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ABSTRACT
For high-dimensional linear regression models, we review and com-
pare several estimators of variances s2 and r2 of the random slopes
and errors, respectively. These variances relate directly to ridge regres-
sion penalty k and heritability index h2, often used in genetics. Several
estimators of these, either based on cross-validation (CV) or maximum
marginal likelihood (MML), are also discussed. The comparisons
include several cases of the high-dimensional covariate matrix such as
multi-collinear covariates and data-derived ones. Moreover, we study
robustness against model misspecifications such as sparse instead of
dense effects and non-Gaussian errors. An example on weight gain
data with genomic covariates confirms the good performance of MML
compared to CV. Several extensions are presented. First, to the high-
dimensional linear mixed effects model, with REML as an alternative to
MML. Second, to the conjugate Bayesian setting, shown to be a good
alternative. Third, and most prominently, to generalized linear models
for which we derive a computationally efficient MML estimator by re-
writing the marginal likelihood as an n-dimensional integral. For
Poisson and Binomial ridge regression, we demonstrate the superior
accuracy of the resulting MML estimator of k as compared to CV.
Software is provided to enable reproduction of all results.
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1. Introduction

Estimation of hyper-parameters is an essential part of fitting high-dimensional Gaussian
random effect regression models, also known as ridge regression. These models are
widely applied in genomics and genetics applications, where often the number of varia-
bles p is much larger than the number of samples n, i.e. p � n.
We initially focus on the linear model. The goal is to estimate error variance r2 and ran-

dom effects variance s2 or functions thereof, in particular the ridge penalty parameter,

k ¼ r2
s2 , or heritability index, h2 ¼ ps2

ps2þr2. Here, the ridge penalty is used in classical ridge
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regression to shrink the regression coefficients towards zero (Hoerl and Kennard 1970),
whereas heritability measures the fraction of variation between individuals within a popula-
tion that is due to their genotypes (Visscher, Hill, andWray 2008). The estimators of r2 and
s2 can be used to estimate k or h2, or for statistical testing (Kang et al. 2008). We review sev-
eral estimators, based on maximum marginal likelihood (MML), moment equations, (gen-
eralized) cross-validation, dimension reduction, and for degrees-of-freedom adjustment.
Some of these estimators are classical, while others have recently been introduced.
We systematically review and compare the estimators in a broad variety of high-dimen-

sional settings. For estimation of k in low-dimensional settings, we refer to Muniz and Kibria
(2009); Månsson and Shukur (2011); Kibria and Banik (2016). We address the effect of multi-
collinearity and robustness against model misspecifications, such as sparsity and non-Gaussian
errors. The comparisons are extended to the linear mixed effects model, with q � n fixed
effects added to the model and to Bayesian linear regression. The linear model part is con-
cluded by a genomics data application to weight gain prediction after kidney transplantation.
The observed good performance of MML-estimation in the linear model setting was

a stimulus to consider MML for high-dimensional generalized linear models (GLM).
MML is more involved here than in the linear model, because of the non-conjugacy of
the likelihood and prior. Therefore, approximations are required, such as Laplace ones.
While these have been addressed by others (Heisterkam, van Houwelingen, and Downs
1999; Wood 2011), we derive an estimator which is computationally efficient for p � n
settings. For Poisson and Binomial ridge regression, we demonstrate the superior accur-
acy of MML estimation of k as compared to cross-validation.
Our software enables reproduction of all results. In addition, it allows comparisons for

one’s own high-dimensional data matrix by simulating the response conditional on this
matrix, as we do for two cancer genomics examples. Computational shortcuts and considera-
tions are discussed throughout the paper, and detailed at the end, including computing times.

1.1. The model

We initially focus on high-dimensional linear regression with random effects. Variables
are denoted by j ¼ 1; :::; p and samples by i ¼ 1; :::; n. Then:

yn�1 ¼ Xn�pbp�1 þ �n�1

bp�1 �N 0; s2Ip
� �

�n�1 �N 0; r2Inð Þ:
(1)

Here, y ¼ ðy1; :::; ynÞ is the vector of responses, b ¼ ðb1; :::; bpÞT corresponds to the
random effects and � ¼ ð�1; :::; �nÞT is a vector of Gaussian errors. Furthermore, X is a
fixed n� p matrix: ðX1 � � �XnÞT ; with Xi ¼ ðxi1; :::; xipÞT .

1.2. Estimation methods

We distinguish three categories of estimation methods:

1. Estimation of functions of ðr2; s2Þ, in particular: i) k ¼ r2
s2 (Golub, Heath, and

Wahba 1979), used in ridge regression to minimize jjy�Xbjj22 þ kjjbjj22 ; and ii)
heritability h2 ¼ ps2

ps2þr2 (Bonnet, Gassiat, and L�evy-Leduc 2015).
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2. Separate estimation of r2 (Cule, Vineis, and De Iorio 2011; Cule and De Iorio
2012), possibly followed by plug-in estimation of s2.

3. Joint estimation of r2 and s2.

Below, we discuss several methods for each of these categories. They have several
matrices and matrix computations in common, which we therefore introduce first.

1.3. Notation and matrix computations

Throughout the paper, we will use the following notation:

b̂ ¼ b̂k ¼ Cky ¼ XTX þ kIp�p
� ��1

XTy i:e: the linear ridge estimator

H ¼ Hk ¼ XCk ¼ X XTX þ kIp�p
� ��1

XT i:e: the hat matrix:
(2)

Many of the estimators below require calculations on potentially very large matrices.
The following two well-known equalities can highly alleviate the computational burden.
First, C ¼ Ck, and hence also b̂ and H, can be efficiently computed by using singular

value decomposition (SVD). Decompose X ¼ Un�nDn�nðVp�nÞT by SVD, and denote
Kq ¼ kIq. Then,

C ¼ XTX þ Kp

� ��1
XT ¼ V D2 þ Kn

� ��1
DUT : (3)

The latter requires inversion of an n� n matrix only. Second, the following efficient
trace computation for matrix products applies to trðHÞ ¼ trðXCkÞ :

tr Ap�nBn�pð Þ ¼
Xn
i¼1

Xp
j¼1

A�BT 	ij:
h

(4)

2. Methods

2.1. Estimating functions of r2 and s2

2.1.1. Estimating k by K-fold CV

A benchmark method that is used extensively to estimate k ¼ r2=s2 is cross-validation.
Here, we use K-fold CV, as implemented in the popular R-package glmnet (Friedman,
Hastie, and Tibshirani 2010). Let f(i) denote the set of samples left out for testing at the
same fold as sample i. Then, CV-based estimation of k pertains to minimizing the
cross-validated prediction error:

kcv ¼ arg min
k

Xn
i¼1

yi�Xib̂
�f ið Þ
k

� �2( )
; (5)

where b̂
�f ðiÞ
k denotes the estimate of b based on training samples f1; :::; ng n f ðiÞ and

penalty k. Note that for leave-one-out-cross-validation (n-fold CV) the analytical solu-
tion of (5) is the PRESS statistic (Allen 1974).
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2.1.2. Estimating k by generalized cross validation

Generalized Cross Validation (GCV) is a rotation-invariant form of the PRESS statistic.
It is more robust than the latter to (near-diagonal) hat matrices Hk (Golub, Heath, and
Wahba 1979). For the linear model, the criterion is (Hastie, Tibshirani, and Friedman
2008):

GCV kð Þ ¼
Xn
i¼1

�
yi�XT

i b̂k

n� tr Hkð Þ
�2

(6)

where the trace of Hk can be computed efficiently by (4). Then, kgcv ¼ arg mink
GCVðkÞ.

2.1.3. Estimating heritability by HiLMM

Heritability is defined by h2 ¼ ps2

ps2þr2. A recent method which estimates heritability dir-
ectly using maximum likelihood is proposed by Bonnet, Gassiat, and L�evy-Leduc
(2015). Analogously to Eq. (12), it is based on writing:

y�N 0; h2r
2R þ 1�h2ð Þr
2In
� �

; (7)

where r
2 ¼ ps2 þ r2 and R ¼ XXT=p. Now, apply an eigen-decomposition to R:
R ¼ QLQT . Then, heritability is estimated by Bonnet, Gassiat, and L�evy-Leduc (2015):

h2 ¼ arg max
h2

� log
1
n

Xn
i¼1

~y2i
h2 ‘i � 1ð Þ þ 1

 !
� 1
n

Xn
i¼1

log h2 ‘i�1ð Þ þ 1
� �� �

;

 
(8)

with ‘i and ~yi the ith element of L and ~y ¼ QTy, respectively. The authors provide
rigorous consistency results for their estimator, as well as theoretical confidence bounds,
also for mixed models and sparse settings.

2.2. Estimation of r2

The two methods below rely on an estimate b̂ ¼ b̂k, where k ¼ r2=s2 is estimated by
(G)CV. Then r2 is estimated conditional on b̂: If desired, s2 may then be estimated
by ŝ2 ¼ r̂2=k̂:

2.2.1. Basic estimate

A basic estimate of r2, and often used in practice, is given by (Hastie and Tibshirani
1990):

r̂2 ¼
y�Xb̂
� �T

y�Xb̂
� �

�
(9)

which is the residual mean square error. Here, the residual effective degrees of freedom
(Hastie and Tibshirani 1990) equals � ¼ n�trð2H�HHTÞ, with H as in (2). We also
considered (9) with � ¼ n�trðHÞ, as in Hellton and Hjort (2018), which rendered simi-
lar, slightly inferior results.
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2.2.2. PCR-based estimate

The estimator for r2 may also be based on Principal Component Regression (PCR).

PCR is based on the eigen-decomposition XTX ¼ ~QD2 ~Q
T
. Denoting Z ¼ X ~Q and

a ¼ ~Q
T
b, we have y ¼ Zaþ �. Then, Z is reduced from p columns to r � minðn; pÞ

principal components, a crucial step (Cule and De Iorio 2012). Using the reduced
model, r2 is estimated by the residual mean square error (Cule and De Iorio 2012):

r̂2
r ¼

y�Zrârð ÞT y�Zrârð Þ
n� r

: (10)

2.3. Joint estimation of r2 and s2

2.3.1. MML

An Empirical Bayes estimate of r2 and s2 is obtained by maximizing the marginal likeli-
hood (MML), also referred to as model evidence in machine learning (Murphy 2012).
This corresponds to:

arg max
r2;s2

P yð Þ ¼ arg max
r2;s2

ð
b
‘ y; b; r2
� �

p b; s2
� �

db: (11)

Since y ¼ Xbþ �; PðyÞ is simply derived from the convolution of Gaussian random
variables, implying E½y	 ¼ E½Xb	 þ E½�	 ¼ 0, and V½y	 ¼ V½Xb	 þ V½�	 ¼ XXTs2 þ r2In,
so

P yð Þ ¼ N y; l ¼ 0;R ¼ XXTs2 þ r2In
� �

: (12)

This is easily maximized over r2 and s2. Note that after computing XXT (12) requires
operations on n� n matrices only.

2.3.2. Method of moments (MoM)

An alternative to MML is to match the empirical second moments of y to their theoret-
ical counterparts. From (12) we observe that the covariances depend on s2 only. Hence,
we obtain an estimator of s2 by equating the sum of yiyk to that of the theoretical cova-
riances, Rik ¼ E½yiyk	, with R as in (12). Then, with RX ¼ XXT , an estimator for r2 is
obtained by substituting ŝ2 and equating the sum of y2i to the sum of theoretical varian-
ces, Rii ¼ E½y2i 	 :

ŝ2 ¼
Pn;n

i6¼k yiykPn;n
i6¼k R

X
ik

r̂2 ¼ n�1
Xn
i¼1

y2i � ŝ2RX
ii

� �
:

(13)

These equations also hold for non-Gaussian error terms, which could be an advan-
tage over MML. Moreover, no optimization over r2 and s2 is required, so MoM is com-
putationally very attractive.
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3. Comparisons

For the linear random effects model (ridge regression) we study the following settings:

� b and � generated from model (1), independent X
� b or � generated from non-Gaussian distributions, independent X
� b and � from model (1), multicollinear X
� b and � from model (1), data-based X.

As is common for real data, the variables, i.e. the rows of X, were always standardized
for the L2-penalty to have the same effect on all variables. All the results are based on
100 simulated data sets. Cross-validation is applied on 10 folds. Results from n-fold CV
(leave-one-out) were generally fairly similar. We focus on the high-dimensional setting
with n ¼ 100; p ¼ 1000, with excursions to larger data sets and dimensions of real data.
In all visualizations below the red dotted lines indicate true values. Moreover, values
larger than 20 times the true value were truncated and slightly jittered. Discussion of all
results is postponed to Sec. 3.4.

3.1. Independent X

In correspondence to model (1) we sample:

yn�1 ¼ Xn�pbp�1 þ �n�1 �i �iidN 0;r2ð Þ
xij �iidN 0; 1ð Þ bj �iidN 0; s2ð Þ:

(14)

Figure 1a and b display the results for n ¼ 100; p ¼ 1000; s2 ¼ 0:01; r2 ¼ 10 and for
a large data setting n ¼ 1000; p ¼ 15000; s2 ¼ 0:01; r2 ¼ 150 (which both
imply h2 ¼ 0:5).

3.2. Departures from a normal effect size distribution

We study the robustness of the methods against (sparse) non-Gaussian effect size distri-
bution or error distribution. In sparse settings, many variables do not have an effect. To
mimic this, we simulated the b’s from a mixture distribution with a ‘spike’ and a
Gaussian ‘slab’:

bj �iid p0d0 þ 1�p0ð ÞN 0; s20
� �

: (15)

Here, we set p0 ¼ 0:9; s20 ¼ 0:1; which implies s2 ¼ VðbjÞ ¼ Eðb2j Þ�
EðbjÞ2 ¼ ð1�p0Þs20 ¼ 0:01, as in the Gaussian bj setting. Moreover, we also considered:

bj �iid Laplace l ¼ 0; b ¼ 0:0707ð Þ and bj �iid Uniform a ¼ �0:17; b ¼ 0:17ð Þ
where again the parameters are chosen such that EðbjÞ ¼ 0 and s2 ¼ VðbjÞ ¼ 0:01:
Apart from b all other quantities are simulated as in (14). Results are displayed for
r2 ¼ 10; s2 ¼ 0:01; n ¼ 100; p ¼ 1000 in Figure 1c for the Laplace (¼ lasso) effect size
distribution and in Supplementary Figure 3 for the spike-and-slab and uniform effect
size distribution.
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Moreover, we considered heavy-tailed errors by sampling

�0i �iid t4 �i ¼ 10=2ð Þ1=2�0i

where the scalar is chosen such that r2 ¼ Vð�iÞ ¼ 10, as in the Gaussian error setting.
Apart from �, all other quantities are simulated as in (14). Results are displayed in
Supplementary Figure 3c.

Figure 1. Results for independent.
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3.3. Multicollinear X

3.3.1. Simulated X

Next, the design matrix X is sampled using block-wise correlation. We replace the sam-
pling of X in simulation model (14) by:

Xn�p�N 0;Nð Þ; (16)
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(a) Multi-collinear X setting: Gaussian β’s, n = 100, p = 1000, τ2 = 0.01, σ2 = 10
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(b) X = TCGA KIRC data: Gaussian β’s, n = 71, p = 18391, τ2 = 0.01, σ2 = 184
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(c) X = TCPA OV data: Gaussian β’s, n = 408, p = 224, τ2 = 0.01, σ2 = 2.24

Figure 2. Results for multi-collinear and real.
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where N is a unit variance covariance matrix with blocks of size p
 � p with correlations q
on the off-diagonal. Figure 2a shows the results for q ¼ 0:5; p
 ¼ 10; n ¼ 100; p ¼ 1000.

3.3.2. Real data X

Finally, we consider the estimation of s2 and r2 in a high- and medium-dimensional
setting where X are real data, with likely collinear columns. The first data set (TCGA
KIRC) concerns gene expression data of p¼ 18, 391 genes for n¼ 71 kidney tumors.
The second data set (TCPA OV) holds expression data of p¼ 224 proteins for n¼ 408
ovarian tumor samples. Details on both data sets are supplied in the Supplementary
Information. To generate response y we use model (14) with X given by the data. Here,
s2 ¼ 0:01 and r2 is set such that h2 ¼ 0:5: Figure 2b and c show the results.

3.4. Discussion of results

3.4.1. MML vs MoM, basic and PCR

Figures 1 and 2 and Supplementary Figure 3 clearly show superior performance of MML
compared to MoM: both the bias and variability are much smaller for MML. Generally,
MML also outperforms the Basic and PCR estimators of r2. The PCR estimator approaches
the performance of MML for the KIRC and TCPA data (Figure 2b and c), and the Basic esti-
mator performs reasonably well for the latter (p< n) data set. For other settings, the Basic
estimator performs equally inferior as MoM. The results highlight the importance of joint
estimation of r2 and s2 in high-dimensional settings, because of their delicate interplay.

3.4.2. MML vs GCV and CV

For the estimation of k MML seems slightly superior to GCV and CV. GCV shows
more estimates that deviate towards too small values of k (e.g. Figures 1b and 2b, i.e.
the large p settings), whereas CV tends to render somewhat more skewed results, either
to the right (Figures 1a and c, 2a), or to the left (Figure 2b). For the spike-and-slab and
uniform effects sizes and the t4 errors the right-skewness of the CV-results is more pro-
nounced (Supplementary Figure 3), indicating that minimization of the cross-validated
prediction error (5) is more vulnerable to non-Gaussian y than MML and GCV. Note
that the Laplace setting (Figure 1c) relates directly to the lasso prior with scale param-
eter 1=k1 (Tibshirani 1996). The results indicate that MML with Gaussian prior could
be useful to find the lasso penalty, or serve as a fast initial estimate by simply setting
the lasso penalty k1 ¼

ffiffiffi
2

p
=ŝ, which follows from the variance of the lasso prior.

3.4.3. MML vs HiLMM

For the estimation of heritability h2 Figures 1 and 2 and Supplementary Figure 3 show
very comparable performance of MML and HiLMM. This similar performance is not
surprising given that both methods are likelihood-based. Hence, while reparametrizing
the likelihood (7) is certainly useful to study it as function of h2 (Bonnet, Gassiat, and
L�evy-Leduc 2015), the reparametrization seems not beneficial for the purpose of
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estimating h2. In addition, unlike HiLMM, MML also returns estimates of s2 and r2.
Finally, comparing Figure 1a and b we observe that both MML and HiLMM clearly
benefit from the larger n and p.

4. Data example

We re-analyse the weight gain data, recently discussed in Hellton and Hjort (2018).
Details on the data are presented there, we provide a summary. The data consists of
expression profiles of n¼ 26 individuals with kidney transplants, where profiles consists of
28,869 genes as measured by Affymetrix Human Gene 1.0 ST arrays. The data is available
in the EMBL-EBI ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession
number E-GEOD-33070. It is known that kidney transplantation may lead to weight gain,
and the study by Cashion et al. (2013) investigates whether gene expression can be used to
predict this. Such a prediction can be used to decide upon additional measures to prevent
excessive weight gains. We reproduced the analysis by Hellton and Hjort (2018) as much
as possible, including their prior selection of 1000 genes. Details on minor discrepancies,
and an alternative analysis that accounts for the gene selection are discussed in the
Supplementary Material. These did not affect the comparison qualitatively.
In Hellton and Hjort (2018), the authors illustrate their focused ridge (fridge) method

and compare it with conventional ridge. In short, fridge estimates sample-specific ridge
penalties, based on minimizing a per sample mean squared error (MSE) criterion on
the level of the linear predictor Xib. Since b is not known, it is replaced by an initial
ridge estimate, b̂k: Their sample specific penalty then depends on Xi, and also on both
k̂ and r̂2. The authors use GCV (6) to obtain k, and a slight variation of (9) to estimate
r2. They show that fridge improves upon GCV-based ridge estimation. We wish to
investigate whether i) MML estimation of k ¼ r2=s2 also improves the performance of
GCV-based ridge regression; and ii) whether MML estimation further boosts the per-
formance of the fridge estimator. Here, predictive performance is measured by the
mean squared prediction error (MSPE) using leave-one-out cross-validation (loocv).
The estimates of MML differ markedly from those of GCV: ðk̂MML; r̂

2
MMLÞ ¼

ð0:77; 0:59Þ, while ðk̂GCV; r̂2
GCVÞ ¼ ð20:92; 8:08Þ. Using k̂MML instead of k̂GCV for the

estimation of b substantially reduced the mean squared prediction error: MSPEMML ¼
14:40; while MSPEGCV ¼ 16:38, a relative decrease of 12.1%. Using k̂GCV, as in Hellton
and Hjort (2018), fridge also reduced the MSPE, but to a lesser extent: MSPEfridge ¼
15:80; a relative decrease of 3.5% with respect to MSPEGCV: Application of fridge using
k̂MML did not further decrease MSPEMML, nor did it increase it. Possibly, the already
fairly small value of k̂MML left little room for improvement. Figure 3 displays absolute
prediction errors per sample and illustrates the improved prediction by ridge using
kMML (and to a lesser extent by fridge) with respect to ridge using kGCV.

5. Extensions

5.1. Extension 1: mixed effects model

A natural extension of the high-dimensional random effects model (1) is the mixed
effects model:
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y ¼ Xfaþ Xrbþ �; (17)

where we assume that the n�m design matrix for the fixed effects, Xf , is of low-rank,
so m � n, as opposed to the random effects design matrix Xr. Restricted maximum
likelihood (REML) deals with the fixed effects by contrasting them out. For the error
contrast vector y�Xf â

OLS ¼ ATy; with A ¼ In�XfðXT
f XfÞ�1XT

f , the marginal likelihood
for the variance components equals (see e.g. Zhang 2015):

P ATy
� �

¼ N y; l ¼ 0;R ¼ ATRrA
� �

(18)

with Rr ¼ XrXT
r s

2 þ r2In: In addition to maximizing (18) as a function of ðr2; s2Þ, we
attempted solving the set of two estimation equations suggested by Jiang (2007), but
this rendered instable results inferior to maximizing (18) directly.
Alternatively, MML may be used, but it has to be adjusted to also estimate the fixed

effects in the model. This implies replacing 0 in Gaussian likelihood (11) by Xfa, and
optimizing (11) with respect to 2þm parameters, where m is the number of fixed
parameters. The mixed model simulation setting is as follows:

yn�1 ¼ Xf ;n�mam�1 þ Xr;n�pbp�1 þ �n�1 �i �iidN 0; r2ð Þ
xf ;ik �iidN 0; 1ð Þ xr;ij �iidN 0; 1ð Þ
ak �iid p0;f d0 þ 1�p0;fð ÞN 0; s20;f

� �
bj �iid p0d0 þ 1�p0ð ÞN 0; s20

� �
;

(19)

where n ¼ 100; p ¼ 1000;m ¼ 10; p0 ¼ 0:9; s20 ¼ 0:1 (implying variance s2 ¼
ð1�p0Þs20 ¼ 0:01 for generating random effects) and p0;f ¼ 0:5; s20;f ¼ 0:20 (implying
variance s2f ¼ 0:1 for generating fixed effects). Note that we focused on a fairly sparse
setting for the random effects and larger prior variance of fixed effects than of random
effects, which enables a stronger impact of the small number of fixed effects. Figure 4
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shows the results of REML, MML and CV (by glmnet, using penalty factor 0 for the
fixed effects) for the estimation of s2; r2; k and h2.
From Figure 4 we observe that REML indeed improves MML in terms of bias, how-

ever at the cost of increased variability. For the estimation of k, CV is fairly competitive
to REML and MML, although it renders markedly more over-penalization.

5.2. Extension 2: Bayesian linear regression

So far, we focused on classical methods. Bayesian methods may be a good alternative.
We applied the standard Bayesian linear regression model, i.e. the conjugate model with
i.i.d. priors pðbjÞ ¼ Nð0; r2s2Þ, with s2 fixed and r2 endowed with a vague inverse-
gamma prior (see Supplementary Material for details). For this model the maximum
marginal likelihood estimator for s2 is still analytical (Karabatsos 2018), and so is the
posterior mode estimate of r2. Figure 5 shows the results in comparison to MML, i.e.
maximization of (12), for the random effects case with multi-collinear X, as in Sec. 3.3.
1. Results for other settings were in essence very similar.
From the results we conclude that the conjugate Bayes estimates are very close to

those of MML. This is in line with the fact that both estimators maximize a marginal
likelihood and the conjugate model with prior variance s2 ¼ r2=k is known to render
posterior mean estimates of b that equal the k-penalized ridge regression estimates.
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The conjugate Bayesian model is scale-invariant, because the b prior contains the
error variance r2. Recently, it was criticized for its non-robustness against misspecifica-
tion of the fixed s2 when estimating r2 (Moran, Rockova, and George 2018). However,
in practice one needs to estimate s2 by either empirical Bayes (e.g. maximum marginal
likelihood) or full Bayes. We repeated the simulation by Moran, Rockova, and George
(2018) (see Supplementary Material). The results show that the estimates of r2 are
much better when estimating s2 by empirical Bayes instead of fixing it, and in fact very
competitive to alternatives proposed by Moran, Rockova, and George (2018).

5.3. Extension 3: generalized linear models

5.3.1. Setting

Motivated by the good results for MML in the linear setting, we wish to extend MML
estimation to the high-dimensional generalized linear model (GLM) setting, where the
likelihood depends on the regression parameter b only via the linear predictor, Xb.
Hence, likelihood LðY; b;XÞ is defined by a density flðYÞ (e.g. Poisson), where Xb is
mapped to l by a link function (e.g. log ). As before, we a priori assume i.i.d.
bj �Nð0; s2Þ, here equivalent to an L2 penalty k ¼ 1=s2 when estimating b by penalized
likelihood. In Heisterkam, van Houwelingen, and Downs (1999) an iterative algorithm
to estimate k is derived which alternates estimation of b by maximization w.r.t. k,
requiring the computation of the trace of a Hessian of a p� p matrix. Here, the estima-
tion of b itself is much slower than in the linear case, because it is not analytic and
requires iterative weighted least squares approximation. Below we show how to substan-
tially alleviate the computational burden in the p � n setting by re-parameterizing the
marginal likelihood implying computations in R

n instead of Rp.

5.3.2. Method

We have for the marginal likelihood:

ML kð Þ ¼
ð
b2Rp

L Y; b;Xð Þpk bð Þdb ¼
ð
b2Rp

L Y; b;Xð Þ/ b1; 0; 1=kð Þ � � �/ bp; 0; 1=k
� �

db

(20)

where /ðb; l; s2Þ denotes the normal density with mean l and variance s2. Now a cru-
cial observation is that for GLM:

ML kð Þ ¼ Epk bð Þ L Y; b;Xð Þ½ 	 ¼ Epk bð Þ L Y;Xbð Þ½ 	 ¼ Ep0k Xbð Þ L Y;Xbð Þ½ 	 (21)

because the likelihood depends on b only via the linear predictor Xb. Here, p0kðXbÞ is
the implied n-dimensional prior distribution of Xb. This is a multivariate normal:
/ðbX; l ¼ 0;Rk ¼ XXT=kÞ. Therefore, we have:

ML kð Þ ¼ Ðb2RpgY;k bð Þdb ¼ Ðb2RpL Y; b;Xð Þ/ b1; 0; 1=kð Þ � � �/ bp; 0; 1=k
� �

db

¼ ÐbX2RnhY;k bX
� �

dbX ¼ ÐbX2RnL Y; bX; In
� �

/ bX; 0;Rk

� �
dbX:

(22)

Hence, the p-dimensional integral may be replaced by an n-dimensional one, with
obvious computational advantages when p � n. Moreover, the use of (22) allows
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applying implemented Laplace approximations, which tend to be more accurate in lower

dimensions. The Laplace approximation requires b̂
X ¼ arg maxbXfhY;kðbXÞg. We

emphasize that this does generally not equal Xb̂; where b̂ ¼ arg maxbfgY;kðbÞg : the

maximum of the commonly used L2 penalized (log)-likelihood. However, b̂
X

can be
computed by noting that

log hY;k bX
� �

/ ‘ Y; bX; In
� �

� bX
� �T

R�1
k bX: (23)

In other words, this is the penalized log-likelihood when regressing Y on the identity
design matrix In using an L2 smoothing penalty matrix ðbXÞTR�1

k bX ¼
kðbXÞTðXXTÞ�1bX . The latter fits conveniently into the set-up of Wood (2011), as
implemented in the R-package mgcv. This also facilitates MML estimation of k by max-
imizing MLðkÞ, with hY;kðbXÞ as in (23). If the columns of X are standardized (common
in high-dimensional studies), XXT has rank n – 1 instead of n, implying that ðXXTÞ�1

does not exist and should be replaced by a pseudo-inverse ðXXTÞþ, such as the Moore-
Penrose inverse.
In a full Bayesian linear model setting, dimension reduction is also discussed by Bernardo

et al. (2003), where Xb is substituted by a n-dimensional factor analytic representation, which
requires an SVD of X. In addition, there it is not used for hyper-parameter estimation by mar-
ginal likelihood, but instead for specifying (hierarchical) priors for the factors.

5.3.3. Results

R packages like glmnet (Friedman, Hastie, and Tibshirani 2010) and penalized (Goeman
2010) estimate k by cross-validation, and also mgcv allows, next to the MML estimation,
(generalized) CV estimation (Wood 2011). Figure 6a and b show the results for Poisson
ridge regression, with Yi � PoisðkiÞ; ki ¼ exp ðXibÞ; b generated as in (14), and X gener-
ated as in (14) and (16), which denote the independent X and multi-collinear X setting,
respectively.

(a) Poisson for independent X
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Figure 6. k estimates for Poisson ridge regression, k ¼ 1=s2 ¼ 100; n ¼ 100; p ¼ 1000.

14 J. R. VEERMAN ET AL.



Figure 6 clearly shows the superior performance of MML based on (22) over CV. In
particular, glmnet and penalized render strongly upward biased values. The mgcv GCV
values are still inferior to MML based ones, but much better than the latter two, which
may be due to the different regression estimators used (Laplace approximation versus
iterative weighted least squares). We should stress that CV does not target for the esti-
mation of k as such, but merely for minimizing prediction error. Nevertheless, the dif-
ference is remarkably larger than in the corresponding linear case (see Figures 1 and 2).
The Supplementary Material shows the results for Binomial ridge regression. While

the differences in performance are less dramatic than for the Poisson setting, MML still
renders much better estimates of k than CV-based approaches.

6. Computational aspects and software

All methods and simulations presented here are implemented in a few wrapper R
scripts: one for the linear random effects model (which includes the conjugate Bayes
estimator), one for the linear mixed effects model, and one for Poisson and Binomial
ridge regression. Parallel computations are supported. The scripts allow exact reproduc-
tion of the results in this manuscript as well as comparisons for other simulation or
user-specific real data X cases. In addition, a script is supplied to produce the box-plots
as in this manuscript.
HiLMM, PCR and CV implementations are provided by the R-packages HiLMM,

v1.1 (Bonnet, Gassiat, and L�evy-Leduc 2015), ridge, v1.8-16 (Cule and De Iorio 2012)
(code slightly adapted for computational efficiency) and glmnet, v2.0-16 (Friedman,
Hastie, and Tibshirani 2010). The methods MML, REML, Bayes, MoM, Basic and GCV
were implemented by us for the linear random and mixed effects models. For Poisson
and Binomial ridge regression we applied mgcv, v1.8-16 (Wood 2011) after our re-par-
ametrization (22) to obtain MML and GCV results, while for CV glmnet and penalized,
v0.9-50 (Goeman 2010) were applied. For all methods that required optimization the R
routine optim was used, with default settings. CV was based on 10 folds.
Computing times of the various methods largely depend on n and p, much less so on

the exact simulation setting. These are displayed for n¼ 100, 500 and p ¼ 103; 104; 105

in Table 1, based on computations with one CPU of an IntelVRXeonVR CPUE5 -
2660v3@2.60GHz server. For Poisson ridge regression, we only report the computing

Table 1. Computing times for hyper-parameter estimation for linear and Poisson ridge regression.
n¼ 100 n¼ 500

p ¼ 103 p ¼ 104 p ¼ 105 p ¼ 103 p ¼ 104 p ¼ 105

Linear
MML 0.06 0.15 1.12 2.18 6.07 26.64
Bayes 0.04 0.31 4.38 1.10 7.78 93.25
MoM 0.01 0.08 1.03 0.17 2.32 23.70
PCR 0.05 0.39 5.36 1.39 10.31 116.80
Basic 0.05 0.46 6.56 1.44 12.40 145.18
GCV 0.20 0.46 4.56 12.26 26.41 111.38
CV 0.81 6.57 39.95 2.62 21.69 183.50
HiLMM 0.03 0.17 2.01 0.66 3.14 27.99
Poisson
MML_mgcv 0.32 0.33 0.31 26.21 40.19 48.17
GCV_mgcv 0.39 0.33 0.62 33.48 41.44 54.01
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times of MML and GCV, because, as reported in Figure 6, the performance of CV-
based methods was very inferior.
From Table 1 we conclude that MML is also computationally very attractive. Its effi-

ciency is explained by the fact that, unlike many of other methods, it does not require
an SVD or other matrix decomposition of X. Moreover, the only computation that
involves dimension p is the product XXT .

7. Discussion

We compared several estimators in a large variety of high-dimensional settings. The
results showed that plain maximum marginal likelihood works well in many settings.
MML is generally superior to methods that aim to separately estimate r2 (9, 10).
Apparently, the estimates of r2 and s2 are so intrinsically linked in the high-dimensional
setting that separate estimation is sub-optimal. The moment estimator (MoM) is generally
not competitive to MML. It may, however, be useful in large systems with multiple hyper-
parameters to estimate relative penalties, which are less sensitive to scaling issues than the
global penalty parameter (Van de Wiel et al. 2016). MoM may also be a useful initial esti-
mator for more complex estimators that are based on optimization, such as MML.
Possibly somewhat surprising is the good performance of MML for estimating k and h2,

as these are functions of r2 and s2. For the estimation of k it is generally better than or
competitive to (generalized) CV, an observation also made for the low-dimensional setting
(Wood 2011). The inferior performance of the basic estimator of r2 (9) implies that alter-
native estimators of k that use r̂2 as a plug-in are unlikely to perform well in high-dimen-
sional settings. Such estimators, including the original one by Hoerl and Kennard (1970),
are compared by Muniz and Kibria (2009); Kibria and Banik (2016), who show that some
do perform well in the low-dimensional setting. For Poisson ridge regression, similar esti-
mators of k are available (Månsson and Shukur 2011), but these rely on an initial max-
imum likelihood estimator of b, and hence do not apply to the high-dimensional setting.
For estimating h2 it should be noticed that HiLMM (Bonnet, Gassiat, and L�evy-Leduc
2015) aims to compute a confidence interval for h2 as well. For that purpose their direct
estimator (8) is likely more useful than MML on the pair ðs2; r2Þ. We also used Esther
(Bonnet et al. 2018), which precedes HiLMM by sure independence screening. It did not
improve HiLMM in our (semi-)sparse settings, and requires manual steps. However, it
likely improves HiLMM results in very sparse settings (Bonnet et al. 2018).
For mixed effect models with a small number of fixed effects, MML compares fairly

well to REML, with a larger bias, but smaller variance. Probably the potential advantage
of contrasting out the fixed effects is small when the number of random effects is large.
REML may have a larger advantage in very sparse settings (Jiang et al. 2016) or when
the number of fixed effects is large with respect to n. Estimates from the conjugate
Bayes model are very similar to those by MML. We show that estimating s2 along with
r2 highly improves the r2 estimates presented by Moran, Rockova, and George (2018),
where a fixed value of s2 is used. In the case of many variance components or multiple
similar regression equations, Bayesian extensions that shrink the estimates by a common
prior are appealing, in particular in combination with efficient posterior approximations
such as variational Bayes (Leday et al. 2017).
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Our model (1) implies a dense setting, but we have demonstrated that the MML and
REML estimators of s2 and r2 are fairly robust against moderate sparsity, which corrob-
orates the results by Jiang et al. (2016). Nevertheless, true sparse models may be prefer-
able when variable selection is desired, which depends on accurate estimation of b. On
the other hand, post-hoc selection procedures can be rather competitive (Bondell and
Reich 2012). Moreover, the sparsity assumption is questionable for several applications.
For example in genetics, it was suggested that many complex traits (such as height or
cholesterol levels) are not even polygenic, but instead ‘omnigenic’ (Boyle, Li, and
Pritchard 2017).
The extension of MML to high-dimensional GLM settings (22) is promising given its

computational efficiency and performance for Poisson and Binomial regression. A special
case of the latter, logistic regression, requires further research, because the Laplace approx-
imations of the marginal likelihood are less accurate here (Wood 2011). Extension to sur-
vival is a promising avenue, because Cox regression is directly linked to Poisson regression
(Cai and Betensky 2003). Alternatively, parametric survival models may be pursued. To
what extent the estimates of hyper-parameters impact predictions depends on the sensitiv-
ity of the likelihood to these parameters. For the linear setting, a re-analysis of the weight-
gain data showed that predictions based on k̂MML improved those based on k̂CV.
Karabatsos (2018) shows that MML estimation also performs well compared to GCV for
linear power ridge regression, which extends ridge regression by multiplying k by ðXTXÞd.
The MML estimator can be extended to estimation of multiple variance components

or penalty parameters, which was addressed by iterative likelihood minorization (Zhou
et al. 2015) and by parameter-based moment estimation (Van de Wiel et al. 2016). The
latter extends to non-Gaussian response such as survival or binary. Further comparison
of these methods with multi-parameter MML, both in terms of performance and com-
putational efficiency, is left for future research. Finally, in particular in genetics applica-
tions, extensions of estimation of variance components by MML to non-independent
individuals can be implemented by use of a well-structured between-individual covari-
ance matrix R (Kang et al. 2008).
Although our simulations cover a fairly broad spectrum of settings, many other varia-

tions could be of interest. We therefore supply fully annotated R scripts https://github.
com/markvdwiel/Hyperpar that allow i) comparison of all algorithms discussed here,
also for one’s ‘own’ real covariate set X; and ii) reproduction of all results pre-
sented here.
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