14,086 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Duality of antennas and subcarriers in massive MIMO-OFDM downlink system

    Get PDF
    Massive multiple-input-multiple-output (MIMO) can significantly outperform conventional MIMO in terms of spectrum efficiency and link reliability. For massive MIMO, there are still theoretical and practical issues that have to be addressed. The capacity of the massive MIMO-orthogonal frequency division multiplexing (OFDM) downlink system is derived and analysed and the duality of antennas and subcarriers in such system is demonstrated analytically and by simulation. A detailed comparison between massive MIMO, massive MIMO-OFDM and MIMO-OFDM with large subcarriers is presented.Peer reviewe

    On the Matrix Inversion Approximation Based on Neumann Series in Massive MIMO Systems

    Full text link
    Zero-Forcing (ZF) has been considered as one of the potential practical precoding and detection method for massive MIMO systems. One of the most important advantages of massive MIMO is the capability of supporting a large number of users in the same time-frequency resource, which requires much larger dimensions of matrix inversion for ZF than conventional multi-user MIMO systems. In this case, Neumann Series (NS) has been considered for the Matrix Inversion Approximation (MIA), because of its suitability for massive MIMO systems and its advantages in hardware implementation. The performance-complexity trade-off and the hardware implementation of NS-based MIA in massive MIMO systems have been discussed. In this paper, we analyze the effects of the ratio of the number of massive MIMO antennas to the number of users on the performance of NS-based MIA. In addition, we derive the approximation error estimation formulas for different practical numbers of terms of NS-based MIA. These results could offer useful guidelines for practical massive MIMO systems.Comment: accepted to conference; Proc. IEEE ICC 201

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    MmWave Massive MIMO Based Wireless Backhaul for 5G Ultra-Dense Network

    Get PDF
    Ultra-dense network (UDN) has been considered as a promising candidate for future 5G network to meet the explosive data demand. To realize UDN, a reliable, Gigahertz bandwidth, and cost-effective backhaul connecting ultra-dense small-cell base stations (BSs) and macro-cell BS is prerequisite. Millimeter-wave (mmWave) can provide the potential Gbps traffic for wireless backhaul. Moreover, mmWave can be easily integrated with massive MIMO for the improved link reliability. In this article, we discuss the feasibility of mmWave massive MIMO based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. Especially, we propose a digitally-controlled phase-shifter network (DPSN) based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macro-cell BS can simultaneously support multiple small-cell BSs with multiple streams for each smallcell BS, which is essentially different from conventional hybrid precoding/combining schemes typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospect to enable the mmWave massive MIMO based wireless backhaul for 5G UDN are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. This paper is related to 5G, ultra-dense network (UDN), millimeter waves (mmWave) fronthaul/backhaul, massive MIMO, sparsity/low-rank property of mmWave massive MIMO channels, sparse channel estimation, compressive sensing (CS), hybrid digital/analog precoding/combining, and hybrid beamforming. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=730653

    Harmonized Cellular and Distributed Massive MIMO: Load Balancing and Scheduling

    Full text link
    Multi-tier networks with large-array base stations (BSs) that are able to operate in the "massive MIMO" regime are envisioned to play a key role in meeting the exploding wireless traffic demands. Operated over small cells with reciprocity-based training, massive MIMO promises large spectral efficiencies per unit area with low overheads. Also, near-optimal user-BS association and resource allocation are possible in cellular massive MIMO HetNets using simple admission control mechanisms and rudimentary BS schedulers, since scheduled user rates can be predicted a priori with massive MIMO. Reciprocity-based training naturally enables coordinated multi-point transmission (CoMP), as each uplink pilot inherently trains antenna arrays at all nearby BSs. In this paper we consider a distributed-MIMO form of CoMP, which improves cell-edge performance without requiring channel state information exchanges among cooperating BSs. We present methods for harmonized operation of distributed and cellular massive MIMO in the downlink that optimize resource allocation at a coarser time scale across the network. We also present scheduling policies at the resource block level which target approaching the optimal allocations. Simulations reveal that the proposed methods can significantly outperform the network-optimized cellular-only massive MIMO operation (i.e., operation without CoMP), especially at the cell edge
    corecore