128,029 research outputs found

    Bibliometric cartography of information retrieval research by using co-word analysis

    Get PDF
    The aim of this study is to map the intellectual structure of the field of Information Retrieval (IR) during the period of 1987-1997. Co-word analysis was employed to reveal patterns and trends in the IR field by measuring the association strengths of terms representative of relevant publications or other texts produced in IR field. Data were collected from Science Citation Index (SCI) and Social Science Citation Index (SSCI) for the period of 1987-1997. In addition to the keywords added by the SCI and SSCI databases, other important keywords were extracted from titles and abstracts manually. These keywords were further standardized using vocabulary control tools. In order to trace the dynamic changes of the IR field, the whole 11-year period was further separated into two consecutive periods: 1987-1991 and 1992-1997. The results show that the IR field has some established research themes and it also changes rapidly to embrace new themes

    Emerging Search Regimes: Measuring Co-evolutions among Research, Science, and Society

    Full text link
    Scientometric data is used to investigate empirically the emergence of search regimes in Biotechnology, Genomics, and Nanotechnology. Complex regimes can emerge when three independent sources of variance interact. In our model, researchers can be considered as the nodes that carry the science system. Research is geographically situated with site-specific skills, tacit knowledge and infrastructures. Second, the emergent science level refers to the formal communication of codified knowledge published in journals. Third, the socio-economic dynamics indicate the ways in which knowledge production relates to society. Although Biotechnology, Genomics, and Nanotechnology can all be characterised by rapid growth and divergent dynamics, the regimes differ in terms of self-organization among these three sources of variance. The scope of opportunities for researchers to contribute within the constraints of the existing body of knowledge are different in each field. Furthermore, the relevance of the context of application contributes to the knowledge dynamics to various degrees

    Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

    Full text link
    A recent trend in DNN development is to extend the reach of deep learning applications to platforms that are more resource and energy constrained, e.g., mobile devices. These endeavors aim to reduce the DNN model size and improve the hardware processing efficiency, and have resulted in DNNs that are much more compact in their structures and/or have high data sparsity. These compact or sparse models are different from the traditional large ones in that there is much more variation in their layer shapes and sizes, and often require specialized hardware to exploit sparsity for performance improvement. Thus, many DNN accelerators designed for large DNNs do not perform well on these models. In this work, we present Eyeriss v2, a DNN accelerator architecture designed for running compact and sparse DNNs. To deal with the widely varying layer shapes and sizes, it introduces a highly flexible on-chip network, called hierarchical mesh, that can adapt to the different amounts of data reuse and bandwidth requirements of different data types, which improves the utilization of the computation resources. Furthermore, Eyeriss v2 can process sparse data directly in the compressed domain for both weights and activations, and therefore is able to improve both processing speed and energy efficiency with sparse models. Overall, with sparse MobileNet, Eyeriss v2 in a 65nm CMOS process achieves a throughput of 1470.6 inferences/sec and 2560.3 inferences/J at a batch size of 1, which is 12.6x faster and 2.5x more energy efficient than the original Eyeriss running MobileNet. We also present an analysis methodology called Eyexam that provides a systematic way of understanding the performance limits for DNN processors as a function of specific characteristics of the DNN model and accelerator design; it applies these characteristics as sequential steps to increasingly tighten the bound on the performance limits.Comment: accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems. This extended version on arXiv also includes Eyexam in the appendi
    • …
    corecore