360 research outputs found

    Resolving pronominal anaphora using commonsense knowledge

    Get PDF
    Coreference resolution is the task of resolving all expressions in a text that refer to the same entity. Such expressions are often used in writing and speech as shortcuts to avoid repetition. The most frequent form of coreference is the anaphor. To resolve anaphora not only grammatical and syntactical strategies are required, but also semantic approaches should be taken into consideration. This dissertation presents a framework for automatically resolving pronominal anaphora by integrating recent findings from the field of linguistics with new semantic features. Commonsense knowledge is the routine knowledge people have of the everyday world. Because such knowledge is widely used it is frequently omitted from social communications such as texts. It is understandable that without this knowledge computers will have difficulty making sense of textual information. In this dissertation a new set of computational and linguistic features are used in a supervised learning approach to resolve the pronominal anaphora in document. Commonsense knowledge sources such as ConceptNet and WordNet are used and similarity measures are extracted to uncover the elaborative information embedded in the words that can help in the process of anaphora resolution. The anaphoric system is tested on 350 Wall Street Journal articles from the BBN corpus. When compared with other systems available such as BART (Versley et al. 2008) and Charniak and Elsner 2009, our system performed better and also resolved a much wider range of anaphora. We were able to achieve a 92% F-measure on the BBN corpus and an average of 85% F-measure when tested on other genres of documents such as children stories and short stories selected from the web

    Automatic Document Summarization Using Knowledge Based System

    Get PDF
    This dissertation describes a knowledge-based system to create abstractive summaries of documents by generalizing new concepts, detecting main topics and creating new sentences. The proposed system is built on the Cyc development platform that consists of the world’s largest knowledge base and one of the most powerful inference engines. The system is unsupervised and domain independent. Its domain knowledge is provided by the comprehensive ontology of common sense knowledge contained in the Cyc knowledge base. The system described in this dissertation generates coherent and topically related new sentences as a summary for a given document. It uses syntactic structure and semantic features of the given documents to fuse information. It makes use of the knowledge base as a source of domain knowledge. Furthermore, it uses the reasoning engine to generalize novel information. The proposed system consists of three main parts: knowledge acquisition, knowledge discovery, and knowledge representation. Knowledge acquisition derives syntactic structure of each sentence in the document and maps words and their syntactic relationships into Cyc knowledge base. Knowledge discovery abstracts novel concepts, not explicitly mentioned in the document by exploring the ontology of mapped concepts and derives main topics described in the document by clustering the concepts. Knowledge representation creates new English sentences to summarize main concepts and their relationships. The syntactic structure of the newly created sentences is extended beyond simple subject-predicate-object triplets by incorporating adjective and adverb modifiers. This structure allows the system to create sentences that are more complex. The proposed system was implemented and tested. Test results show that the system is capable of creating new sentences that include abstracted concepts not mentioned in the original document and is capable of combining information from different parts of the document text to compose a summary

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Path Ranking with Attention to Type Hierarchies

    Full text link
    The objective of the knowledge base completion problem is to infer missing information from existing facts in a knowledge base. Prior work has demonstrated the effectiveness of path-ranking based methods, which solve the problem by discovering observable patterns in knowledge graphs, consisting of nodes representing entities and edges representing relations. However, these patterns either lack accuracy because they rely solely on relations or cannot easily generalize due to the direct use of specific entity information. We introduce Attentive Path Ranking, a novel path pattern representation that leverages type hierarchies of entities to both avoid ambiguity and maintain generalization. Then, we present an end-to-end trained attention-based RNN model to discover the new path patterns from data. Experiments conducted on benchmark knowledge base completion datasets WN18RR and FB15k-237 demonstrate that the proposed model outperforms existing methods on the fact prediction task by statistically significant margins of 26% and 10%, respectively. Furthermore, quantitative and qualitative analyses show that the path patterns balance between generalization and discrimination.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20

    Reasoning-Driven Question-Answering For Natural Language Understanding

    Get PDF
    Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field

    A Survey on Interpretable Cross-modal Reasoning

    Full text link
    In recent years, cross-modal reasoning (CMR), the process of understanding and reasoning across different modalities, has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics. As the deployment of AI systems becomes more ubiquitous, the demand for transparency and comprehensibility in these systems' decision-making processes has intensified. This survey delves into the realm of interpretable cross-modal reasoning (I-CMR), where the objective is not only to achieve high predictive performance but also to provide human-understandable explanations for the results. This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR. Furthermore, this survey reviews the existing CMR datasets with annotations for explanations. Finally, this survey summarizes the challenges for I-CMR and discusses potential future directions. In conclusion, this survey aims to catalyze the progress of this emerging research area by providing researchers with a panoramic and comprehensive perspective, illuminating the state of the art and discerning the opportunities
    • …
    corecore