46,918 research outputs found

    Selection of Software Product Line Implementation Components Using Recommender Systems: An Application to Wordpress

    Get PDF
    In software products line (SPL), there may be features which can be implemented by different components, which means there are several implementations for the same feature. In this context, the selection of the best components set to implement a given configuration is a challenging task due to the high number of combinations and options which could be selected. In certain scenarios, it is possible to find information associated with the components which could help in this selection task, such as user ratings. In this paper, we introduce a component-based recommender system, called (REcommender System that suggests implementation Components from selecteD fEatures), which uses information associated with the implementation components to make recommendations in the domain of the SPL configuration. We also provide a RESDEC reference implementation that supports collaborative-based and content-based filtering algorithms to recommend (i.e., implementation components) regarding WordPress-based websites configuration. The empirical results, on a knowledge base with 680 plugins and 187 000 ratings by 116 000 users, show promising results. Concretely, this indicates that it is possible to guide the user throughout the implementation components selection with a margin of error smaller than 13% according to our evaluation.Ministerio de Economía y Competitividad RTI2018-101204-B-C22Ministerio de Economía y Competitividad TIN2014-55894-C2-1-RMinisterio de Economía y Competitividad TIN2017-88209-C2-2-RMinisterio de Economía, Industria y Competitividad MCIU-AEI TIN2017-90644-RED

    Bayesian Matrix Completion via Adaptive Relaxed Spectral Regularization

    Full text link
    Bayesian matrix completion has been studied based on a low-rank matrix factorization formulation with promising results. However, little work has been done on Bayesian matrix completion based on the more direct spectral regularization formulation. We fill this gap by presenting a novel Bayesian matrix completion method based on spectral regularization. In order to circumvent the difficulties of dealing with the orthonormality constraints of singular vectors, we derive a new equivalent form with relaxed constraints, which then leads us to design an adaptive version of spectral regularization feasible for Bayesian inference. Our Bayesian method requires no parameter tuning and can infer the number of latent factors automatically. Experiments on synthetic and real datasets demonstrate encouraging results on rank recovery and collaborative filtering, with notably good results for very sparse matrices.Comment: Accepted to AAAI 201
    corecore