3,036 research outputs found

    Geoadditive Regression Modeling of Stream Biological Condition

    Get PDF
    Indices of biotic integrity (IBI) have become an established tool to quantify the condition of small non-tidal streams and their watersheds. To investigate the effects of watershed characteristics on stream biological condition, we present a new technique for regressing IBIs on watershed-specific explanatory variables. Since IBIs are typically evaluated on anordinal scale, our method is based on the proportional odds model for ordinal outcomes. To avoid overfitting, we do not use classical maximum likelihood estimation but a component-wise functional gradient boosting approach. Because component-wise gradient boosting has an intrinsic mechanism for variable selection and model choice, determinants of biotic integrity can be identified. In addition, the method offers a relatively simple way to account for spatial correlation in ecological data. An analysis of the Maryland Biological Streams Survey shows that nonlinear effects of predictor variables on stream condition can be quantified while, in addition, accurate predictions of biological condition at unsurveyed locations are obtained

    Adaptive Monotone Shrinkage for Regression

    Full text link
    We develop an adaptive monotone shrinkage estimator for regression models with the following characteristics: i) dense coefficients with small but important effects; ii) a priori ordering that indicates the probable predictive importance of the features. We capture both properties with an empirical Bayes estimator that shrinks coefficients monotonically with respect to their anticipated importance. This estimator can be rapidly computed using a version of Pool-Adjacent-Violators algorithm. We show that the proposed monotone shrinkage approach is competitive with the class of all Bayesian estimators that share the prior information. We further observe that the estimator also minimizes Stein's unbiased risk estimate. Along with our key result that the estimator mimics the oracle Bayes rule under an order assumption, we also prove that the estimator is robust. Even without the order assumption, our estimator mimics the best performance of a large family of estimators that includes the least squares estimator, constant-λ\lambda ridge estimator, James-Stein estimator, etc. All the theoretical results are non-asymptotic. Simulation results and data analysis from a model for text processing are provided to support the theory.Comment: Appearing in Uncertainty in Artificial Intelligence (UAI) 201

    Item response model estimation via penalized likelihood

    Get PDF
    openPer problemi con il pdf inviare e-mail a [email protected]
    corecore