7,739 research outputs found

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with

    A Multi-Agent based Configuration Process for Mass Customization

    Get PDF
    Large product variety in mass customization involves a high internal complexity level inside a companyís operations, as well as a high external complexity level from a customerís perspective. In order to reach a competitive advantage through mass customization, it is necessary to cope with both problems. This is done within the scope of variety formation and variety steering tasks: Variety formation supports customers during the configuration task according to their preferences and knowledge, variety steering tasks internally deal with finding the customizerís optimal offer. Driven by this economic background, we present a comprehensive multi-agent based design for a configuration process in this paper. It is identified as a suitable solution approach integrating both perspectives. The mass customized products are assumed to be based on a modular architecture and each module variant is associated with an autonomous rational agent. Agents must compete with each other in order to join product variants which suit real customersí requirements. The negotiation process is based on a market mechanism supported by the target costing concept and a Dutch auction.Multi-agent systems; Configuration process; Market mechanism; Mass Customization

    Modularization Assessment of Product Architecture

    Get PDF
    Modularization refers to the opportunity for mixing-and-matching of components in a modular product design in which the standard interfaces between components are specified to allow for a range of variation in components to be substituted in a product architecture. It is through mixing-and-matching of these components, and how these components interface with one another, that new systems are created. Consequently, the degree of modularization inherent in a system is highly dependent upon the components and the interface constraints shared among the components, modules, and sub-systems. In this paper, a mathematical model is derived for analyzing the degree of modularization in a given product architecture by taking into consideration the number of components, number of interfaces, the composition of new-to-the-firm (NTF) components, and substitutability of components. An analysis of Chrysler windshield wipers controller suggests that two product architectures may share similar interface constraints, but the opportunity for modularization of one module is significant higher than the other due to the higher substitutability of its components and lower composition of NTF components.Product architecture, modularization, substitutability, new product development

    Stage Configuration for Capital Goods:Supporting Order Capturing in Mass Customization

    Get PDF

    A Framework for Understanding the Interdependencies between Mass Customization and Complexity

    Get PDF
    Mass customization is a business strategy that aims at satisfying individual customer needs, nearly with mass production efficiency. It induces a high complexity level because of various customer requirements and a steadily changing environment. However, mass customization has some potential to reduce complexity. The interdependencies between mass customization and complexity are discussed in order to demonstrate that mass customization is not just an oxymoron linking two opposite production concepts, but a business strategy that contributes towards reaching a competitive advantage. On the one hand, mass customization increases the production program, manufacturing and configuration complexities. On the other hand, it contributes to reduce complexity at the levels of order taking process, product and inventories. The main results attained through the analysis are integrated in a comprehensive framework that shows the complexity increasing and complexity decreasing aspects due to mass customization.Mass Customization; Complexity Management; Product Variety

    Information Modelling for Configurable Components

    Get PDF

    ASSESSING PRODUCT CONFIGURATOR CAPABILITIES FOR SUCCESSFUL MASS CUSTOMIZATION

    Get PDF
    Mass customization is becoming a competitive strategy for companies offering individualized products. Product configurators provide a platform for companies to do interactive product configuration which is essential for mass customization. Companies need to realize the degree of customization appreciated by the customers and the extent of customization that can be offered competitively. This research is an effort to develop an approach to ascertain the product configurator requirements to achieve mass customization. The frameworks developed for this research are validated with a case study
    corecore