1,095 research outputs found

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Energy Consumption Data Based Machine Anomaly Detection

    Get PDF

    Orchestrated Platform for Cyber-Physical Systems

    Get PDF
    One of the main driving forces in the era of cyber-physical systems (CPSs) is the introduction of massive sensor networks (or nowadays various Internet of things solutions as well) into manufacturing processes, connected cars, precision agriculture, and so on. Therefore, large amounts of sensor data have to be ingested at the server side in order to generate and make the "twin digital model" or virtual factory of the existing physical processes for (among others) predictive simulation and scheduling purposes usable. In this paper, we focus on our ultimate goal, a novel software container-based approach with cloud agnostic orchestration facilities that enable the system operators in the industry to create and manage scalable, virtual IT platforms on-demand for these two typical major pillars of CPS: (1) server-side (i.e., back-end) framework for sensor networks and (2) configurable simulation tool for predicting the behavior of manufacturing systems. The paper discusses the scalability of the applied discrete-event simulation tool and the layered back-end framework starting from simple virtual machine-level to sophisticated multilevel autoscaling use case scenario. The presented achievements and evaluations leverage on (among others) the synergy of the existing EasySim simulator, our new CQueue software container manager, the continuously developed Octopus cloud orchestrator tool, and the latest version of the evolving MiCADO framework for integrating such tools into a unified platform

    Sensor grid middleware metamodeling and analysis

    Full text link
    Sensor grid is a platform that combines wireless sensor networks and grid computing with the aim of exploiting the complementary advantages of the two systems. Proper integration of these distinct systems into effective, logically single platform is challenging. This paper presents an approach for practical sensor grid implementation and management. The proposed approach uses a metamodeling technique and performance analysis and tuning as well as a middleware infrastructure that enable practical sensor grid implementation and management. The paper presents our implementation and analysis of the sensor grid. © 2014 Srimathi Chandrasekaran et al

    Deep Learning in the Automotive Industry: Applications and Tools

    Full text link
    Deep Learning refers to a set of machine learning techniques that utilize neural networks with many hidden layers for tasks, such as image classification, speech recognition, language understanding. Deep learning has been proven to be very effective in these domains and is pervasively used by many Internet services. In this paper, we describe different automotive uses cases for deep learning in particular in the domain of computer vision. We surveys the current state-of-the-art in libraries, tools and infrastructures (e.\,g.\ GPUs and clouds) for implementing, training and deploying deep neural networks. We particularly focus on convolutional neural networks and computer vision use cases, such as the visual inspection process in manufacturing plants and the analysis of social media data. To train neural networks, curated and labeled datasets are essential. In particular, both the availability and scope of such datasets is typically very limited. A main contribution of this paper is the creation of an automotive dataset, that allows us to learn and automatically recognize different vehicle properties. We describe an end-to-end deep learning application utilizing a mobile app for data collection and process support, and an Amazon-based cloud backend for storage and training. For training we evaluate the use of cloud and on-premises infrastructures (including multiple GPUs) in conjunction with different neural network architectures and frameworks. We assess both the training times as well as the accuracy of the classifier. Finally, we demonstrate the effectiveness of the trained classifier in a real world setting during manufacturing process.Comment: 10 page

    Optimized Error Detection in Cloud User for Networking Services

    Get PDF
    Big sensor data is prevalent in both industry and scientific research applications where the data is generated with high volume and velocity it is difficult to process using on-hand database management tools or traditional data processing applications. Cloud computing provides a promising platform to support the addressing of this challenge as it provides a flexible stack of massive computing, storage, and software services in a scalable manner at low cost. Some techniques have been developed in recent years for processing sensor data on cloud, such as sensor-cloud. However, these techniques do not provide efficient support on fast detection and locating of errors in big sensor data sets. For fast data error detection in big sensor data sets, in this paper, we develop a novel data error detection approach which exploits the full computation potential of cloud platform and the network feature of WSN
    corecore