1,923 research outputs found

    Massive Computation for Understanding Core-Collapse Supernova Explosions

    Get PDF
    How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed 3D simulations of core-collapse supernovae that are elucidating the role of fluid instabilities, turbulence, and magnetic field amplification in supernova engines

    Massive Computation for Understanding Core-Collapse Supernova Explosions

    Get PDF
    How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed 3D simulations of core-collapse supernovae that are elucidating the role of fluid instabilities, turbulence, and magnetic field amplification in supernova engines

    Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity

    Full text link
    The mass distribution of neutron stars and stellar-mass black holes provides vital clues into the nature of stellar core collapse and the physical engine responsible for supernova explosions. Using recent advances in our understanding of supernova engines, we derive mass distributions of stellar compact remnants. We provide analytical prescriptions for compact object masses for major population synthesis codes. In an accompanying paper, Belczynski et al., we demonstrate that these qualitatively new results for compact objects can explain the observed gap in the remnant mass distribution between ~2-5 solar masses and that they place strong constraints on the nature of the supernova engine. Here, we show that advanced gravitational radiation detectors (like LIGO/VIRGO or the Einstein Telescope) will be able to further test the supernova explosion engine models once double black hole inspirals are detected.Comment: 37 pages with 16 figures, submitted to Ap

    Cosmic Explosions: Rapporteur Summary of the 10th Maryland Astrophysics Conference

    Get PDF
    This meeting covered the range of cosmic explosions from solar flares to gamma-ray bursts. A common theme is the role of rotation and magnetic fields. A rigorous examination is underway to characterize systematic effects that might alter the Type Ia supernova results suggesting an accelerating Universe. The discovery of the central point of X-ray emission in Cas A by CXO should give new insight into the core collapse problem in general and the nature of the still undetected compact remnant in SN 1987A in particular. Jets were described from protostars to microquasars to blazars to gamma-ray bursts. Polarization studies of core-collapse supernovae lead to the conclusion that core collapse is not merely asymmetric, but strongly bi-polar. To account for normal core-collapse supernovae, the explosion must be jet-like in routine circumstances, that is, in the formation of neutron stars, not only for black holes. Given the observed asymmetries, estimates of explosion energies based on spherically-symmetric models must be regarded with caution. The strong possibility that at least some gamma-ray bursts arise from massive stars means that it is no longer possible to decouple models of the gamma-ray burst and afterglow from considerations of the "machine." The implied correlation of gamma-ray bursts with star formation and massive stars and evidence for jets does not distinguish a black hole collapsar model from models based on the birth of a magnetar. Calorimetry of at least one afterglow suggests that gamma-ray bursts cannot involve highly inefficient internal shock models. Essentally all gamma-ray burst models involve the "Blandford Anxiety," the origin of nearly equipartition magnetic fields in the associated relativistic shocks.Comment: 22 pages LaTeX, one eps figure, to be published in the Proceedings of the 10th Maryland Conference on Astrophysics, eds, S. Holt and W. Zhang, AI

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure

    Numerical Simulations of Equatorially-Asymmetric Magnetized Supernovae: Formation of Magnetars and Their Kicks

    Full text link
    A series of numerical simulations on magnetorotational core-collapse supernovae are carried out. Dipole-like configurations which are offset northward are assumed for the initially strong magnetic fields together with rapid differential rotations. Aims of our study are to investigate effects of the offset magnetic field on magnetar kicks and on supernova dynamics. Note that we study a regime where the proto-neutron star formed after collapse has a large magnetic field strength approaching that of a ``magnetar'', a highly magnetized slowly rotating neutron star. As a result, equatorially-asymmetric explosions occur with a formation of the bipolar jets. Resultant magnetar's kick velocities are ∼300−1000\sim 300-1000 km s−1^{-1}. We find that the acceleration is mainly due to the magnetic pressure while the somewhat weaker magnetic tension works toward the opposite direction, which is due to stronger magnetic field in the northern hemisphere. Noted that observations of magnetar's proper motions are very scarce, our results supply a prediction for future observations. Namely, magnetars possibly have large kick velocities, several hundred km s−1^{-1}, as ordinary neutron stars do, and in an extreme case they could have those up to 1000 km s−1^{-1}.Comment: 36 pages, 9 figures, accepted by the Astrophysical Journa

    Core Collapse and Then? The Route to Massive Star Explosions

    Get PDF
    The rapidly growing base of observational data for supernova explosions of massive stars demands theoretical explanations. Central of these is a self-consistent model for the physical mechanism that provides the energy to start and drive the disruption of the star. We give arguments why the delayed neutrino-heating mechanism should still be regarded as the standard paradigm to explain most explosions of massive stars and show how large-scale and even global asymmetries can result as a natural consequence of convective overturn in the neutrino-heating region behind the supernova shock. Since the explosion is a threshold phenomenon and depends sensitively on the efficiency of the energy transfer by neutrinos, even relatively minor differences in numerical simulations can matter on the secular timescale of the delayed mechanism. To enhance this point, we present some results of recent one- and two-dimensional computations, which we have performed with a Boltzmann solver for the neutrino transport and a state-of-the-art description of neutrino-matter interactions. Although our most complete models fail to explode, the simulations demonstrate that one is encouragingly close to the critical threshold because a modest variation of the neutrino transport in combination with postshock convection leads to a weak neutrino-driven explosion with properties that fulfill important requirements from observations.Comment: 14 pages; 3 figures. Invited Review, in: ``From Twilight to Highlight: The Physics of Supernovae'', Eds. W. Hillebrandt and B. Leibundgut, Springer Series ``ESO Astrophysics Symposia'', Berli

    Numerical Simulations of Equatorially-Asymmetric Magnetized Supernovae: Formation of Magnetars and Their Kicks

    Full text link
    A series of numerical simulations on magnetorotational core-collapse supernovae are carried out. Dipole-like configurations which are offset northward are assumed for the initially strong magnetic fields together with rapid differential rotations. Aims of our study are to investigate effects of the offset magnetic field on magnetar kicks and on supernova dynamics. Note that we study a regime where the proto-neutron star formed after collapse has a large magnetic field strength approaching that of a ``magnetar'', a highly magnetized slowly rotating neutron star. As a result, equatorially-asymmetric explosions occur with a formation of the bipolar jets. Resultant magnetar's kick velocities are ∼300−1000\sim 300-1000 km s−1^{-1}. We find that the acceleration is mainly due to the magnetic pressure while the somewhat weaker magnetic tension works toward the opposite direction, which is due to stronger magnetic field in the northern hemisphere. Noted that observations of magnetar's proper motions are very scarce, our results supply a prediction for future observations. Namely, magnetars possibly have large kick velocities, several hundred km s−1^{-1}, as ordinary neutron stars do, and in an extreme case they could have those up to 1000 km s−1^{-1}.Comment: 36 pages, 9 figures, accepted by the Astrophysical Journa

    Core-Collapse Supernovae: Reflections and Directions

    Full text link
    Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the long-standing puzzle how collapsing stars achieve to explode. In this article our current knowledge of the processes that contribute to the success of the explosion mechanism are concisely reviewed. After a short overview of the sequence of stages of stellar core-collapse events, the general properties of the progenitor-dependent neutrino emission will be briefly described. Applying sophisticated neutrino transport in axisymmetric (2D) simulations with general relativity as well as in simulations with an approximate treatment of relativistic effects, we could find successful neutrino-driven explosions for a growing set of progenitor stars. First results of three-dimensional (3D) models have been obtained, and magnetohydrodynamic simulations demonstrate that strong initial magnetic fields in the pre-collapse core can foster the onset of neutrino-powered supernova explosions even in nonrotating stars. These results are discussed in the context of the present controversy about the value of 2D simulations for exploring the supernova mechanism in realistic 3D environments, and they are interpreted against the background of the current disagreement on the question whether the standing accretion shock instability (SASI) or neutrino-driven convection is the crucial agency that supports the onset of the explosion.Comment: 36 pages, 20 figures (43 eps files); submitted to Progress of Theoretical and Experimental Physics (PTEP
    • …
    corecore