5 research outputs found

    Building an Integrated Enhanced Virtual Research Environment Metadata Catalogue

    Get PDF
    Purpose The purpose of this paper is to boost multidisciplinary research by the building of an integrated catalogue or research assets metadata. Such an integrated catalogue should enable researchers to solve problems or analyse phenomena that require a view across several scientific domains. Design/methodology/approach There are two main approaches for integrating metadata catalogues provided by different e-science research infrastructures (e-RIs): centralised and distributed. The authors decided to implement a central metadata catalogue that describes, provides access to and records actions on the assets of a number of e-RIs participating in the system. The authors chose the CERIF data model for description of assets available via the integrated catalogue. Analysis of popular metadata formats used in e-RIs has been conducted, and mappings between popular formats and the CERIF data model have been defined using an XML-based tool for description and automatic execution of mappings. Findings An integrated catalogue of research assets metadata has been created. Metadata from e-RIs supporting Dublin Core, ISO 19139, DCAT-AP, EPOS-DCAT-AP, OIL-E and CKAN formats can be integrated into the catalogue. Metadata are stored in CERIF RDF in the integrated catalogue. A web portal for searching this catalogue has been implemented. Research limitations/implications Only five formats are supported at this moment. However, description of mappings between other source formats and the target CERIF format can be defined in the future using the 3M tool, an XML-based tool for describing X3ML mappings that can then be automatically executed on XML metadata records. The approach and best practices described in this paper can thus be applied in future mappings between other metadata formats. Practical implications The integrated catalogue is a part of the eVRE prototype, which is a result of the VRE4EIC H2020 project. Social implications The integrated catalogue should boost the performance of multi-disciplinary research; thus it has the potential to enhance the practice of data science and so contribute to an increasingly knowledge-based society. Originality/value A novel approach for creation of the integrated catalogue has been defined and implemented. The approach includes definition of mappings between various formats. Defined mappings are effective and shareable.Published929-9514IT. Banche datiJCR Journa

    Review of current SERIES and EPOS Databases

    Get PDF
    In a world-wide scale, collaborations in earthquake engineering lack a common interoperability framework, resulting in tedious and complex procedures to integrate data and results. Up to now, the most significant effort in Europe towards the interoperability of earthquake engineering experimental data was the SERIES project (Seismic Engineering Research Infrastructures for European Synergies) in the period 2009 - 2013. Global sharing of seismological data has been a long-lasting tradition tracing back to the beginning of the previous century. Recently, the ESFRI (European Strategic Forum for Research Infrastructures) initiative and the EPOS project (European Plate Observing System), provided a larger framework for the integration of all solid Earth science data into a single Pan-European e-infrastructure. Up to now, the two adjacent scientific disciplines, i.e. the earthquake engineering and seismology, have not interfaced their data structures, lacking an interoperable data-sharing structure. However, there is need to increase the interaction of the earthquake engineering and seismology communities by integrating the most important databanks and related informatics services in Europe, i.e. SERIES and EPOS. This deliverable presents a review of the current SERIES and EPOS systems: the main features of the two are discussed, focusing on their architecture, content, databases, functionality and access portals. It is noted that aiming to a better knowledge of the EPOS and SERIES projects, the deliverable needed to review also two approaches for data sharing and integration (governance, architecture, collaboration), and not be only limited to a review of current SERIES and EPOS databases. The review presented in the deliverable will serve as the basis for the future roadmap for integration of earthquake engineering and seismological data and informatics services that will support the needs of the two research communities and beyond.JRC.E.4-Safety and Security of Building

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Methodology to sustain common information spaces for research collaborations

    Get PDF
    Information and knowledge sharing collaborations are essential for scientific research and innovation. They provide opportunities to pool expertise and resources. They are required to draw on today’s wealth of data to address pressing societal challenges. Establishing effective collaborations depends on the alignment of intellectual and technical capital. In this thesis we investigate implications and influences of socio-technical aspects of research collaborations to identify methods of facilitating their formation and sustained success. We draw on our experience acquired in an international federated seismological context, and in a large research infrastructure for solid-Earth sciences. We recognise the centrality of the users and propose a strategy to sustain their engagement as actors participating in the collaboration. Our approach promotes and enables their active contribution in the construction and maintenance of Common Information Spaces (CISs). These are shaped by conceptual agreements that are captured and maintained to facilitate mutual understanding and to underpin their collaborative work. A user-driven approach shapes the evolution of a CIS based on the requirements of the communities involved in the collaboration. Active users’ engagement is pursued by partitioning concerns and by targeting their interests. For instance, application domain experts focus on scientific and conceptual aspects; data and information experts address knowledge representation issues; and architects and engineers build the infrastructure that populates the common space. We introduce a methodology to sustain CIS and a conceptual framework that has its foundations on a set of agreed Core Concepts forming a Canonical Core (CC). A representation of such a CC is also introduced that leverages and promotes reuse of existing standards: EPOS-DCAT-AP. The application of our methodology shows promising results with a good uptake and adoption by the targeted communities. This encourages us to continue applying and evaluating such a strategy in the future
    corecore