1,806 research outputs found

    IP-Level Satellite Link Emulation with KauNet

    Get PDF
    Distributed applications and transport protocols communicating over a satellite link may react very strongly to conditions specific to that kind of link. Providing a evaluation framework to allow tests of real implementations of such software in that context is quite a challenging task. In this paper we demonstrate how the use of the general-purpose KauNet IP-level emulator combined with satellite-specific packet loss patterns can help by reproducing losses and delays experienced on a satellite link with a simple Ethernet LAN setup. Such a platform is an essential tool for developers performing continuous testing as they provide new features for e.g. video codecs or transport-level software like DCCP and its congestion control components

    Assisting V2V failure recovery using Device-to-Device Communications

    Full text link
    This paper aims to propose a new solution for failure recovery (dead-ends) in Vehicle to Vehicle (V2V) communications through LTE-assisted Device-to-Device communications (D2D). Based on the enhanced networking capabilities offered by Intelligent Transportation Systems (ITS) architecture, our solution can efficiently assist V2V communications in failure recovery situations. We also derive an analytical model to evaluate generic V2V routing recovery failures. Moreover, the proposed hybrid model is simulated and compared to the generic model under different constrains of worst and best cases of D2D discovery and communication. According to our comparison and simulation results, the hybrid model decreases the delay for alarm message propagation to the destination (typically the Traffic Control Center TCC) through the Road Side Unit (RSU)Comment: 3 page

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival

    A versatile infinite-state Markov reward model to study bottlenecks in 2-hop ad hoc networks

    Get PDF
    In a 2-hop IEEE 801.11-based wireless LAN, the distributed coordination function (DCF) tends to equally share the available capacity among the contending stations. Recently alternative capacity sharing strategies have been made possible. We propose a versatile infinite-state Markov reward model to study the bottleneck node in a 2-hop IEEE 801.11-based ad hoc network for different adaptive capacity sharing strategies. We use infinite-state stochastic Petri nets (iSPNs) to specify our model, from which the underlying QBD-type Markov-reward models are automatically derived. The impact of the different capacity sharing strategies is analyzed by CSRL model checking of the underlying infinite-state QBD, for which we provide new techniques. Our modeling approach helps in deciding under which circumstances which adaptive capacity sharing strategy is most appropriate

    Time-Varying Graphs and Dynamic Networks

    Full text link
    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts are components of a larger formal description of this universe. The main contribution of this paper is to integrate the vast collection of concepts, formalisms, and results found in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. Based on this definitional work, employing both existing results and original observations, we present a hierarchical classification of TVGs; each class corresponds to a significant property examined in the distributed computing literature. We then examine how TVGs can be used to study the evolution of network properties, and propose different techniques, depending on whether the indicators for these properties are a-temporal (as in the majority of existing studies) or temporal. Finally, we briefly discuss the introduction of randomness in TVGs.Comment: A short version appeared in ADHOC-NOW'11. This version is to be published in Internation Journal of Parallel, Emergent and Distributed System
    • 

    corecore