), we run single-source shortest path distance between

from v on scaled graphs G1, ..., Glog W (by setting ϵ0 = ϵ/3). We then set the distance

d(u, v) to be minj η(2j, ϵ
3)Lj(s, v) where Lj(s, v) is the level of v on Gj after running

the monotone ES tree that is run up to depth ⌈6(β + 1)/ϵ)⌉.

Again, when we combine the hopset stretch with the stretch with the rounding

algorithm caused by rounding, we get an overall stretch of (1 + ϵ
3)2 ≤ 1 + ϵ. The

overall stretch is thus (2k − 1)(1 + ϵ).

Theorem 4.4.6. Given a weighted graph G = (V, E) with polynomial weights, and

constant7 k ≥ 2 and 0 < ϵ < 1, we can maintain a data structure with expected size

Õ(m+n1+1/k) and total update time of Õ(mn1/k ·(1/ϵ)O(1)), that returns (2k−1)(1+ϵ)-
7If k = ω(1), then a factor of no(1) will be added to the running time.

129

stretch queries for any pair u, v ∈ V with O(k) query time.

Proof. We construct and maintain a (β, 1 + ϵ
3)-hopset using Theorem 4.3.10. If

m = n1+Ω(1) we can set ρ = 1
k
, and we set the hopset size parameter ν to a small

constant8 such that O(n1+ν) = O(m). If m = n1+o(1), we set ρ = 1
2k

). In both cases

time required for maintaining a hopset is Õ(mn1/k · (1/ϵ)O(1)). We get hopbound

β = O(log n/ϵ)log(1/ν)+1/k+1 = polylog (n). Hence we can also maintain the distance

oracle in Õ(mn1/k) total update time. The stretch will be (2k − 1)(1 + ϵ), and the

query time remains the same as the static query time, which is O(k).

4.5 Conclusion and Future Direction

While we do not prove this formally, we expect that many of our techniques would

also extend to the incremental (insert-only) settings. However we heavily rely on

properties of partially dynamic settings, and we would need new techniques for

constructing hopsets efficiently in the fully-dynamic settings, which is a natural next

step. Currently known bounds for shortest path computation is far from optimal in this

model, and not much is known about utilizing hopsets in these settings. Instead recent

results in fully-dynamic model heavily rely on algebraic techniques such as matrix

multiplication. It would be interesting to see if those techniques can be combined with

hopset constructions to achieve much better bounds.

8The choice of size parameter impact the polylogarithmic factors. Hence one option is to choose
the smallest constant such that the graph size is not smaller than the hopset size.

130

Chapter 5

Distributed Distance Bounded
Network Design

5.1 Introduction

In this chapter, we focus on an optimization perspective on spanners and several

related network design problems. The results presented here are published in [30].

Distributed network design is a classical type of distributed algorithmic problem,

going back at least to the seminal work on distributed MST by Gallager, Humblet,

and Spira [48]. By “network design”, we mean the class of problems which can be

phrased as “given input graph G, find a subgraph H which has some property P , and

minimize the cost of H”. Clearly different properties P , and different notions of cost,

lead to very different problems. One important class of problems are distance-bounded

network design problems, where the property P is that certain pairs of vertices are

within some distance of each other in H (where distance refers to the shortest-path

distance). The most well-known type of distance-bounded network design problems

are problems involving graph spanners, in which the distance requirement is that

the distance in H for all (or certain) pairs is within a certain factor (known as the

stretch) of their original distance in H. But there are many other important versions

of distance-bounded network design, such as the bounded diameter problem [32] and

the shallow-light Steiner tree/network problems [61].

131

Many of these problems are NP-hard, so they cannot be solved optimally in

polynomial time even in the centralized setting unless P=NP. Thus they have been

studied extensively from an approximation algorithms point of view, where we design

algorithms which approximate the optimal solution but which run in polynomial time.

For many of these problems, a key step in the best-known centralized approximation

algorithm is solving a linear programming relaxation of the problem, and then rounding

the optimal fractional solution into a feasible integral solution. Interestingly, it is

relatively common for the rounding to be “local”: if we are in a distributed setting

and happen to know the optimal fractional LP solution, then the algorithm used to

round this to an integral solution can be accomplished with a tiny amount of extra

time (either 0 or a small constant number of rounds). So the bottleneck when trying

to make these algorithms distributed is solving the LP, not rounding it.

Solving LPs in distributed settings has received only a small amount of attention,

since it unfortunately turns out to be extremely challenging in general. Most notably,

Kuhn, Moscibroda, and Wattenhofer [66] gave an efficient distributed algorithm (in the

LOCAL model of distributed computation) for packing/covering LPs. Unfortunately,

the LPs used for distance-bounded network design are not packing/covering LPs1,

and hence we are not able to use their techniques. Floréen et al. [45] also studied a

special class of linear programs, namely min-max LPs, in distributed settings, which

also cannot be used for our problems of interest. In this chapter we show how to solve

these LPs (and convex generalizations of them) in the LOCAL model of distributed

computation, which almost immediately gives the best-known results for a variety of

distance-bounded network design problems.

In particular, for many network design problems (Directed k-Spanner, Basic
1They can be turned into packing/covering LPs through a projection operation, but unfortunately

this technique results in an exponential number of constraints, making [66] inapplicable. However,
this technique has been used in the centralized setting for the fault-tolerant directed k-spanner
problem [27].

132

3-Spanner, Basic 4-Spanner, Lowest-Degree k-Spanner, Directed Steiner

Network with Distance Constraints with spanning demands, and Shallow-

Light Steiner Network with spanning demands) we give approximation algorithms

which run in O(D log n) rounds (where D is the maximum distance bound) and have

the same approximation ratios as in the centralized setting. Previous distributed

algorithms for these problems with similar round complexity have either used “heavy”

computations (non-polynomial time algorithms) at the nodes (in which case they can

often do better than the best computationally-bounded centralized algorithm), or

give approximation bounds which are asymptotically worse than the best centralized

bounds. See Section 5.1.2 for more discussion of previous work.

5.1.1 Our Results

We give two main types of results. First, we give a distributed algorithm that

(approximately) solves distance-bounded network design convex programs with small

round complexity. We then use this result to (almost immediately) get improved

distributed approximation algorithms for a variety of network design problems.

5.1.1.1 Solving convex programs

Stating our main technical result (distributed approximations of distance-bounded

network design convex programs) in full generality requires significant technical setup,

so we provide an informal description here. See Section 5.4 for the full definitions and

theorem statements (Theorem 5.4.4 in particular). But informally, a distance-bounded

network design convex program is the following. We are given a graph G = (V, E),

a set S ⊆ V × V , and for each (u, v) ∈ S there is a set of “allowed” u − v paths

Pu,v. Roughly speaking, we typically assume that the allowed paths are short, and

define D to be maximum length of such paths. Informally, the discrete problem is

to find a subgraph H of G so that every (u, v) ∈ S is connected by at least one path

133

from Pu,v in H, and the goal is to minimize some notion of “cost”. If our notion of

“cost” is captured by an objective function g : R|E|
≥0 → R (which is typically linear, but

which can be more general convex functions as long as they satisfy a “partitionability”

constraint – see Section 5.4 for the details), then the natural relaxation of this problem

is the following convex program, which has a variable xe for every edge and a variable

fP for every allowed path.

min g(x)

s.t.
∑︂

P ∈Pu,v :e∈P

fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑︂
P ∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E

fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

Informally, the first type of constraint says that an allowed path is included only if

all edges in it are included, and the second type of constraint required us to include

at least one allowed path for each (u, v) ∈ S. We call this type of convex program a

distance-bounded network design convex program. It is clearly not a packing/covering

LP due to the first type of constraint, and hence there is no known distributed

algorithm to solve this kind of program. However, note that if the maximum length of

any allowed path is constant, then there are only a polynomial number of such paths,

and hence the size of the convex program is polynomial and so it can be solved in

polynomial time in the centralized setting under reasonable assumptions on g (see [51]

for details on solving convex programs in polynomial time).

Our main technical result is that we can approximately solve these optimization

problems even in a distributed setting. For any path P let ℓ(P) denote the length of

the path (the number of edges in it).

134

Theorem 5.1.1. For any constant ϵ > 0, any distance-bounded network design convex

program can be solved up to a (1+ϵ)-approximation in O(D log n) rounds in the LOCAL

model, where D = max(u,v)∈S maxP ∈Pu,v ℓ(P). Moreover, if the convex program can be

solved in polynomial time in the centralized sequential setting, then the distributed

algorithm uses only polynomial-time computations at every node

The dependence on ϵ in the above theorem is hidden in the O(·) notation – see

Theorem 5.4.4 for the full statement.

Padded Decompositions. Our main technique is to use a distributed construction

of padded decompositions, a specific type of network decomposition which we explain

in detail in Section 5.3. Padded decompositions have been very useful for metric

embeddings and approximation algorithms (e.g., [53, 65]), but to the best of our

knowledge have not been used before in distributed algorithms (with the exception

of [28], which used a special case of them to give a distributed algorithm for the

fault-tolerant 2-spanner problem). Very similar decompositions, such as the famous

Linial-Saks decomposition [71], have been used extensively in distributed settings, but

the guarantees for padded decompositions are somewhat different (and we believe

that these decompositions may prove useful in the future when designing distributed

approximation algorithms). In Section 5.3 we give a distributed algorithm in the

LOCAL model to construct padded decompositions. These padded decompositions

allow us to solve a collection of “local” convex programs with the guarantees that

a) most of the demands in S are satisfied in one of the local programs, and b) the

solutions of the local convex programs combine into a (possibly infeasible) global

solution with cost at most the cost of the global optimum. Then by averaging over

O(log n) of these decompositions we get a feasible global solution which is almost

optimal. Interestingly, the neighborhood covers that we constructed in Chapter 3 were

also based on repeated construction of padded decompositions with different radius

135

parameters. The algorithm used in this section is based on a different construction

of these objects due to Bartal [7]. We use this construction as it is simpler to show

the properties that we need for this section, even though this construction does not

directly apply to weighted graphs, which is what we needed in Chapter 3.

5.1.1.2 Distributed approximation algorithms for network design

Solving convex programming problems in distributed environments is interesting in its

own right, and Theorem 5.1.1 is our main technical contribution, but the particular

class of convex programs that we can solve are mostly interesting as convex relaxations

of interesting combinatorial optimization problems. Many of the problems are NP-hard,

but there has been significant work (some quite recent) on designing approximation

algorithms for them (see, e.g., [27, 22, 31, 14]). Almost all of these approximations

depend on convex relaxations which fall into our class of “distance-bounded network

design convex programs”. This means that as long as the rounding scheme can be

computed locally, we can design distributed versions of these approximation algorithms

by using Theorem 5.1.1 to solve the appropriate convex relaxation and then using the

local rounding scheme.

We are able to use this framework to give distributed approximation algorithms

for several problems. Most of them are variations of graph spanners, which were

introduced by Peleg and Ullman [84] and Peleg and Schäffer [83], and are defined as

follows.

Definition 5.1.1. Let G = (V, E) be a graph (possibly directed), and let k ∈ N. A

subgraph H of G is a k-spanner of G if dH(u, v) ≤ k · dG(u, v) for all u, v ∈ V . The

value k is called the stretch of the spanner.

Before stating our results, we first define the problems. In the Basic k-Spanner

problem we are given an undirected graph G and a value k ∈ N. A subgraph H of

G is a feasible solution if it is a k-spanner of G, and the objective is to minimize

136

the number of edges in H. For k = 3, 4, the best-known approximation algorithm

for this problem is Õ(n1/3) [14, 31]. If the input graph G (and the solution H) are

directed, then this is the Directed k-Spanner problem, for which the best-known

approximation is Õ(
√

n) [14]. If the objective is instead to minimize the maximum

degree in H then this is the Lowest-Degree k-Spanner problem, for which the

best-known approximation is Õ(n(1−1/k)2) [22].

The following theorem contains our results on distributed approximations of graph

spanners. Informally, it states that we can give the same approximations in the

LOCAL model as are possible in the centralized model.

Theorem 5.1.2. There are algorithms in the LOCAL model that w.h.p.2provide the

following guarantees. For Directed k-Spanner, the algorithm runs in O(k log n)

rounds and gives an Õ(
√

n)-approximation. For Basic 3-Spanner and Basic 4-

Spanner, the algorithms run in O(log n) rounds and gives an Õ(n1/3)-approximation.

For Lowest-Degree k-Spanner, the algorithm runs in O(k log n) rounds and

gives an Õ(n(1−1/k)2)-approximation. All of these algorithms use only polynomial-time

computations at each node.

We emphasize that our algorithms for these spanner problems both match the

best-known centralized approximations and only use polynomial-time computations

at each node. There is significant previous work (see Section 5.1.2) on designing

distributed approximation algorithms for these and related problems that has only one

of these two properties, but all previous approaches which use only polynomial-time

computations necessarily do worse than the best centralized bound (or have much

worse round complexity). At a high level, this is because previous approaches (most

notably [6]) do not actually use the structure of the centralized algorithm: they

only use the efficient centralized approximation as a black box. By going inside
2By “with high probability" (or w.h.p.), we mean with probability at least 1 − 1/nc for some

c ≥ 1.

137

the black box and noticing that they all use a similar type of convex relaxation, we

can simultaneously get low round complexity, best-known approximation ratios, and

efficient local computation.

It turns out that we can use our techniques for an even broader question: Directed

Steiner Network with Distance Constraints with a spanning demand graph.

In this problem there is a set S ⊆ V × V of demands, and for every demand

(u, v) ∈ S there is a length bound L(u, v). The goal is to find a subgraph H so that

dH(u, v) ≤ L(u, v) for all (u, v) ∈ S, and the objective is to minimize the number of

edges in H. The state of the art centralized bound for this problem is a O(n3/5+ϵ)-

approximation [23], but if we further assume that every vertex u ∈ V is the endpoint

of at least one demand in S (which we will refer to as a spanning demand graph)

then it is straightforward to see that the centralized algorithm of [14] for Directed

k-Spanner can be generalized to give a Õ(
√

n)-approximation. Our distributed

version of this algorithm also generalizes, w.h.p. giving the following result.

Theorem 5.1.3. There is an approximation algorithm in the LOCAL model for Di-

rected Steiner Network with Distance Constraints with a spanning demand

graph with approximation ratio Õ(
√

n) which runs in O((max(u,v)∈S L(u, v)) log n)

rounds and uses only polynomial-time computations.

Note that Directed k-Spanner and Basic k-Spanner are special cases of

this problem, where there is a demand for every edge and the length bound is just

k times the original distance. Interestingly, other network design problems which

have proved important for distributed systems are also special cases, including the

Distance Preserver problem (when L(u, v) = dG(u, v) for all (u, v) ∈ S), the

Pairwise k-Spanner problem (where L(u, v) = k ·dG(u, v) for all (u, v) ∈ S), and the

Shallow-Light Steiner Network problem (where L(u, v) = D for all (u, v) ∈ S,

for some global parameter D). Shallow-Light Steiner Network in particular is

a key component in state of the art systems for reliable Internet transport [5], although

138

in that particular application the demand graph is not spanning. Extending our

techniques to handle totally general demands by giving a distributed version of [23] is

an extremely interesting open question.

5.1.2 Related Work

While distributed solving of convex programs is a natural question, there is little

previous work in the LOCAL model. Possibly most related to our results is a line

of work on solving positive linear programs (packing and covering LPs). This was

introduced by [78], improved by [8], and then essentially optimal upper and lower

bounds were given by [66]. Unfortunately, the convex programs we consider are not

positive linear programs due to the “capacity” constraints in which some variables

appear with positive coefficients while others have negative coefficients.

A special case of our result was proved earlier in [28], who showed how to solve the

LP relaxation of Basic 2-Spanner in the LOCAL model in O(log2 n) rounds (they

actually show more than this, by giving a distributed algorithm for the fault-tolerant

version of Basic 2-Spanner, but that is not germane to our results). Our techniques

are heavily based on [28], which is itself based on the ideas from [66]. In particular, [66]

uses a Linial-Saks decomposition [71] to solve “local” versions of the linear program in

different parts of the graph, and then combines these appropriately. To make this work

for the Basic 2-Spanner LP relaxation, [28] had to use padded decompositions, which

can be thought of as a variant of Linial-Saks with slightly different guarantees which,

for technical reasons, are more useful for network design LPs. In this chapter we extend

these techniques further by giving a more general definition of padded decomposition

which works for larger distance requirements, showing how to construct them in the

LOCAL model, and then showing that the basic “combining” idea from [28] can be

extended to handle these more general decompositions and far more general constraints

and objective functions.

139

The major type of combinatorial optimization problem which our techniques allow

us to approximate are various versions of graph spanners. There are an enormous

number of papers on spanners in both centralized and distributed models, but fewer

papers which attempt to find the “best” spanner for the particular given input graphs

(most papers on spanners give existential results and algorithms to achieve them, rather

than optimization results). These optimization questions (e.g., Basic k-Spanner,

Directed k-Spanner, and Lowest-Degree k-Spanner) have been considered

quite a bit in the context of centralized approximation algorithms and hardness of

approximation [27, 14, 31, 22, 26], but almost all of the known centralized results use

linear programming relaxations, making them difficult to adapt to distributed settings.

Hence there have been only two results on optimization bounds in distributed models:

[28] and [6].

Barenboim et al. [6] provided a distributed algorithm using Linial-Saks decom-

positions that for any integer parameters k, α, gives an O(n1/α)-approximation for

Directed k-Spanner in exp(O(α)) + O(k) time. This is an extremely strong

approximation bound, and in fact is better than even the best centralized bound.

This is possible due to their use of very heavy (exponential time) local computation.

Our algorithms, on the other hand, take polynomial time for local computations.

Barenboim et al. [6] show that heavy local computations can be removed from their

algorithm by using a centralized approximation algorithm for a variant of spanners

known as client-server k-spanners, and in particular that an f(k)-approximation for

client-server k-spanner can be turned into an O(n1/αf(k))-approximation algorithm

running in exp(O(α)) + O(k) rounds in the LOCAL model for minimum k-spanner

with only polynomial local computation. So in order to achieve the same asymptotic

approximation ratio as the best-known centralized algorithm, the parameter α must

be Ω(log n) and hence the running time is polynomial in n, even though k might be

a constant. It is essentially known (though not written anywhere) that a variety of

140

other results with slightly different tradeoffs can be achieved through similar uses of

Linial-Saks [34] or refinements of Linial-Saks such as [37]. However, since all of these

approaches treat the centralized approximation algorithm as a black box, none of

them can achieve the same approximation ratio as the centralized algorithm without

suffering a much worse (usually polynomial) round complexity that the O(k log n)

that we achieve.

Subsequent work. After this work, [18] showed that in the CONGEST model

any algorithm for constructing an α-approximation to the directed spanner problem

requires Ω̃(
√

n√
α

) number of rounds. This implies that there is a strict separation between

LOCAL and CONGEST algorithms for approximating spanners.

5.2 Preliminaries and Notation

The distributed setting we will be considering is the LOCAL model [82], in which time

passes in synchronous rounds and in each round every node can send an arbitrary

message of unbounded size to each of its neighbors in the underlying graph G = (V, E)

(as always, we will let n = |V | and m = |E|). This is in contrast to the CONGEST

model, where nodes can only send a message of size O(log n) to each of their neighbors

in each round. We are not focusing on the CONGEST model in this chapter. We will

assume that all nodes know n (or at least know a constant approximation of n). Usually

in this model the communication graph is the same as the graph of computational

interest; e.g., we will be trying to compute a spanner of the communication graph

itself. But for some applications we will want the graph to be directed, in which case

we make the standard assumption that communication is bidirectional: the graph

for which we are trying to compute a convex relaxation / network design problem is

directed, but messages can be sent in both directions across a link. In other words,

the communication graph is just the undirected version of the given directed graph.

141

For any pair of nodes u, v ∈ V we define d(u, v) to be the distance between u and

v in the communication graph (i.e. the length of a shortest path between u and v

regardless of edge directions). We define B(u, k) to be an undirected ball of radius k

from u in the communication graph. More precisely, B(u, k) = {w ∈ V | d(u, w) ≤ k}.

If x is a vector then we use xi to denote the i’th component of x. Most of the time

our vectors will be indexed by edges in a graph, in which case we will also use the

notation (xe)e∈E.

Given a partition of the vertices V of a graph, we will refer to each part of the

partition as a “cluster”. For any graph G = (V, E) and set S ⊆ V , we let E(S) denote

the set of edges in the subgraph induced by S, i.e., E(S) = {(u, v) ∈ E | u, v ∈ S}. We

will frequently need “restrictions” of vectors to induced subgraphs, so for any vector

x ∈ Rm, we define xS = (xS
e)e∈E to be the vector in Rm where xS

e = 0 if e ̸∈ E(S) and

xS
e = xe if e ∈ E(S).

5.3 Padded decompositions

We will now define and give an algorithm to construct padded decompositions, which

are one of the key technical tools that we will use when designing algorithm to solve

distance-bounded network design convex programs. In this section all graphs are

undirected and all distances are with respect to this undirected graphs (in fact, the

definition and our algorithm work more generally for any metric space). Recall that

B(u, k) denotes the undirected ball of radius k from node u (in the communication

graph), and diam(C) = maxu,v∈C dG(u, v), which is often called the weak diameter.

Intuitively, a (k, ϵ)-padded decomposition partitions a graph into clusters, where nodes

in each cluster are not too far in the original graph, and balls of a radius k are

preserved with probability at least 1− ϵ.

Definition 5.3.1. Given an undirected graph G, a (k, ϵ)-padded decomposition, where

142

0 < ϵ ≤ 1, is a probability measure µ over the set of graph partitions (clusterings)

that has the following properties:

1) For every P ∈ supp(µ),3 and every cluster C ∈ P , we have: diam(C) ≤

O((k/ϵ) log n).

2) For every u ∈ V , it holds that Pr(∃C ∈ P | B(u, k) ⊆ C) ≥ 1 − ϵ, i.e. the

probability that all nodes in B(u, k) are in the same cluster is at least 1− ϵ.

This notion of padded decompositions is standard in metric embeddings and

approximation algorithms [53, 65], but to the best of our knowledge has not yet

been used in distributed algorithms. We first use a centralized algorithm (Algorithm

9) to sample from a (k, ϵ)-padded decomposition, and then describe how it can be

implemented in the LOCAL model. Algorithm 9 and its analysis are similar to a

partitioning algorithm proposed in [7], which was shown to have a low probability of

separating nodes in a close neighborhood.

Algorithm 9: Sampling from a (k, ϵ)-padded decomposition of G = (V, E).
1 Let π : V → [n] be an arbitrary bijection from V to [n], and let r = (2

ϵ
)k.

2 for v ∈ V do
3 Sample zv independently from a distribution with probability density

function p(zv) =
(︂

n
n−1

)︂
e−zv/r

r
.

4 Set the radius rv = min(zv, r ln n + k).
5 for u ∈ V do
6 Node u joins cluster C(v), such that

d(v, u) ≤ rv ∧ (π(v) < π(w) ∀w ̸= v s.t. d(w, u) ≤ rw). // Node u
joins the cluster C(v), with cluster center v, which is
the first node in the permutation where d(v, u) ≤ rv.

For any partition P constructed by Algorithm 9, each cluster is clearly C(v) for

some v ∈ V . We call this special node v the center of cluster C(v). Later, we will use

the center of each cluster for solving locally defined convex programs.
3By supp(µ) we mean the set of partitions that have non-zero probability.

143

Lemma 5.3.1. Algorithm 9 partitions a given undirected graph G = (V, E) into a

partition P such that P is sampled from a (k, ϵ)-padded decomposition.

Proof. The first property in Definition 5.3.1 is directly implied by the definition of

rv for all nodes v ∈ V . For the second property we consider an arbitrary node

u ∈ V , and compute the probability that the ball B(u, k) is not in any of the clusters

in P . Consider an arbitrary value 1 ≤ t ≤ n, let v ∈ V be the node such that

t = π(v), and let z = zv be the real number sampled by v. Also, for any x, y ∈ V , let

d̃(x, y) = min(d(x, y), r ln n + k). Let us also order the clusters based on their center’s

position in the permutation, so that Ct is the cluster corresponding to t = π(v) (i.e. v

is the cluster center of Ct). We define Xt to be the event that if B(u, k) is not in the

first t− 1 clusters, then it is also not in any of the remaining clusters. We provide a

recursive bound on Xt based on Xt+1. Then we will get the second property once we

show Pr(X0) ≤ ϵ. We need to define the following events:

• At : B(u, k) does not intersect with any of the clusters C1, .., Ct−1.

• M cut
t : (d̃(v, u)− k ≤ z < d̃(v, u) + k | At).

• M ex
t : (z < d̃(v, u)− k | At).

• Xt : (∄j ≥ t : B(u, k) ⊆ Cj | At).

In other words, conditional on the event that B(u, k) is not in any of the first t− 1

clusters, either B(u, k) ⊆ Ct, or else one the following two events will occur: M cut
t is

the event that B(u, k) partially intersects Ct, and M ex is the event that B(u, k) does

not intersect Ct.

Now the event Xt occurs only when either M cut
t occurs or both M ex

t and Xt+1

occur (i.e. when B(u, k) is not in Ct or any of the next clusters). Hence we can write

Pr(Xt) ≤ Pr(M cut
t) + Pr(M ex

t) Pr(Xt+1). Recall that z is independently sampled from

144

the density function p(zv) =
(︂

n
n−1

)︂
e−zv/r

r
, and thus M cut can be written as follows:

Pr(M cut
t) =

∫︂ d̃(v,u)+k

d̃(v,u)−k
p(z)dz =

(︃
n

n− 1

)︃ (︂
1− e−2k/r

)︂
e−(d̃(v,u)−k)/r

≤
(︃

n

n− 1

)︃ 2k

r
e−(d̃(v,u)−k)/r.

Similarly, we can write,

Pr(M ex
t) =

∫︂ d̃(v,u)−k

0
p(z)dz =

(︃
n

n− 1

)︃ (︂
1− e−(d̃(v,u)−k)/r

)︂
.

We now inductively prove that Pr(Xt) ≤ (2− t
n−1)(2k

r
). If t < n is the last step, then

Pr(Xt) = 0, and thus this bound clearly holds. Assume that the bound is true for

Xt+1, we show that then it also holds for Xt. We have,

Pr(Xt) ≤ Pr(M cut
t) + Pr(M ex

t) Pr(Xt+1)

≤
(︃

n

n− 1

)︃(︄2k

r

)︄(︃
1 + n− t− 2

n− 1
(︂
1− e−(d̃(v,u)−k)/r

)︂)︃
.

Since e−(d̃(v,u)−k)/r ≥ e−(ln n) ≥ 1/n, we get that Pr(Xt) ≤
(︂
2− t

n−1

)︂ (︂
2k
r

)︂
. The second

property is then implied by the fact that Pr(X0) ≤ 2k
r

= 2k
2k(1/ϵ) = ϵ.

We will now use an idea similar to the one used in [28] to make Algorithm 9

distributed. In [28] they only considered the special case of k = 1 and ϵ = 1/2, which

is why we cannot simply use their result as a black box.

Lemma 5.3.2. There is an algorithm in the LOCAL model that runs in O(k
ϵ

ln n)

rounds and samples from a (k, ϵ)-padded decomposition (so every node knows the

cluster that it is in).

Proof. Without loss of generality, we assume that all nodes have unique IDs4. The

sequence of IDs in ascending order will determine the permutation π used in Algorithm

9, i.e. if IDu < IDv then π(u) < π(v). The algorithm proceeds as follows until all nodes
4We assume this since nodes can each draw an ID from a suitably large space, so the probability of

a collision is small enough that it does not affect the guarantees required by a padded decomposition.

145

have been assigned to a cluster: each node u ∈ V chooses a radius ru based on the

distribution defined in Algorithm 9. Then every u ∈ V simultaneously sends a message

containing IDu to all nodes in B(u, ru). After receiving all the messages, each node

chooses the node with the smallest ID as the cluster center. Then Lemma 5.3.1 implies

that the clusters satisfy the properties of a (k, ϵ)-padded decomposition. Since the

radius that each node chooses is O((k/ϵ) log n), and each node only communicates with

nodes within its radius, the running time in the LOCAL mode is O((k/ϵ) log n).

5.4 Distributed distance bounded network design
convex programming

In this section we prove Theorem 5.1.1, giving an algorithm similar to [28] which

can almost optimally solve distance-bounded network design convex programs. We

first make all definitions formal in Section 5.4.1, and in particular define formally the

class of objective functions where our results hold. Then in Section 5.4.2 we give a

distributed algorithm which solves these programs up to arbitrarily small error.

5.4.1 Distance bounded network design convex programs

We will first describe a general class of objective functions that our algorithm applies

to. For a graph G = (V, E) and a set S ⊆ V , we let E(S) denote the set of edges in

the subgraph of G induced by S. Recall that for a vector x ∈ Rm (where m = |E|),

we define xS = (xS
e)e∈E ∈ Rm to be the vector where xS

e = 0 if e ̸∈ E(S) and xS
e = xe

if e ∈ E(S).

Definition 5.4.1. Given a graph G = (V, E), a function g : Rm ↦→ R is convex

partitionable with respect to G if g is a non-decreasing5 and convex function with

the following property: for all partitions σ = {σ1, ..., σℓ} of nodes in V , there exists a
5Let f(x1, ..., xk) be a multivariate function. We will say f is nondecreasing if the following holds:

if xi ≤ x′
i for all 1 ≤ i ≤ k, then f(x1, ..., xk) ≤ f(x′

1, ..., x′
k).

146

non-decreasing function hσ : Rℓ ↦→ R, s.t. g(x) = hσ(g(xσ1), g(xσ2), ..., g(xσℓ)) for all

x = (xe)e∈E where xe = 0 for any edge e with endpoints in different clusters of σ

(equality does not need to hold for vectors x with nonzero values on edges between

clusters).

Convex partitionable functions for graphs are a natural class of functions for

distributed computing purposes. Moreover, this class includes many types of objective

functions that are of interest in network design problems, including p-norms and linear

functions. For example, if the function g is the p-norm with p ∈ Z≥0, then it is easy to

verify that by setting the function hσ to also be the p-norm for any partition σ of V ,

the conditions of Definition 5.4.1 are satisfied. Note, since we consider non-negative

values, an unweighted sum is just the 1-norm, and the max function is the infinity

norm, and hence they will also satisfy the conditions of Definition 5.4.1. Similarly, in

case of linear functions, it is easy to see that conditions of Definition 5.4.1 are satisfied

by setting hσ to be the unweighted sum.

There are also other, less trivial examples. For example, it is not hard to show

the p-norm of the degree vector (rather than just the edge vector) is also convex

partitionable with respect to G. An important special case of this is the ∞-norm

of the degree vector, i.e., the maximum degree. For an integral vector x ∈ Rm we

can write g(x) = maxv∈V deg(v). By generalizing this notation to all x ∈ Rm, we can

define fractional node degrees as deg(v) = ∑︁
u:(v,u)∈E x(v,u)

6.

Lemma 5.4.1. Given a graph G = (V, E), the function g(x) = maxv∈V (∑︁u:(v,u)∈E x(v,u))

is convex partitionable w.r.t. G.

Proof. Let σ = {σ1, ..., σℓ} be a partition of nodes in V . For all 1 ≤ i ≤ ℓ, we have

g(xσi) = maxv∈σi
(∑︁u:(v,u)∈E xσi

(v,u)). Then we can set hσ(y) = maxi∈[ℓ](yi), y ∈ Rℓ,

6Here we are considering out-degree of nodes in a directed graph. It is easy to see that Lemma
5.4.1 also holds in cases of in-degree only or sum of out-degree and in-degree. The latter is what are
interested in for Section 5.5.

147

where yi is the i-th coordinate of y. Let σ(v) ∈ σ be the cluster that node v belongs

to. For all x = (x(u,v))(u,v)∈E, where x(u,v) = 0 for any (u, v) ∈ E s.t. σ(u) ̸= σ(v) , we

have,

g(x) = max
v∈V

⎛⎝ ∑︂
u:(v,u)∈E

x(v,u)

⎞⎠ = max
σi∈σ

⎛⎝max
v∈σi

⎛⎝(
∑︂

u:(v,u)∈E

xσi

(v,u)

⎞⎠⎞⎠
= max

σi∈σ
(g (xσi)) = hσ(g(xσ1), g(xσ2), ..., g(xσℓ)).

It is also easy to see that the function hσ is convex and non-decreasing. Hence hσ

satisfies the conditions in Definition 5.4.1.

Now that this class of functions has been defined, we can formally define the class

of distance-bounded network design convex programs.

Definition 5.4.2. Let S ⊆ V × V be a set of pairs in the graph G = (V, E), and for

any pair (u, v) ∈ S let Pu,v be a set of paths from u to v, which we sometimes call

the set of “allowed” paths. Let g be a non-decreasing convex-partitionable function of

x = (xe)e∈E with g(0⃗) = 0. Then we call a convex program of the following form a

distance bounded network design CP:

min g(x)

s.t
∑︂

P ∈Pu,v :e∈P

fP ≤ xe ∀(u, v) ∈ S,∀e ∈ E

∑︂
P ∈Pu,v

fP ≥ 1 ∀(u, v) ∈ S

xe ≥ 0 ∀e ∈ E

fP ≥ 0 ∀(u, v) ∈ S,∀P ∈ Pu,v

As we will see in Section 5.5, many network design problems use linear (or

convex) programming relaxations that satisfy the conditions of Definition 5.4.2. A

key parameter of such a program is the length of the longest allowed path D =

max(u,v)∈S maxp∈Pu,v ℓ(p) (where ℓ(p) is the length of path p).

148

5.4.2 Distributed Algorithm

In order to solve these convex programs in a distributed manner, we will first use

padded decompositions to form a local problem using a simple distributed algorithm.

Let P be a partition sampled from a (k, ϵ)-padded decomposition (in particular,

obtained by Lemma 5.3.2), where 0 < ϵ ≤ 1. Recall that for each cluster C ∈ P ,

E(C) = {(u, v) ∈ E | u, v ∈ C}. We define G(C) to be the subgraph induced by C.

Lemma 5.4.2. For each cluster C sampled from a (k, ϵ)-padded decomposition, there

is a distributed algorithm running in O(k
ϵ

log n) rounds so that every cluster center

knows G(C).

Proof. The first property of (k, ϵ)-padded decompositions implies that for all nodes

u ∈ C, we have d(u, v) = O((k/ϵ) log n), where v is the center of cluster C. Each

node u ∈ C that determines v as the center of the cluster it belongs to, will send

the information of its incident edges to v. Since there is no bound on the size of the

messages being forwarded, this can be done in O((k/ϵ) log n) time.

Let CP(G) be a distance bounded network design CP defined on graph G = (V, E).

We will define local convex programs based on a partition P of G that is sampled from

a (D, λ)-padded decomposition. The value of 0 < λ ≤ 1 will be set later based on the

parameters of our distributed algorithm. For each C ∈ P , let CP(C) be CP(G) defined

on G(C), but where only demands corresponding to any pair (u, v) ∈ S in which

B(u, D) is fully contained in C are included. We denote the set of these demands by

N(C), more precisely, N(C) = {(u, v) ∈ S | B(u, D) ⊆ C}. The objective will then

149

be to minimize g(x) = g
(︂
(xe)e∈E(C)

)︂
. In other words CP (C) is defined as follows:

min g(x)

s.t
∑︂

P ∈Pu,v :e∈P

fP ≤ xe ∀(u, v) ∈ N(C), ∀e ∈ E(C)
∑︂

P ∈Pu,v

fP ≥ 1 ∀(u, v) ∈ N(C)

xe ≥ 0 ∀e ∈ E(C)

fP ≥ 0 ∀(u, v) ∈ N(C),∀P ∈ Pu,v

There is a technical subtlety about computing the function g on each cluster,

which is the fact that a solution ⟨xC , fC⟩ of CP(C) is only defined on G(C). While in

practice xC is a vector defined only on edges in E(C), in our analysis, we will assume

that xC is a vector in R|E| and xC
e = 0 for all e ̸∈ E(C). This assumption does not

impact the correctness of algorithm. The following lemma is similar to Lemma 3.8

in [28], and we show that it holds for our modified definition of local convex programs

and for generalized objective functions that satisfy Definition 5.4.1.

Lemma 5.4.3. Let ⟨x∗, f ∗⟩ be an optimal solution of CP (G) and let x∗C = (x∗
e)e∈E(C).

For each cluster C ∈ P , let ⟨x̃C , f̃
C⟩ be an optimal solution of CP(C). Then g(x̃C) ≤

g(x∗C).

Proof. We argue that the vector ⟨x∗C , f ∗C⟩, where x∗
e

C = x∗
e for all e ∈ E(C) and

f ∗
p

C = f ∗
p for all p ∈ Pu,v, is a feasible solution to CP(C). By definition of N(C) we

have that for any (u, v) ∈ N(C) all paths in Pu,v also appear in G(C), and therefore

⟨x∗C , f ∗C⟩ satisfies both capacity and flow constraints of CP(C) for pairs (u, v) ∈ E(C)

since they were satisfied in CP(G). Since we assumed that ⟨x̃C , f̃
C⟩ is an optimal

solution of CP(C), we get g(x̃C) ≤ g(x∗C).

We now provide in Algorithm 10 a distributed algorithm for solving CP(G). The

high level idea is the following: we partition the graph t times, have cluster centers

150

solve CP(C) of their cluster using a sequential algorithm in each iteration, and then

take an average over the solutions for each edge. Intuitively, for each edge, by averaging

over local solutions for iterations in which the ball around that edge is in the same

cluster, with high probability we get a feasible global solution. In the proof of Theorem

5.4.4, we will show that this solution gives a (1 + ϵ)-approximation solution to the LP,

for an arbitrary 0 < ϵ ≤ 1.

We assume that all nodes know the values of D and ϵ. Let Cu,i denote the cluster

that node u belongs to in the i-th iteration, and let ⟨xCu,i,i, fCu,i,i⟩ be the fractional

CP solution of Cu,i, where ⟨xCu,i,i
e , f

Cu,i,i
p ⟩ is the fractional CP value for e = (u, v), and

p ∈ Pu,v. Since the objective is a function of edge vectors, what we mean by having a

distributed solution to a distance bounded network design CP is that each node u

will know the value xe for all the edges e incident to u. It is not hard to see that the

algorithm could be modified so that every node u can also know the flow value fp for

each path p.

Algorithm 10: Distributed algorithm for approximating distance bounded
network design CPs.
1 Set λ = ϵ(1−ϵ)

(2−ϵ)(1+ϵ) and t =
⌈︂16(1− ϵ

2)(1+ϵ) ln n

ϵ2

⌉︂
.

2 Sample from (D, λ)-padded decompositions t times by Lemma 5.3.2, and let Pi

be the partition obtained in the i’th run.
3 For each cluster C ∈ Pi, the center of cluster C computes G(C) (see Lemma

5.4.2).
4 The center of each cluster C ∈ Pi solves CP (C) and sends the solution
⟨xC,i, fC,i⟩ to all nodes u ∈ C.

5 for e = (u, v) ∈ E do
6 Let Iu,v = {i | ∃C ∈ Pi : u, v ∈ C}.

// these are the iterations in which both endpoints are in
same cluster

7 x̃e ← min(1, 1+ϵ
t

∑︁
i∈Iu,v

x
Cu,i,i
e).

Theorem 5.4.4. Algorithm 10 takes O((D/ϵ) log n) rounds to terminate, and it will

compute a solution of cost at most (1 + ϵ)CP ∗ to a bounded distance network design

151

CP (Definition 5.4.2) with high probability, where CP ∗ is the optimal solution and

0 < ϵ ≤ 1. Moreover, if the convex program can be solved sequentially in polynomial

time, then all of the node computations are also polynomial time.

Proof. Correctness: We first show that with high probability the values x̃e, e ∈ E

form a feasible solution. Here we only need to show that a feasible solution for the

flow values exist, and do not require nodes to compute these values. Let Iu = {i :

∃C ∈ Pi, B(u, D) ⊆ C}, i.e. Iu is the set of iterations in which B(u, D) is contained

in a cluster, and let Iu,v be the set of iterations in which both u and v are in the same

cluster. Since we need to implement Algorithm 10 in a distributed manner, we use

Iu,v in our implementation, while the analysis is based on Iu. We can do so since by

definition we have Iu ⊆ Iu,v, for any (u, v) ∈ E.

For any p ∈ Pu,v, we set the flow values to be f̃p = 1
|Iu|

∑︁
i∈Iu

f
Cu,i,i
p ,i.e. f̃p is the

average over local flows in iterations in which B(u, k) is fully contained in a cluster.

We will show that this gives a feasible flow. First we argue that enough flow is being

sent. For all (u, v) ∈ S, we have,

∑︂
p∈Pu,v

f̃p =
∑︂

p∈Pu,v

1
|Iu|

∑︂
i∈Iu

fCu,i,i
p = 1

|Iu|
∑︂
i∈Iu

∑︂
p∈Pu,v

fCu,i,i
p ≥ 1

|Iu|
∑︂
i∈Iu

1 ≥ 1.

We have used the fact that for each i ∈ Iu the solution corresponding to the CP of

the cluster containing u satisfies the constraint that ∑︁p∈Pu,v :e∈p f
Cu,i,i
p ≥ 1, because for

each such i we know that (u, v) ∈ N(C).

Next, we will argue that the capacity constraints are also satisfied. The second

property of (D, λ)-padded decompositions implies that for each iteration 1 ≤ i ≤ t, we

have Pr(i ∈ Iu) ≥ 1− λ = 1− ϵ(1−ϵ)
(2−ϵ)(1+ϵ) = 1

(1− ϵ
2)(1+ϵ) . By linearity of expectations we

have E[|Iu|] ≥ t(1− λ). Since each sampling is performed independently, by Chernoff

152

bound for δ = ϵ/2, we get,

Pr(|Iu| ≤ t(1− λ)(1− δ)) = Pr
(︄
|Iu| ≤

t(1− ϵ
2)

(1− ϵ
2)(1 + ϵ)

)︄

= Pr
(︄
|Iu| ≤

t

(1 + ϵ)

)︄
≤ e− (ϵ/2)2(1−λ)t

2 ≤ e−2 ln n = 1
n2 .

Hence by a union bound on all nodes we have that with high probability |Iu| > t/(1 + ϵ).

Therefore, for all (u, v) ∈ S, e ∈ E, we have (w.h.p.),

∑︂
p∈Pu,v :e∈p

f̃p =
∑︂

p∈Pu,v :e∈p

1
|Iu|

∑︂
i∈Iu

fCu,i,i
p = 1

|Iu|
∑︂
i∈Iu

∑︂
p∈Pu,v :e∈p

fCu,i,i
p ≤ 1

|Iu|
∑︂
i∈Iu

xCu,i,i
e

≤ min
⎛⎝1,

1
|Iu|

∑︂
i∈Iu,v

xCu,i,i
e

⎞⎠ ≤ min
⎛⎝1,

1 + ϵ

t

∑︂
i∈Iu,v

xCu,i,i
e

⎞⎠ = x̃e.

Upper bound: We will now show that the upper bound holds. Let ⟨x∗, f ∗⟩ be

an optimal solution to CP(G). We have x̃e = min(1, 1+ϵ
t

∑︁
i∈Ie

x
Cu,i,i
e), and for each

e = (u, v) and 1 ≤ i ≤ t, we set x̃i
e = x

Cu,i,i
e if i ∈ Ie, and x̃i

e = 0 otherwise. Note

that 0 < (1 + ϵ)/t < 1, and since g is a convex function and g(0⃗) = 0, by Jensen’s

inequality we have g
(︂

1+ϵ
t

x
)︂
≤ 1+ϵ

t
g(x). Then for x̃ = (x̃e)e∈E we can write:

g(x̃) = g
(︂
(x̃e)e∈E

)︂
≤ g

⎛⎝1 + ϵ

t

⎛⎝∑︂
i∈Ie

xCu,i,i
e

⎞⎠
e∈E

⎞⎠ ≤ 1 + ϵ

t
g

⎛⎝⎛⎝∑︂
i∈Ie

xCu,i,i
e

⎞⎠
e∈E

⎞⎠
≤ 1 + ϵ

t
g

⎛⎝(︄ t∑︂
i=1

x̃i
e

)︄
e∈E

⎞⎠ ≤ 1 + ϵ

t
g

(︄
t∑︂

i=1

(︂
x̃i

e

)︂
e∈E

)︄
≤ 1 + ϵ

t

t∑︂
i=1

g
(︃(︂

x̃i
e

)︂
e∈E

)︃
.

In the final inequality, since g is convex, we used Jensen’s inequality to take the sum out

of the function. It is now enough to show that in each iteration i, it holds g((x̃i
e)e∈E) ≤

g(x∗). Let x̃i = ((x̃i
e)e∈E), and let Pi = {C1, C2, ..., Cℓ} be the partition of V . Since g

is a convex partitionable function w.r.t. G, there exists a nondecreasing and convex

function h : Rm ↦→ R for which we can write g(x̃i) = hPi
(g(x̃i,C1), g(x̃i,C2), ..., g(x̃i,Cℓ)),

since x̃i
e = 0 by definition for edges which go between clusters (for simplicity we are

denoting x̃iCj by x̃i,Cj).

Recall that x∗C is the vector in which x∗C
e = x∗

e for all e ∈ E(C) and x∗C
e = 0

otherwise. By Lemma 5.4.3 we get that for all C ∈ Pi, g(x̃i,C) ≤ g(x∗C). Now we

153

consider a vector x̂, defined by setting x̂e = x∗
e for all edge e with both endpoints in

the same cluster, and x̂e = 0 otherwise. Since we assumed hPi
to be nondecreasing,

we get,

g(x̃i) = hPi
(g(x̃i,C1), g(x̃i,C2), ..., g(x̃i,Cℓ)) ≤ hPi

(g(x∗C1), g(x∗C2), ..., g(x∗Cℓ))

= hPi
(g(x̂C1 , x̂C2 , ..., g(x̂Cℓ)) = g(x̂) ≤ g(x∗).

For the last inequality we have used the fact that g is non-decreasing, and that for

all e ∈ E, x̂e ≤ x∗
e (since either x̂e = x∗

e or x̂e = 0). By plugging this into the above

inequalities, we will get g(x̃) ≤ 1+ϵ
t

∑︁t
i=1 g(x̃i) ≤ (1 + ϵ)g(x∗), which implies the claim

that Algorithm 10 gives a (1 + ϵ)-approximation to the optimal solution.

Time Complexity: The decomposition step and sending the information within a

cluster takes O((D/ϵ) log n) rounds since the diameter of each cluster is O((D/λ) log n) =

O((D/ϵ) log n). Since each decomposition is independent, we can do all of them in

parallel, so steps 1-4 of the algorithm only take O((D/ϵ) log n) rounds in total. Clearly

the rest of the algorithm can be done in a constant number of rounds. Hence in total

w.h.p. the algorithm will take O((D/ϵ) log n) rounds.

5.5 Distributed Approximation Algorithms for Net-
work Design

In this section, we will focus on several network design problems which can be

approximated by first solving a convex relaxation using Algorithm 10 and then locally

rounding the solution. For that purpose, we will describe how each problem has a

distance bounded network design CP relaxation (Definition 5.4.2), and will then show

that existing rounding schemes are local.

154

5.5.1 Directed k-Spanner

Dinitz and Krauthgamer [27] introduced a linear programming relaxation for Di-

rected k-Spanner which is just a distance-bounded network design CP with

demands pairs S = E, allowed paths Pu,v which are the directed paths from u to v of

length at most k, and objective function g(x) = ∑︁
e∈E xe. They showed that this LP

can be solved in polynomial time (approximately if k is non-constant). We will denote

this LP by LP (G). Clearly, LP(G) is a distance bounded network design CP with

D = k. Hence, Theorem 5.4.4 implies that we can use Algorithm 10 to approximately

solve this LP in O(k log n) rounds in the LOCAL model.

We now provide in Algorithm 11 a distributed rounding scheme that gives an

O(n1/2 log n)-approximation for Directed k-Spanner. This algorithm matches the

best centralized approximation ratio known [14], and is just the obvious distributed

version of the algorithm proposed in [14]. The difference is that here we truncate

the shortest-path trees at depth k (as opposed to full shortest-path trees), and nodes

choose whether to become a tree root independently (rather than chosen without

replacement as in [14].

Algorithm 11: Distributed rounding algorithm for k-spanner.
Input : Graph G = (V, E), fractional solution ⟨x, f⟩ to LP(G).

1 E ′ = ∅, ∀v ∈ V : T in
v = ∅, T out

v = ∅.
2 for e ∈ E do
3 Add e to E ′ with probability min(n1/2 · ln n · xe, 1).
4 for v ∈ V do

// Random tree sampling
5 Choose p uniformly at random from [0, 1].
6 if p < 3 ln n√

n
then

7 T in
v ← shortest path in-arborescence rooted at v truncated at depth k.

8 T out
v ← shortest path out-arborescence rooted at v truncated at depth
k.

9 Output E ′ ∪ (∪v∈V (T in
v ∪ T out

v)).// A node knows its portion of the
output.

155

The following lemma is essentially from [14], with the proof requiring only slight

technical changes due to the slightly different algorithms.

Lemma 5.5.1. Given a directed graph G, LP(G) as defined, and a fractional solution

LP ∗ to LP (G), the output of Algorithm 11 has size O(n1/2 · (n + LP ∗) log n).

Proof. Let Ns,t be the subgraph of G induced by the nodes on paths in Ps,t. Edge

e ∈ E is called a thick edge if |Ns,t| ≥ n1/2, and otherwise it is called a thin edge. The

set E ′ in Algorithm 11 satisfies the spanner property for all thin edges (as argued

in [14]), and the random tree sampling phase satisfies the spanner property for the

thick edges. Each thick edge (s, t) is spanned if at least one node in Ns,t performs the

random tree sampling. This probability is at least 1− (1− 3 ln n
n1/2)n1/2 ≥ 1− 1/n3. Then

a union bound on all the edges (of size at most O(n2)) implies that w.h.p. all thick

edges are spanned. We now argue that the output is an O(n1/2 log n)-approximation

algorithm: at most O(n1/2 log n) arborescences are chosen with high probability (each

arborscence has O(n) edges), and we argued that |E ′| = O(n1/2 log n · LP ∗). Hence,

the overall size of the output is O(n1/2 log n · (n + LP ∗)).

It is easy to see that this algorithm can be implemented in the LOCAL model.

Lemma 5.5.2. Algorithm 11 runs in O(k) time in the LOCAL model.

Proof. Each node v in G has received the fractional solutions xe corresponding to all

edges e ∈ E incident to v. The randomized rounding step can be performed locally:

the node with the smaller ID flips a coin, and exchanges the coin flip result with its

corresponding neighbors. In order to form T in
i and T out

i , v performs a distributed BFS

algorithms by forming a shortest path tree while keeping track of the distance from v.

When the distance counter reaches k, the tree construction terminates.

We now immediately get our main result for Directed k-Spanner.

156

Corollary 5.5.3. Algorithm 10 with D = k along with the rounding scheme in

Algorithm 11 yields an O(n1/2 ln n)-approximation w.h.p. to Directed k-Spanner

that runs in O(k log n) time in the LOCAL model and uses only polynomial-time

computations at each node.

Proof. We first run Algorithm 10 to solve LP(G) up to a constant factor (by setting

ϵ = 1/2), which takes time O(k log n) with high probability (Theorem 5.4.4). Since

each cluster center can solve the local LP in polynomial time, all computations are

polynomial time. We then use Algorithm 11 to round the fractional solutions of LP(G),

which takes O(k) time. Since the size of a k-spanner is at least Ω(n), Algorithm 11

then outputs an O(n1/2 ln n)-approximation to the minimum (Lemma 5.5.1).

5.5.2 Basic 3-Spanner and Basic 4-Spanner

If the input graph is undirected then stronger approximations are possible. In

particular, for stretch 3 and 4, there are Õ(n1/3)-approximations due to [14] (for

stretch 3) and [31] (for stretch 4). Without going into details, both of these algorithms

use the same LP relaxation as in Directed k-Spanner, but round the LP differently.

So in order to give distributed versions of these algorithms, we only need to modify

Algorithm 11 to use the appropriate rounding algorithm (and change some of the

other parameters in the shortest-path arborescence sampling). Fortunately, both of

these algorithms use rounding schemes which are highly local. Informally, rather

than sample each edge independently with probability proportional to the (inflated)

fractional value as in Algorithm 11, these algorithms sample a value independently

at each vertex and then include an edge if a particular function of the values of the

two endpoints (different in each of the algorithms) passes some threshold. Clearly

this is a very local rounding algorithm: once we have solved the LP relaxation using

Theorem 5.4.4, each node can draw its random value and then spend one more round

to exchange a message with each of its neighbors to find out their values, and thus

157

determine which of the edges have been included by the rounding. Thus the total

running time is dominated by the time needed to solve the LP, which in these cases is

O(log n) using Theorem 5.4.4.

5.5.3 Lowest-Degree k-Spanner

We now turn our attention to Lowest-Degree k-Spanner: Given a graph G =

(V, E) and a value k, we want to find a k-spanner that minimizes the maximum degree.

We will use the relaxation and rounding scheme proposed by Chlamtáč and Dinitz [22].

The linear programming relaxation used in [22] is very similar to the Directed and

Basic k-spanner LP relaxation described earlier, with the difference being that a

new variable λ is added to represent the maximum degree, and so the objective is

to minimize λ and constraints are added to force λ to upper bound the maximum

fractional degree.

Theorem 5.5.4. Given a graph G = (V, E) (directed or undirected), and any in-

teger k ≥ 1 there is a distributed algorithm that w.h.p. computes an Õ(∆(1−1/k)2)-

approximation to the Lowest-Degree k-Spanner problem, taking O(k log n) rounds

of the LOCAL model and using only polynomial-time computations at each node.

Proof. It is easy to see that the LP relaxation proposed in [22] can be written

as a distance bounded network design CP where the objective is max
v∈V

(deg(v)) =

max
v∈V

(︂∑︁
u:{v,u}∈E x{v,u}

)︂
(we do not need to use their extra variable λ, since we can

instead directly write the objective). Lemma 5.4.1 implies that this function is convex

partitionable w.r.t. G, and hence the Lowest-Degree k-Spanner problem can

be approximately solved (to within a constant factor) by using Algorithm 10 with

ϵ = 1/2. Next, we use the following rounding scheme proposed in [22]: each edge

e ∈ E is included in the spanner with probability x1/k
e . It is clear that this can be

done in a constant number of rounds, and hence the overall algorithm takes O(k log n)

158

rounds (by Theorem 5.4.4) in the LOCAL model. In [22], it was shown that this

leads to a Õ(∆(1−1/k)2)-approximation solution of the problem.

5.5.4 Directed Steiner Network with Distance Constraints

It is well-known that the centralized rounding of [14] for Directed k-Spanner is more

general than is actually stated in their paper. In particular, the randomized rounding

for “thin” edges gives the same guarantee even when each demand has a possibly

different distance constraint. This fact was used, e.g., in [23] in their algorithms for

Distance Preserver, Pairwise k-Spanner, and Directed Steiner Network

with Distance Constraints. The difficulty in extending the algorithm of [14]

is not in the LP rounding, but rather because the arborescence sampling technique

used to handle thick edges in [14] (and in our Algorithm 11) assumes that n is a lower

bound on the optimal cost. This assumption is true for Directed k-Spanner, but

false for variants where there might be a tiny number of demands. However, it is

easy to see that if we assume the demand graph is spanning (i.e., assume that every

node is an endpoint of at least one demand) then the optimal solution must have at

least n/2 edges, and hence we can again just use [14] to get a Õ(
√

n)-approximation

for Directed Steiner Network with Distance Constraints as long as the

demand graph is spanning.

While this is in the centralized setting, since our algorithm for Directed k-

Spanner is just a lightly modified distributed version of [14] (the only difficulty in

the distributed setting is solving the LP, which is why that is our main technical

contribution), we can easily modify it to give the same approximation for Directed

Steiner Network with Distance Constraints with spanning demand graphs.

The only change is that we use D = max(u,v)∈S L(u, v) instead of k when solving

the linear programming relaxation (using Theorem 5.4.4) and when truncating the

shortest-path arborescences that we sample (note that we have to assume that D

159

is global knowledge, which is reasonable for spanner problems and for Shallow-

Light Steiner Network but may be less reasonable for other special cases of

Directed Steiner Network with Distance Constraints). This implies

Theorem 5.1.3, and all of the interesting special cases (Shallow-Light Steiner

Network, Distance Preserver, Pairwise k-Spanner, etc.) which it includes.

5.6 Conclusion and Future Work

In this chapter, we heavily relied on the power of LOCAL model to send messages

of unbounded size to solve certain network design LPs. One clear open problem is

whether we can extend our results to others models, such as CONGEST, Congested

Clique, MPC, or the PRAM model.

One component of our algorithm is a distributed padded decomposition algorithm.

While for the LOCAL model we chose a simple algorithm, we could instead use a

network decomposition algorithm based on [75], as was used in our neighborhood cover

construction in Chapter 3. Such an algorithm can be implemented in all the models

described efficiently. However, the second component of our algorithm, collecting the

neighborhoods to form the LOCAL LPs, is more difficult to extend to other models,

specially in CONGEST. However, in stronger models such as Congested Clique certain

neighborhood collection techniques may be useful, however it is often only possible to

explore sparse or limited size neighborhoods. Thus new techniques will be needed to

overcome this challenge.

160

Chapter 6

Conclusion and Future Direction

In this chapter, we review the problems discussed, and describe several open problems.

In summary, in this thesis we studied construction of (β, ϵ)-hopsets mainly in three

models: the MPC model, the Congested Clique model, and the decremental (partially

dynamic) model. We also used our hopset algorithms to construct distance oracles more

efficiently in these models, and in some cases obtained improved algorithms for shortest

path computation. We also use several techniques and showed their significance by

utilizing them for various problems in different models. These techniques include low

diameter decompositions, subsampling and clustering ideas (variations of Thorup-

Zwick [88] type of clustering), and use of scaling techniques for obtaining improved

running time in various models.

Larger Stretch Constructions. While hopsets were originally introduced for

computing (1+ ϵ)-approximate shortest paths ([25]), they have since found many other

applications, and have been generalized to construction with larger stretch but smaller

hopbound/size [13, 36]. One natural open direction is to explore such hopsets with

larger stretch, and hope to obtain a better tradeoff between construction time and

hopbound. This problem is for the most part open in all of the models we discussed,

and may have implications in obtaining much faster shortest path algorithms in these

models, at the cost of a weaker accuracy.

161

One related direction is our recent work [17] in which we obtain an Õ(log log k)

round algorithm for constructing O(k)-spanners in low and linear memory MPC. This

leads to a (log n1+o(1))-approximate all-pairs-shortest-path algorithm in Õ(log log n)

rounds of linear memory MPC. While this is exponentially faster than algorithms

discussed in this thesis and other related algorithms translated from PRAM literature

(e.g. [3, 70]), the approximation ratio is larger than desired. Hence a natural direction

is to combine the hopset ideas used in this thesis, with contraction-based ideas used

in [17] to obtain faster O(k)-approximation algorithms for shortest path computation

in MPC, Congested Clique, or streaming.

Fully Dynamic Hopsets. In the context of dynamic algorithms, an intriguing

direction is constructing and utilizing hopsets in the fully-dynamic model. There are

many open problems in the fully dynamic settings and current bounds for shortest

path computation is far from optimal. Moreover, to our knowledge hopsets are not

yet explored in this model. Instead, recent results in fully-dynamic model heavily rely

on algebraic techniques such as matrix multiplication. It would be interesting to see if

such techniques can be combined with combinatorial ideas for constructing hopsets

and emulators to obtain better bounds, as was used in a few results in parallel and

distributed models ([47, 19, 42]).

Linear Programming in Other Models. As discussed in Chapter 5, the problem

solving (non-positive) linear programs efficiently is open in almost all distributed

models. We used networked decomposition to solve a very specific class of linear

programs. An interesting open direction is to see if these techniques can be combined

with other LP solving approaches such as the multiplicative weight updates method to

extend our results to other models or solve a wider class of LPs.

162

Unifying the Models. Finally, we conclude this thesis by posing an open problem

regarding unification of various models for graph problems. We noted that many

techniques used for distance-based graph problems led to better results in various

models. This has also been observed for various other local and global graph problems.

A natural question is if there is a way to characterize such problems and present

primitives that allow reductions between these different models. Any such character-

izations would be helpful in further abstracting the models, and bringing different

theory communities together.

163

Bibliography

[1] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for

sublinear additive spanners. SIAM Journal on Computing, 2018.

[2] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin

Zhong. Parallel graph connectivity in log diameter rounds. arXiv preprint

arXiv:1805.03055, 2018.

[3] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undi-

rected shortest paths via low hop emulators. In Proceedings of the 52nd Annual

ACM SIGACT Symposium on Theory of Computing, pages 322–335, 2020.

[4] Baruch Awerbuch and David Peleg. Sparse partitions. In Proceedings of the

Symposium on Foundations of Computer Science. IEEE, 1990.

[5] Amy Babay, Emily Wagner, Michael Dinitz, and Yair Amir. Timely, reliable, and

cost-effective internet transport service using dissemination graphs. In 37th IEEE

International Conference on Distributed Computing Systems, (ICDCS), pages

1–12, 2017.

[6] Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-

decomposition algorithm and its applications to constant-time distributed com-

putation. Theoretical Computer Science, 2016.

[7] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic

applications. In FOCS’96, pages 184–193, 1996.

164

[8] Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local

information with applications to flow control. In FOCS, pages 303–312, 1997.

[9] Surender Baswana and Sandeep Sen. A simple and linear time randomized

algorithm for computing sparse spanners in weighted graphs. Random Structures

& Algorithms, 30(4):532–563, 2007.

[10] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel

query processing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of database systems, pages 273–284. ACM, 2013.

[11] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.

Near-optimal approximate shortest paths and transshipment in distributed and

streaming models. In LIPIcs-Leibniz International Proceedings in Informatics,

volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[12] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief

announcement: Semi-mapreduce meets congested clique. arXiv preprint

arXiv:1802.10297, 2018.

[13] Uri Ben-Levy and Merav Parter. New (α, β) spanners and hopsets. In Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1695–1714. SIAM, 2020.

[14] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhod-

nikova, and Grigory Yaroslavtsev. Improved approximation for the directed

spanner problem. In ICALP Part I, pages 1–12, 2011.

[15] Aaron Bernstein. Fully dynamic (2+ ε) approximate all-pairs shortest paths with

fast query and close to linear update time. In 2009 50th Annual IEEE Symposium

on Foundations of Computer Science, pages 693–702. IEEE, 2009.

165

[16] Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining

approximate shortest paths under deletions. In Proceedings of the twenty-second

annual ACM-SIAM symposium on Discrete Algorithms, pages 1355–1365. SIAM,

2011.

[17] Amartya Shankha Biswas, Michal Dory, Mohsen Ghaffari, Slobodan Mitrović,

and Yasamin Nazari. Massively parallel algorithms for distance approximation

and spanners. 2021.

[18] Keren Censor-Hillel and Michal Dory. Distributed spanner approximation. In

Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,

pages 139–148, 2018.

[19] Keren Censor-Hillel, Michal Dory, Janne H Korhonen, and Dean Leitersdorf. Fast

approximate shortest paths in the congested clique. In Proceedings of Symposium

on Principles of Distributed Computing. ACM, 2019.

[20] Shiri Chechik. Approximate distance oracles with constant query time. In

Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing

(STOC), pages 654–663. ACM, 2014.

[21] Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths.

In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science

(FOCS), pages 170–181. IEEE, 2018.

[22] Eden Chlamtác and Michael Dinitz. Lowest-degree k-spanner: Approximation

and hardness. Theory of Computing, 12(1):1–29, 2016.

[23] Eden Chlamtác, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Ap-

proximating spanners and directed steiner forest: Upper and lower bounds. In

SODA, 2017.

166

[24] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch

t. SIAM Journal on Computing, 1998.

[25] Edith Cohen. Polylog-time and near-linear work approximation scheme for

undirected shortest paths. Journal of the ACM (JACM), 2000.

[26] Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large

girth and the hardness of approximating basic k-spanner. ACM Trans. Algorithms,

12(2):1–16, 2016.

[27] Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear

programs. In STOC’11, pages 323–332, 2011.

[28] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and

simpler. In PODC’11, pages 169–178, 2011.

[29] Michael Dinitz and Yasamin Nazari. Distributed distance-bounded network

design through distributed convex programming. In Conference on Principles of

Distributed Systems (OPODIS), 2017.

[30] Michael Dinitz and Yasamin Nazari. Massively parallel approximate distance

sketches. OPODIS, 2019.

[31] Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Pro-

ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA, 2016.

[32] Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise

distance. In STOC ’99, pages 750–759, 1999.

[33] Michal Dory and Merav Parter. Exponentially faster shortest paths in the con-

gested clique. In Proceedings of the 39th Symposium on Principles of Distributed

Computing, pages 59–68, 2020.

167

[34] Michael Elkin. Personal Communication, 2017.

[35] Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and pram

distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422, 2019.

[36] Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths and pram

distance oracles in weighted graphs. arXiv preprint arXiv:1907.11422, 2019.

[37] Michael Elkin and Ofer Neiman. Distributed strong diameter network decompo-

sition: Extended abstract. In PODC ’16, pages 211–216, 2016.

[38] Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and appli-

cations to approximate shortest paths. In Foundations of Computer Science

(FOCS), 2016 IEEE 57th Annual Symposium on, pages 128–137. IEEE, 2016.

[39] Michael Elkin and Ofer Neiman. On efficient distributed construction of near op-

timal routing schemes. In Proceedings of the 2016 ACM Symposium on Principles

of Distributed Computing, pages 235–244. ACM, 2016.

[40] Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applica-

tions to approximate shortest paths. SIAM Journal on Computing, 2019.

[41] Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and

constant-hopbound hopsets in rnc. In The 31st ACM Symposium on Parallelism

in Algorithms and Architectures, pages 333–341, 2019.

[42] Michael Elkin and Ofer Neiman. Centralized and parallel multi-source shortest

paths via hopsets and fast matrix multiplication. arXiv preprint arXiv:2004.07572,

2020.

[43] Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact hopsets,

a unified view. arXiv preprint arXiv:2001.07477, 2020.

168

[44] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. On graph problems in a semi-streaming model. In International

Colloquium on Automata, Languages, and Programming, pages 531–543. Springer,

2004.

[45] Patrik Floréen, Marja Hassinen, Joel Kaasinen, Petteri Kaski, Topi Musto, and

Jukka Suomela. Local approximability of max-min and min-max linear programs.

Theory of Computing Systems, 2011.

[46] Greg N Frederickson. Data structures for on-line updating of minimum spanning

trees, with applications. SIAM Journal on Computing, 14(4):781–798, 1985.

[47] Stephan Friedrichs and Christoph Lenzen. Parallel metric tree embedding based

on an algebraic view on moore-bellman-ford. Journal of the ACM (JACM),

65(6):43, 2018.

[48] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for

minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77,

January 1983.

[49] Alan Gibbons and Paul Spirakis. Lectures in parallel computation, volume 4.

Cambridge University Press, 1993.

[50] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching,

and simulation in the mapreduce framework. In International Symposium on

Algorithms and Computation, pages 374–383. Springer, 2011.

[51] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms

and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.

Springer, 1988.

169

[52] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and histograms.

In Proceedings of the thirty-third annual ACM symposium on Theory of computing,

pages 471–475, 2001.

[53] Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Räcke. Oblivious network

design. In SODA ’06, pages 970–979, 2006.

[54] James W Hegeman and Sriram V Pemmaraju. Lessons from the congested clique

applied to mapreduce. Theoretical Computer Science, 2015.

[55] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental

single-source shortest paths on undirected graphs in near-linear total update time.

In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science,

pages 146–155, 2014.

[56] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A determin-

istic almost-tight distributed algorithm for approximating single-source shortest

paths. In Proceedings of the forty-eighth annual ACM symposium on Theory of

Computing, pages 489–498. ACM, 2016.

[57] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. Unifying and strengthening hardness for dynamic problems via the

online matrix-vector multiplication conjecture. In Rocco A. Servedio and Ronitt

Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium

on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,

pages 21–30. ACM, 2015.

[58] Shang-En Huang and Seth Pettie. Thorup–zwick emulators are universally optimal

hopsets. Information Processing Letters, 142:9–13, 2019.

170

[59] Adam Karczmarz and Jakub Lacki. Simple label-correcting algorithms for partially

dynamic approximate shortest paths in directed graphs. In 3rd Symposium on

Simplicity in Algorithms, SOSA@SODA 2020. SIAM, 2020.

[60] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation

for mapreduce. In Proceedings of the twenty-first annual ACM-SIAM symposium

on Discrete Algorithms, pages 938–948. SIAM, 2010.

[61] M. Reza Khani and Mohammad R. Salavatipour. Improved approximations for

buy-at-bulk and shallow-light k-steiner trees and (k,2)-subgraph. Journal of

Combinatorial Optimization, 31(2):669–685, Feb 2016.

[62] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths

and transitive closure in digraphs. In 40th Annual Symposium on Foundations of

Computer Science (Cat. No. 99CB37039), pages 81–89. IEEE, 1999.

[63] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson.

Distributed computation of large-scale graph problems. In Proceedings of the

twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 391–

410. Society for Industrial and Applied Mathematics, 2015.

[64] Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for

single-source shortest paths. Journal of Algorithms, 1997.

[65] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured

descent: A new embedding method for finite metrics. In Proceedings of the 45th

Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages

434–443, 2004.

[66] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being

near-sighted. In SODA ’06, pages 980–989, 2006.

171

[67] Jakub Łącki and Yasamin Nazari. Near-optimal decremental approximate multi-

source shortest paths. arXiv preprint arXiv:2009.08416, 2020.

[68] Christoph Lenzen. Optimal deterministic routing and sorting on the congested

clique. In Proceedings of the ACM Symposium on Principles of Distributed

computing. ACM, 2013.

[69] Christoph Lenzen and Boaz Patt-Shamir. Fast routing table construction using

small messages. In Proceedings of the forty-fifth annual ACM symposium on

Theory of computing, pages 381–390. ACM, 2013.

[70] Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings

of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages

308–321, 2020.

[71] Nathan Linial and Michael Saks. Low diameter graph decompositions. Combina-

torica, 13(4):441–454, Dec 1993.

[72] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight

spanning tree construction in o (log log n) communication rounds. SIAM Journal

on Computing, 35(1):120–131, 2005.

[73] Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures.

In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS

2006), pages 109–118. IEEE, 2006.

[74] Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved

parallel algorithms for spanners and hopsets. In Proceedings of the Symposium

on Parallelism in Algorithms and Architectures. ACM, 2015.

172

[75] Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions

using random shifts. In Proceedings of the ACM Symposium on Parallelism in

algorithms and architectures. ACM, 2013.

[76] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest

paths. In Proceedings of the ACM Symposium on Theory of Computing. ACM,

2014.

[77] Yasamin Nazari. Sparse hopsets in congested clique. In Conference on Principles

of Distributed Systems (OPODIS), 2019.

[78] Christos H. Papadimitriou and Mihalis Yannakakis. Linear programming without

the matrix. In STOC ’93, pages 121–129, 1993.

[79] Merav Parter and Eylon Yogev. Low congestion cycle covers and their applications.

In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. Society for

Industrial and Applied Mathematics, 2019.

[80] Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup–zwick

bound. SIAM Journal on Computing, 43(1):300–311, 2014.

[81] Mihai Patrascu, Liam Roditty, and Mikkel Thorup. A new infinity of distance

oracles for sparse graphs. In Proceedings of the 53rd Annual IEEE Symposium on

Foundations of Computer Science (FOCS), pages 738–747. IEEE, 2012.

[82] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for

Industrial and Applied Mathematics, 2000.

[83] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph

Theory, 13(1):99–116, 1989.

[84] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube.

In PODC’87, pages 77–85, 1987.

173

[85] Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in

undirected graphs. In 45th Annual IEEE Symposium on Foundations of Computer

Science, pages 499–508. IEEE, 2004.

[86] Atish Das Sarma, Michael Dinitz, and Gopal Pandurangan. Efficient distributed

computation of distance sketches in networks. Distributed Computing, 28(5):309–

320, 2015.

[87] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. Journal of

the ACM (JACM), 28(1):1–4, 1981.

[88] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the

ACM (JACM), 52(1):1–24, 2005.

[89] Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance

errors. In Proceedings of the seventeenth annual ACM-SIAM symposium on

Discrete algorithm, pages 802–809, 2006.

[90] Christian Wulff-Nilsen. Approximate distance oracles with improved query time.

In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 539–549. SIAM, 2013.

174

	Abstract
	Dedication
	Acknowledgements
	Contents
	Introduction
	Models
	Connections and Comparison

	Distance Structures
	Hopsets
	Distance Oracles
	Spanners
	Connections

	Massively Parallel Distance Sketches and Distributed Distance Oracles
	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries and Notation
	Notation
	Algorithmic Building Blocks

	Distance Oracles in Congested Clique
	Distance Sketches in Massively Parallel Computation Model
	Polylogarithmic Round Complexity
	Single-source shortest path

	Distance Oracles in the Streaming Model
	Comparison with Alternative Methods
	Discussion and Future Work

	Sparse Hopsets in Congested Clique
	Introduction
	Our contribution
	Overview of techniques.
	Preliminaries

	Algorithmic Tools.
	Neighborhood covers using low-diameter decomposition
	Congested Clique Hopset Construction
	Massively Parallel Hopsets and MSSP
	Conclusion and Open Problem

	Dynamic Hopsets
	Introduction
	Preliminaries and Notation
	Summary of Results

	Overview of Our Algorithms
	Static Hopset Construction
	Maintaining Restricted Hopsets Dynamically
	Decremental Approximate Distances

	Decremental Hopset
	Maintaining a Restricted Hopset
	New Hopsets with Improved Running Time.
	Hopset stretch

	Applications
	(1+ε)-approximate SSSP and (1+ε)-MSSP
	APSP distance oracles

	Conclusion and Future Direction

	Distributed Distance Bounded Network Design
	Introduction
	Our Results
	Solving convex programs
	Distributed approximation algorithms for network design

	Related Work

	Preliminaries and Notation
	Padded decompositions
	Distributed distance bounded network design convex programming
	Distance bounded network design convex programs
	Distributed Algorithm

	Distributed Approximation Algorithms for Network Design
	
	[3] and [4]
	
	Directed Steiner Network with Distance Constraints

	Conclusion and Future Work

	Conclusion and Future Direction
	Bibliography

