4,781 research outputs found

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201

    Doctoral Thesis: Massive MIMO in Real Propagation Environments

    Get PDF
    Mobile communications are now evolving towards the fifth generation (5G). In the near future, we expect an explosive increase in the number of connected devices, such as phones, tablets, sensors, connected vehicles and so on. Much higher data rates than in today's 4G systems are required. In the 5G visions, better coverage in remote regions is also included, aiming for bringing the current "4 billion unconnected" population into the online world. There is also a great interest in "green communications", for less energy consumption in the ICT (information and communication technology) industry. Massive MIMO is a potential technology to fulfill the requirements and visions. By equipping a base station with a large number, say tens to hundreds, of antennas, many terminals can be served in the same time-frequency resource without severe inter-user interference. Through "aggressive" spatial multiplexing, higher data rates can be achieved without increasing the required spectrum. Processing efforts can be made at the base station side, allowing terminals to have simple and cheap hardware. By exploiting the many spatial degrees of freedom, linear precoding/detection schemes can be used to achieve near-optimal performance. The large number of antennas also brings the advantage of large array gain, resulting in an increase in received signal strength. Better coverage is thus achieved. On the other hand, transmit power from base stations and terminals can be scaled down to pursue energy efficiency. In the last five years, a lot of theoretical studies have been done, showing the extraordinary advantages of massive MIMO. However, the investigations are mainly based on theoretical channels with independent and identically distributed (i.i.d.) Gaussian coefficients, and sometimes assuming unlimited number of antennas. When bringing this new technology from theory to practice, it is important to understand massive MIMO behavior in real propagation channels using practical antenna arrays. Not much has been known about real massive MIMO channels, and whether the claims about massive MIMO still hold there, until the studies in this thesis were done. The thesis study connects the "ideal" world of theory to the "non-ideal" reality. Channel measurements for massive MIMO in the 2.6 GHz band were performed, in different propagation environments and using different types of antenna arrays. Based on obtained real-life channel data, the studies include • channel characterization to identify important massive MIMO properties, • evaluation of propagation conditions in real channels and corresponding massive MIMO performance, • channel modeling for massive MIMO to capture the identified channel properties, and • reduction of massive MIMO hardware complexity through antenna selection. The investigations in the thesis conclude that massive MIMO works efficiently in real propagation environments. The theoretical advantages, as observed in i.i.d. Rayleigh channels, can also be harvested in real channels. Important propagation effects are identified for massive MIMO scenarios, including channel variations over large arrays, multipath-component (MPC) lifetime, and 3D propagation. These propagation properties are modeled and included into the COST 2100 MIMO channel model as an extension for massive MIMO. The study on antenna selection shows that characteristics in real channels allow for significant reductions of massive MIMO complexity without significant performance loss. As one of the world's first research work on massive MIMO behavior in real propagation channels, the studies in this thesis promote massive MIMO as a practical technology for future communication systems

    Millimeter-Wave Massive MIMO Testbed with Hybrid Beamforming

    Full text link
    Massive multiple-input multiple-out (MIMO) technology is vital in millimeter-wave (mmWave) bands to obtain large array gains. However, there are practical challenges, such as high hardware cost and power consumption in such systems. A promising solution to these problems is to adopt a hybrid beamforming architecture. This architecture has a much lower number of transceiver (TRx) chains than the total antenna number, resulting in cost- and energy-efficient systems. In this paper, we present a real-time mmWave (28 GHz) massive MIMO testbed with hybrid beamforming. This testbed has a 64-antenna/16-TRx unit for beam-selection, which can be expanded to larger array sizes in a modular way. For testing everything from baseband processing algorithms to scheduling and beam-selection in real propagation environments, we extend the capability of an existing 100-antenna/100-TRx massive MIMO testbed (below 6 GHz), built upon software-defined radio technology, to a flexible mmWave massive MIMO system.Comment: 54th Asilomar Conference on Signals, Systems, and Computers, Nov. 202

    Massive MIMO in Real Propagation Environments: Do All Antennas Contribute Equally?

    Full text link
    Massive MIMO can greatly increase both spectral and transmit-energy efficiency. This is achieved by allowing the number of antennas and RF chains to grow very large. However, the challenges include high system complexity and hardware energy consumption. Here we investigate the possibilities to reduce the required number of RF chains, by performing antenna selection. While this approach is not a very effective strategy for theoretical independent Rayleigh fading channels, a substantial reduction in the number of RF chains can be achieved for real massive MIMO channels, without significant performance loss. We evaluate antenna selection performance on measured channels at 2.6 GHz, using a linear and a cylindrical array, both having 128 elements. Sum-rate maximization is used as the criterion for antenna selection. A selection scheme based on convex optimization is nearly optimal and used as a benchmark. The achieved sum-rate is compared with that of a very simple scheme that selects the antennas with the highest received power. The power-based scheme gives performance close to the convex optimization scheme, for the measured channels. This observation indicates a potential for significant reductions of massive MIMO implementation complexity, by reducing the number of RF chains and performing antenna selection using simple algorithms.Comment: Submitted to IEEE Transactions on Communication

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Massive MIMO-based Localization and Mapping Exploiting Phase Information of Multipath Components

    Get PDF
    In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.Comment: 14 pages (two columns), 13 figures. This work has been submitted to the IEEE Transaction on Wireless Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore