8 research outputs found

    Exact Dimensionality Selection for Bayesian PCA

    Get PDF
    We present a Bayesian model selection approach to estimate the intrinsic dimensionality of a high-dimensional dataset. To this end, we introduce a novel formulation of the probabilisitic principal component analysis model based on a normal-gamma prior distribution. In this context, we exhibit a closed-form expression of the marginal likelihood which allows to infer an optimal number of components. We also propose a heuristic based on the expected shape of the marginal likelihood curve in order to choose the hyperparameters. In non-asymptotic frameworks, we show on simulated data that this exact dimensionality selection approach is competitive with both Bayesian and frequentist state-of-the-art methods

    The Dependence of Routine Bayesian Model Selection Methods on Irrelevant Alternatives

    Full text link
    Bayesian methods - either based on Bayes Factors or BIC - are now widely used for model selection. One property that might reasonably be demanded of any model selection method is that if a model M1{M}_{1} is preferred to a model M0{M}_{0}, when these two models are expressed as members of one model class M\mathbb{M}, this preference is preserved when they are embedded in a different class M′\mathbb{M}'. However, we illustrate in this paper that with the usual implementation of these common Bayesian procedures this property does not hold true even approximately. We therefore contend that to use these methods it is first necessary for there to exist a "natural" embedding class. We argue that in any context like the one illustrated in our running example of Bayesian model selection of binary phylogenetic trees there is no such embedding

    How to Integrate a Polynomial over a Simplex

    Full text link
    This paper settles the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We conclude the article with extensions to other polytopes, discussion of other available methods and experimental results.Comment: Tables added with new experimental results. References adde

    Likelihood Equations and Scattering Amplitudes

    Full text link
    We relate scattering amplitudes in particle physics to maximum likelihood estimation for discrete models in algebraic statistics. The scattering potential plays the role of the log-likelihood function, and its critical points are solutions to rational function equations. We study the ML degree of low-rank tensor models in statistics, and we revisit physical theories proposed by Arkani-Hamed, Cachazo and their collaborators. Recent advances in numerical algebraic geometry are employed to compute and certify critical points. We also discuss positive models and how to compute their string amplitudes.Comment: 18 page

    A Parsimonious Tour of Bayesian Model Uncertainty

    Full text link
    Modern statistical software and machine learning libraries are enabling semi-automated statistical inference. Within this context, it appears easier and easier to try and fit many models to the data at hand, reversing thereby the Fisherian way of conducting science by collecting data after the scientific hypothesis (and hence the model) has been determined. The renewed goal of the statistician becomes to help the practitioner choose within such large and heterogeneous families of models, a task known as model selection. The Bayesian paradigm offers a systematized way of assessing this problem. This approach, launched by Harold Jeffreys in his 1935 book Theory of Probability, has witnessed a remarkable evolution in the last decades, that has brought about several new theoretical and methodological advances. Some of these recent developments are the focus of this survey, which tries to present a unifying perspective on work carried out by different communities. In particular, we focus on non-asymptotic out-of-sample performance of Bayesian model selection and averaging techniques, and draw connections with penalized maximum likelihood. We also describe recent extensions to wider classes of probabilistic frameworks including high-dimensional, unidentifiable, or likelihood-free models

    Model Selection for Stochastic Block Models

    Get PDF
    As a flexible representation for complex systems, networks (graphs) model entities and their interactions as nodes and edges. In many real-world networks, nodes divide naturally into functional communities, where nodes in the same group connect to the rest of the network in similar ways. Discovering such communities is an important part of modeling networks, as community structure offers clues to the processes which generated the graph. The stochastic block model is a popular network model based on community structures. It splits nodes into blocks, within which all nodes are stochastically equivalent in terms of how they connect to the rest of the network. As a generative model, it has a well-defined likelihood function with consistent parameter estimates. It is also highly flexible, capable of modeling a wide variety of community structures, including degree specific and overlapping communities. Performance of different block models vary under different scenarios. Picking the right model is crucial for successful network modeling. A good model choice should balance the trade-off between complexity and fit. The task of model selection is to automatically choose such a model given the data and the inference task. As a problem of wide interest, numerous statistical model selection techniques have been developed for classic independent data. Unfortunately, it has been a common mistake to use these techniques in block models without rigorous examinations of their derivations, ignoring the fact that some of the fundamental assumptions has been violated by moving into the domain of relational data sets such as networks. In this dissertation, I thoroughly exam the literature of statistical model selection techniques, including both Frequentist and Bayesian approaches. My goal is to develop principled statistical model selection criteria for block models by adapting classic methods for network data. I do this by running bootstrapping simulations with an efficient algorithm, and correcting classic model selection theories for block models based on the simulation data. The new model selection methods are verified by both synthetic and real world data sets
    corecore