2,419 research outputs found

    Segmentation Method for Face Modelling in Thermal Images

    Get PDF
    Face detection is mostly applied in RGB images. The object detection usually applied the Deep Learning method for model creation. One method face spoofing is by using a thermal camera. The famous object detection methods are Yolo, Fast RCNN, Faster RCNN, SSD, and Mask RCNN. We proposed a segmentation Mask RCNN method to create a face model from thermal images. This model was able to locate the face area in images. The dataset was established using 1600 images. The images were created from direct capturing and collecting from the online dataset. The Mask RCNN was configured to train with 5 epochs and 131 iterations. The final model predicted and located the face correctly using the test image

    SIMCO: SIMilarity-based object COunting

    Full text link
    We present SIMCO, the first agnostic multi-class object counting approach. SIMCO starts by detecting foreground objects through a novel Mask RCNN-based architecture trained beforehand (just once) on a brand-new synthetic 2D shape dataset, InShape; the idea is to highlight every object resembling a primitive 2D shape (circle, square, rectangle, etc.). Each object detected is described by a low-dimensional embedding, obtained from a novel similarity-based head branch; this latter implements a triplet loss, encouraging similar objects (same 2D shape + color and scale) to map close. Subsequently, SIMCO uses this embedding for clustering, so that different types of objects can emerge and be counted, making SIMCO the very first multi-class unsupervised counter. Experiments show that SIMCO provides state-of-the-art scores on counting benchmarks and that it can also help in many challenging image understanding tasks
    corecore