2 research outputs found

    Maps of cropping patterns in China during 2015–2021

    Get PDF
    Multiple cropping is a widespread approach for intensifying crop production through rotations of diverse crops. Maps of cropping intensity with crop descriptions are important for supporting sustainable agricultural management. As the most populated country, China ranked first in global cereal production and the percentages of multiple-cropped land are twice of the global average. However, there are no reliable updated national-scale maps of cropping patterns in China. Here we present the first recent annual 500-m MODIS-based national maps of multiple cropping systems in China using phenologybased mapping algorithms with pixel purity-based thresholds, which provide information on cropping intensity with descriptions of three staple crops (maize, paddy rice, and wheat). The produced cropping patterns maps achieved an overall accuracy of 89% based on ground truth data, and a good agreement with the statistical data (R2 ≥ 0.89). The China Cropping Pattern maps (ChinaCP) are available for public download online. Cropping patterns maps in China and other countries with finer resolutions can be produced based on Sentinel-2 Multispectral Instrument (MSI) images using the shared code

    From cropland to cropped field: A robust algorithm for national-scale mapping by fusing time series of Sentinel-1 and Sentinel-2

    Get PDF
    Detailed and updated maps of actively cropped fields on a national scale are vital for global food security. Unfortunately, this information is not provided in existing land cover datasets, especially lacking in smallholder farmer systems. Mapping national-scale cropped fields remains challenging due to the spectral confusion with abandoned vegetated land, and their high heterogeneity over large areas. This study proposed a large-area mapping framework for automatically identifying actively cropped fields by fusing Vegetation-Soil-Pigment indices and Synthetic-aperture radar (SAR) time-series images (VSPS). Three temporal indicators were proposed and highlighted cropped fields by consistently higher values due to cropping activities. The proposed VSPS algorithm was exploited for national-scale mapping in China without regional adjustments using Sentinel-2 and Sentinel-1 images. Agriculture in China illustrated great heterogeneity and has experienced tremendous changes such as non-grain orientation and cropland abandonment. Yet, little is known about the locations and extents of cropped fields cultivated with field crops on a national scale. Here, we produced the first national-scale 20 m updated map of cropped and fallow/abandoned land in China and found that 77 % of national cropland (151.23 million hectares) was actively cropped in 2020. We found that fallow/abandoned cropland in mountainous and hilly regions were far more than we expected, which was significantly underestimated by the commonly applied VImax-based approach based on the MODIS images. The VSPS method illustrates robust generalization capabilities, which obtained an overall accuracy of 94 % based on 4,934 widely spread reference sites. The proposed mapping framework is capable of detecting cropped fields with a full consideration of a high diversity of cropping systems and complexity of fallow/abandoned cropland. The processing codes on Google Earth Engine were provided and hoped to stimulate operational agricultural mapping on cropped fields with finer resolution from the national to the global scale
    corecore