

Aalborg Universitet

Information Modelling for Configurable Components

Jørgensen, Kaj Asbjørn

Published in:
Proceedings of the Sixth International Conference on Engineering Computational Technology

Publication date:
2008

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Jørgensen, K. A. (2008). Information Modelling for Configurable Components. In M. Papadrakakis, & B. H. V.
Topping (Eds.), Proceedings of the Sixth International Conference on Engineering Computational Technology
Civil-Comp Press.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60413909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/information-modelling-for-configurable-components(251f7590-b576-11dd-a82d-000ea68e967b).html

Presented at the ECT2008 conference in Athens.

AaU – Department of Production

2008-06-09

Information Modelling for
Configurable Components

Kaj A. Jørgensen

Aalborg University, Dept. of Production, Denmark

kaj@production.aau.dk

Abstract

In this paper, a rather simple approach for modelling of configurable product components is
presented. This approach is based on the theory of general systems and outlined in
combination with the abstraction mechanisms classification and composition together with
object-oriented analysis and design. Throughout the presentation, a previously developed
generic model component is used to illustrate the approach and to prove, how it is based on
a theoretical foundation. The use of the modelling approach is illustrated by presenting
some applications related to an engineer to order company, which must accept long order
horizons and many changes of the orders both before and after order acceptance.
Therefore, it is necessary to concentrate on decisions, which are relatively invariant
throughout order processing. By use of the presented modelling approach, it is shown, how
modelling on multiple abstraction levels can be a solution to such challenges.

Keywords

Mass customisation, product configuration, product family modelling, information modelling,
classification, composition, object-oriented analysis and design.

2

Introduction

Mass Customisation (MC) was initiated more than one decade ago as a research topic with
Davis’ publication “From Future Perfect: Mass Customisation” [Davis, 1989], presenting how
products and services could be realised as a one-of-a-kind manufacture on a large scale.
Davis also presented the idea that the customisation could be done at various points in the
supply chain. In 1993, Pine published a major contribution to the mass customisation
literature: “Mass Customization: The new Frontier in Business Competition” [Pine, 1993],
[Pine et al., 1993], which was an extensive study of how American enterprises during the
seventies and eighties had been overrun by the efficient Japanese manufacturers, which
could produce at lower costs and higher quality. Since its introduction, MC has called for a
change of paradigm in manufacturing and several companies have recognised the need for
mass customisation. Much effort has been put into identifying, which success factors are
critical for an MC implementation and how different types of companies may benefit from it
[Lampel and Mintzberg, 1996], [Gilmore and Pine, 1997], [Sabin, 1998], [Berman, 2002],
[Silveira et al., 2001].

For obvious reasons, there are different strategies on how to implement MC most
appropriately and it varies naturally also between different companies, markets and
products. Because there is not a single generic strategy, it is important to look at the issue
from different viewpoints. The fact that products must be easily customisable in order to
achieve MC has been described comprehensively in the literature. [Berman, 2002] and
[Pine, 1993] proposed that the use of modular product design combined with postponement
of product differentiation would be an enabler to a successful MC implementation. This issue
of course also relates to the question of readiness of the value chain.

Mass Customisation and Product Configuration

An often used approach for implementation of MC is product configuration, in which a series
of products is defined by one single model – a product family model (see figure 1)
[Jørgensen, 2003]. Hence, a product family can be viewed as the set end products, which
can be formed from a product family model. In the product family model, it is described,
which modules are included in the product family model and how they can be combined
[Faltings, 1998]. The result of each configuration will be a model of the configured product,
configured product model. From this model, the physical product can be produced (see
figure 1).

3

Product Family Model

CP1 CPkCP2 CPn

PP1 PP2 PPk PPn

Base
Model

Configured
Product

Physical
Product

C
o
n
fi
g
u
ra

ti
o
n

M
an

u
fa

ct
u
ri
n
g M

o
d
el

 W
o
rl
d

R
ea

l
W

o
rl

d

Figure 1 – Product Family Model as basis for configuration

From time to time, several different methods for defining product family models and product
configurators have been proposed, each with their own advantages. A “Procedure for
building product models” is described in [Hvam, 1999] based on [Hvam, 1994]. It is a
rather practical approach with a seven step procedure, describing how to build a
configuration system from process analysis and product analysis onto implementation and
maintenance. For the product modelling purpose it uses the Product Variant Master method
followed by object-oriented modelling to describe both classification and composition in a
product family. The object-oriented approach is also applied by [Felfernig et al., 2001], who
uses the Unified Modelling Language (UML) to describe a product family. This is done by
using a UML meta model architecture, which can be automatically translated into an
executable logical architecture. In contrast to [Hvam, 1999] this method focuses more on
formulating the object-oriented product structure, rules and constraints most efficiently. The
method also focuses on how the customers’ functional requirements can be translated into a
selection of specific modules in the product family.

Most of the methods, which exist for product family modelling, focus on modelling of the
solution space of a configuration process. This means that they describe the possible
attributes of the products and the product structure. Hence they do typically not focus on
additional information which goes beyond, what must be used to perform the configuration
itself. This kind of information, which could include e.g. customer, market, logistics and
manufacturing information, is according to [Reichwald et al., 2000] similarly important,
since a successful implementation of MC must integrate all information flows in the so called
“Information Cycle of Mass Customisation”.

In [Jiao et al., 1998], [Du et al., 2000] and [Männistö, 2001], mapping of functional
requirements to specific modules is considered. Jiao proposes to use a triple-view
representation scheme to describe a product family. The three views are the functional, the
technical and structural view. The functional view is used to describe, typically the
customers, functional requirements and the technical view is used to describe the design
parameters in the physical domain. The structural view is used for performing the mapping
between the functional and technical view as well as describing the rules of how a product
may be configured. The description of this modelling approach is however rather
conceptual, and does not easily implement in common configuration tools.

A product family model is often the basis for development of a product configurator, a tool,
computer software, which can support users in the configuration process [Faltings, 1998],
for instance by selecting modules to compose products. Hence, with a product configurator,
it is possible to configure multiple individual solutions – perhaps a large set of products.

4

Product Family Models

A product family model (see figure 1) [Jørgensen, 2003] has a set of open specifications,
which have to be decided to determine or configure an individual product in the family. The
product family model is a foundation for configuration and, in order to secure that only legal
configurations can be selected, the family model should contain restrictions about what is
feasible and not feasible. Hence, the product family is defined as the set of possible
products, which satisfy the specifications of the product family model. The result of each
configuration will be a model of the configured product. From this model, the physical
product can be produced (see figure 1). A product configurator can be defined as a tool,
computer software, which is built on the basis of a product family model and which can
support users in the configuration process [Faltings, 1998].

P1 P2

M1 M2 M3 M4 M5

C1 C2 C4 C7 C8C3 C5 C6 C9

Product Level

Module Level

Component Level

Figure 2 Model of the structure with the three levels.

Product configuration in the simplest form is a matter of combining a set of modules (see
figure 2) so that the product model contains information about what modules and
components are to be assembled. In this compositional view, a product consists of a
number of components, which subsequently can consist of other components, etc. Modules
are identified on a level above components from a configuration point of view whereas
components usually are identified from a manufacturing point of view. In general, modules
can be defined on multiple levels and can be configurable too. Most often, the number of
modules is smaller than the number of related components. Thus, in the structural model
for configurable products, products consist of modules and modules consist of components.

In connection with identification of modules, it is important to analyse how modules
interface with each other. Therefore, it is important also to look at the modules functional
characteristics and secure that the modular structure is harmonised with the functional
division of the product [Andreasen, 2003].

Besides structure, products have properties/attributes. It is essential for both the customer
and the producer to focus on properties/attributes of the resulting product. For each
configured product, the resulting properties are dependent of the selected components and
structure of the product.

The dependencies between properties/attributes and module structure is illustrated in figure
3, which shows how underlying modules/components are determined on the basis of
decisions regarding the chosen attributes. Five different alternatives are shown of which
alternative number 1 is an exception from the general scheme.

5

Attribute 1 Attribute 2

Module 2Module 1 Module 3 Module 4

Attribute 3 Attribute 4

Module 5

2 3 4 5

1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Product

Figure 3 Specification of modules directly or indirectly through functionalities.

At selection no. 1, a specific attribute is not selected, because this is a case, where it is
more natural to choose a module directly - typically add-on modules. An example of this is
the sunroof of a car (provided that only one type of sunroof exists). Simply: Sunroof
(Yes/No?).

At selection no. 2, attribute1 is equal to module 2. This can only be fulfilled in one way, and
that is by including module no. 2. For instance, air conditioning equals an air condition
module.

At selection no. 3, attribute no. 2 results in that both module no. 3 and 4 are selected. An
example of this is that if the customer chooses the turbo car model, then both a turbo
engine and ABS brakes must be selected.

Finally, selections no. 4 and 5 show a relatively usual case, where a module is determined
by more than one attribute, i.e. attributes of the module. For instance, a seat can be
specified from two attributes: the colour and whether there should be a headrest or not.
When these two attributes are specified, then one module (a complete seat) can comply
with both attributes.

Mapping of functional requirements to specific modules is considered in [Jiao et al., 1998],
[Du et al., 2000] and [Männistö, 2001]. Jiao proposes to use a triple-view representation
scheme. The three views are the functional, the technical and structural view. The functional
view is used to describe, typically the customer's functional requirements and the technical
view is used to describe the design parameters in the physical domain. The structural view,
which corresponds to the structural level described above, includes the mapping between
the functional and technical view as well as the rules of how a product may be configured.
The description of this modelling approach is however rather conceptual, and does not
easily implement in common configuration tools.

In the product configuration process, algorithms must be available to estimate the resulting
product properties. Some properties are simply the properties of the components, e.g. the
colour of a car is normally defined as the colour of the car body. Other properties are
computed from properties of the components. For example, the weight is simply the sum of
the component's weight. However, not all resulting properties are so easy to determine. For
instance, the resulting performance of a pump is a non-linear function of certain component
properties. Much more complicated examples could be mentioned.

6

Contrasting to this, inverse algorithms must also exist in the case, where the structure is
determined by attributes as described along with figure 3. If, for example, pumps are to be
configured by requirements to performance attributes like pressure and flow, the algorithm
must be able to determine which pump configurations can satisfy these requirements. Such
algorithms will often be rather complicated to develop. Often, an analytic solution can not
be developed with reasonable resources. Instead, a search algorithm may be easier to
develop. If the performance attributes are known and listed in tables or can be calculated
for each possible configuration, the algorithm can perform a search through all these
options. Typically, requirements to the performance attributes are combined with
constraints like "best fit" or "cheapest fit". I such cases, an optimisation problem may be
formulated.

In the following, the term attribute will be used in the models corresponding to properties of
physical products. Consequently, when a configuration is performed, the desired properties
of the resulting product must be determined by defining values of attributes in the product
family model. All relevant attributes of both the resulting product and the available modules
must be specified and their optional values to be selected during configuration tasks must
also be defined. In relation to this, it is important to notice that the selectable modules and
components are sometimes substituted by one or more attributes. For instance, a computer
can be ready for use (attribute) or the operating system is installed (module/component).
Therefore, the configuration process can be considered as a mixture of attribute
specification and selection of modules, which together can satisfy the required attribute
values.

Fundamental Issues of Information Modelling

Methodologies for system development are often based on concepts derived from General
Systems Theory. According to this theory, a system model is an intentionally simplified
description of a system, fulfilling a certain purpose. Hence, the simplifications imply that
some choices are made in order to select the most important properties, components and
relationships. Thus, a system model can e.g. be suitable for communication between
designers, because with the model, it will be possible to concentrate on the most important
aspects of the system. Models are viewed either as analysis models or synthesis models.
Analysis models are models of something existing, often physical objects and synthesis
models are models created as a foundation for construction of something new, which
eventually will become physical – an artefact [Jørgensen, 2002]. Hence, synthesis models
are built purely from ideas, thoughts and imaginations and obtained in some kind of
representation. Design by modelling is a development approach, where a synthesis model is
designed as an intermediate result and the final result is an implementation of the model in
the real world.

Computer-based models are fundamentally stored in computers as data objects and data
structures, which can be manipulated by applications. Therefore, development of tools for
modelling includes both development of a data model and a number of applications with
relationships to the data model [Jazayeri, 2000]. One of the most important requirements
for the data model is that it is non-redundant so that no data value is stored more than
once. In order to ensure that this requirement is fulfilled, the model representation has to
be considered very carefully based on the meaning of data, the semantics. Therefore, the
foundation for a data model is an information model ([Hammer 1978], [Rumbaugh et al.
1999] and [Halpin 2001]), created in combination with semantics from the domain, which
the design model is addressing.

7

An important fundamental issue of information modelling is abstraction mechanisms, which
provide the means for identification and design of invariant components and structures
([Smith 1977a], [Smith 1977b], [Rosch 1978] and [Sowa 1984]). Two abstraction
mechanisms are defined here: composition and classification [Jørgensen, 1998].
Composition focuses on the components and the relationships between the components.
The most frequently used structure is the component structure, which shows aggregation
versus separation. Such a structure is illustrated in figure 4 for a sample computer.

Product structure:
Computer
 Body
 Cpu
 CpuBoard
 Processor x 2
 MemoryUnit x 3
 GraphicBoard
 SoundBoard
 MassStorage
 HardDisc
 CdDrive
 PowerSupply
 Keyboard
 Mouse
 Monitor
 PowerCable

Figure 4 – Sample composition structure of a computer

Classification focuses on identification of classes/types of components based on the
properties/attributes, which characterise them. This can be illustrated in a diagram, termed
taxonomy (see figure 5), where the relationships generalisation versus specialisation are
shown. Often, a UML class diagram is used for the taxonomy ([Rumbaugh et al. 1999]).

In information modelling, composition and classification together support identification of
fundamental structures on a type level as the basis for generation of individual components
on an instance level and they provide the means to set particular focus on the most
invariant decisions. A classification process results in a basic structure of types and a
composition process results in a basic structure of components.

Another important issue of information modelling is the object-oriented paradigm, which can
be adopted in harmony with the abstraction mechanisms. In this paradigm, each model
component is regarded as a living organism, which act and interact with other components.
Thus, object-oriented components are equipped with behavioural attributes, which enable
them to respond to requests and, consequently, even if a real world component is non-
living, the corresponding model is created as an active component.

8

Taxonomy:
Computer components
 Mass storage components
 Hard discs
 Cd drives
 Dvd drives
 Print boards
 Cpu boards
 Graphic boards
 Io boards
 Sound boards
 Tv tuner boards
 Integrated circuits
 Processors
 Memory Units
 Cpu modules
 Mass storage modules
 Cables
 Power cables
 Disc cables
 Other
 Bodies
 Power supplies
 Keyboards
 Mice
 Monitors
 Computers

Figure 5 – Sample taxonomy of computer components

The two abstraction mechanisms are used in design tasks, but, as indicated in figure 6,
classification is used first and composition afterwards. Classification primarily supports the
identification of model components and the basic structure at the type level. Based on this,
the structural considerations are identified by use of composition.

CompositionClassification

Figure 6 – Classification and composition hierarchies

9

A Generic Information Model Component

In order to be able to create all sorts of models and to perform many different modelling
processes, a conception of a generic model component is introduced. This component is
inspired from general systems theory and from object-oriented modelling and can be
regarded as a component that can be used for system models in general and for information
modelling.

Figure 7 - Generic model component

The generic component consists of a set of attributes and a structure of sub-components
(see figure 7). Some attributes are factual attributes, defining the state of the component,
and some attributes are behavioural attributes, defining the operations, which the
component can carry out. An alternative division of attributes defines some attributes as
visible attributes, which can be called from other components, and some are defined as
hidden attributes. The structure establishes the relationships between the component itself
and the sub-components.

All structures can be represented by two kinds of relationships in the information model:
references and collections. For the computer example, a reference could represent the
relationship e.g. between the keyboard and the computer. A collection could represent the
relationship e.g. between the cpu board, the anchor, and multiple memory units, the
members.

Figure 8 - Object type is the basis for generating objects (instances)

10

When a synthesis information model is considered, a foundation for the components must
be established by creating types of components. Component types are the primary content
of information models and it is important to distinguish between modelling on the object
level and modelling on the type level.

Each component type includes a specification of a set of attributes with name and data type.
The classification abstraction mechanism is primary because, based on attributes, the
component types can be classified and organised in a hierarchy, the taxonomy.
Identification and specification of structures can also be included in the component types by
creating the relations, which formulate the constraints regarding attributes and
combinations of sub-components. The component type is a kind of template and, from each
type, an indefinite number of components, instances, can be generated. The quality of these
component types is the key basis to achieve an invariant information model foundation.

Product Family Modelling

There is a need for a methodology to describe and develop models of configurable products.
Companies, who are implementing product configuration, need a comprehensive
terminology and a systematic methodology in order to develop their modular products. It is
of great importance to use well-defined terms and use the agreed terminology consistently
in connection with a well-proven methodology, so that misunderstandings can be avoided
and communication can be eased.

Attributes and Data Structures

As mentioned, products consist of properties, components and structure and similar
contents goes for models of products and product families. In the following, the term
attribute will be used in the models corresponding to properties of physical products.
Consequently, when a configuration is performed, the desired properties of the resulting
product must be determined by defining values of attributes in the product family model. All
relevant attributes of both the resulting product and the available modules must be
specified and their optional values to be selected during configuration tasks must also be
defined. In relation to this, it is important to notice that the selectable modules and
components are sometimes substituted by one or more attributes. For instance, a door can
be lockable (attribute) or it can be equipped with a lock (module/component). Therefore,
the configuration process can be considered as a mixture of attribute specification and
selection of modules, which together can satisfy the required attribute values.

Development of Product Family Models

As stated above, product family models must be able to construct individual product models
through a configuration task. Each product model must have sufficient data about attributes
and structure to describe and manufacture the physical product. Consequently, the basic
elements of product family models are the total set of attributes of the possible product
models and the set of identified modules, each with their internal attributes and data
structures.

The basic units of a product family model are module types. A module type is a model of the
set of modules, which are interchangeable, perhaps with some restrictions. During

11

configuration, individual modules of each type are determined. The attributes of the product
models and the module types are selected on the basis of what is important and relevant.

In the following, the contents of product family models are illustrated by use of simple
elements of a synthetic language. Furthermore, fractions of a simple example of a
computers product family model are added to the illustration.

Each attribute in a module type is defined by a name and probably a data type (Boolean,
Integer, Float, String, Currency, etc.).

This declarative statement shows the syntax for description of a module type:

type name {…}

Example:

type HardDisk {...}

The syntax of attribute declaration with data type is:

 name : data type;

Example:

type HardDisk
{
 Name : string(50);
 StorageCapacity : integer;
 AccessTime : float;
 Price : currency;
}

The available instances of a module type can be listed by a table with a column for each
attribute and a row for each module.

Name StorageCapacity AccessTime Price
Maxtor 10K-3 37 Gb 4,5 ms 1.375 DKK
Maxtor 10K-4 147 Gb 4,4 ms 4.055 DKK
Maxtor 10K-5 300 Gb 4,4 ms 8.975 DKK

Alternatively, module data can be extracted from a database.

Some modules can be configured by selecting attribute values. In this case, each attribute
is not defined by a data type but instead by a domain with the possible values. A domain
can be a set of discrete values, an interval of integer values or a list of named values.

The syntax of an attribute declaration with domain and a possible default value is:

name : {domain} [default value];

12

Example:

type HardDisk
{

 PreSet : {Master, Slave} default Master;
 OperatingSystem : {Non, WinXP, Win2000, WinMe} default WinXP;

}

When module data are specified in form of a table as shown above, the selection of domain
values can be added as columns to the table.

Attributes of a module can be a function of other attributes in the same module or in other
modules. This can be modelled by an expression with standard functions or special functions
as a special algorithm. If the name of a module type is included in such an expression, it
means “number of instances of the type”.

Examples:

type Computer
{
 OperatingSystem : Boolean default true;
 Colour = Case.Colour;
 HardDisks = HardDisk;
 DiskMemory = Sum(HardDisk.StorageCapacity);
 Weight = SumWeight : Double { ... Specific algorithm ... }

}

Structures are represented by special kind of attributes.

The symbol -> represents a reference i.e. a one-to-many relationship

Example:

type Processor
{
Name : string;
...
ContainingBoard -> CpuBoard;
}

The symbol ->> represents a collection i.e. a one-to-many relationship

Example:

type Cpu
{
...
RelatedGraphicBoards ->> GraphicBoard;
RelatedIoBoards ->> IoBoard;
...
}

13

Typically for module types, it is possible to add relations. In general, there are four different
kinds of relations, see figure 9.

Figure 9 – Four kinds of relations

Among other things, relations of category 1 are used to specify product structures. Here, it
is described that a product/module (instance of a module type) consists of modules
(instances of other module types), which eventually also consist of modules etc. until the
component level is reached. In a module type, such a relation expresses the module types
for possible sub modules. Furthermore, a multiplicity is specified in order to form a basic
expression about the number of instances that can be included.

The syntax for relations describing contents is:

contents { multiplicity module type; ... }

Multiplicities is formulated with the syntax:

from .. to

where from is typically 0 or 1 and to is typically a fixed number or any number greater than
or equal to from. This is indicated by a *.

Examples:

1..* from one to many
0..* from none to many
1..1 one and only one

Example:

type Cpu
{

 contents { 1..1 CpuBoard; 1..* Processor; 1..* MemoryUnit ;}

}

14

type ComputerCase
{

 contents { 1..1 PowerSupply; 0..* PowerCable; }

}

All other kinds of relations are formulated by arithmetic expressions. Here, the ordinary
arithmetic operators like addition, subtraction, multiplication and division can be used
together with standard functions. The following arithmetic relation operators =, >=, <=, >,
< and <> can also be used along with the logical operators AND, OR, XOR, NOT, implication
(⇒) and bi-implication (⇔). If the name of a module type is included in a logical expression,
it means ”instance of the type”.

Examples of relations with arithmetic and logical operators are:

type Cpu
{
 constraints
 {
 GraphicBoard + IoBoard + TvTunerBoard <= NbOfBusSlots;
 Processor <= ProcessorSlots;

 }
}

type Computer
{
 constraints
 {
 Monitor <= 2;
 HardDisk + CdDrive + DvdDrive <= DiskCable * 2;
 OperatingSystem ⇒ HardDisk.OperatingSystem <> Non;
 CdDrive not ⇔ DvdDrive;

 }
}

As previously stated, the classification abstraction mechanism is fundamental for
identification and definition of types; hence, the module types above are actually related to
each other as indicated in figure 5.

The syntax of the relationships between super-types and sub-types is:

type name1 subtypeof name2 { ... }

Examples:

type ComputerComponent { ... }

 type MassStorageComponent subtypeof ComputerComponent { ... }

 type HardDisk subtypeof MassStorageComponent { ... }

 type Cpu subtypeof ComputerComponent { ... }

15

 type IntegratedCircuit subtypeof ComputerComponent { ... }

 type Processor subtypeof IntegratedCircuit { ... }

 type Other subtypeof ComputerComponent { ... }

 type Computer subtypeof Other { ... }

With classification, it is defined that attributes in super-types are inherited to sub-types.

Abstraction by Classification

Regardless of whether the selection of modules is implicit or explicit, multiple abstraction
levels can also be established by the use of classification. In a taxonomy over module types
(see figure 5), the types towards the root are the most general types whereas the types
towards the leaves are the most special types. Therefore, a selection of relatively general
types represents a higher abstraction level compared to selection of relatively special types.

Taxonomy:
Computer components
 ...
 Print boards
 ...
 Sound boards
 Surround
 4.1 channels
 5.1 channels
 6.1 channels
 Stereo
 Ordinary
 Four point
 3D
 ...
 ...

Figure 10 – Further classification of sound boards

Figure 10 shows a partial taxonomy as a further classification of a specific module type of
figure 5 and reveals two additional levels of specialisation. Clearly, this example illustrates
that a preliminary selection of a relatively general type is a way of postponement, i.e. some
indications are given but further specifications can be submitted.

All module types have attributes, which can be included in the configuration process.
Besides an obvious price attribute, further technical properties of the available modules can
be represented as attributes of the module types. These attributes can be located at
different levels of the taxonomy depending on how general or special they are.
Consequently, a selection of a type results in a set of additional attributes, which can be
used for further specification. However, if a specification of a specific attribute is required, a
specialisation down to a certain level is implicitly made. If for instance something is required

16

about attributes which are only relevant for stereo sound, then stereo sound boards are
implicitly selected.

In general, classification is very much related to attributes. Besides what is already
described, identification of sub-modules can be based on values of attributes. For instance,
the sub-types of surround sound board could be identified by values of an attribute
'NoOfChannels'. In fact, this attribute could remove the need for classification at the lowest
level. Hence, if multiple classifications of these sound boards were relevant, i.e. if multiple
and equally important classification criteria exit, it will be more flexible to identify the
corresponding attributes and their possible values.

Sample Applications of Product Family Modelling

Many observations indicate that implementation of Mass Customisation and product
configuration in ETO companies must focus on product modelling in order to gain immediate
economic results from saving resources for tendering and order processing. This top-down
development approach is also important when different organisational units must be joined
and different software applications and databases must be integrated. Therefore, a number
of theoretical topics about system modelling, product modelling, modelling of product
families, information modelling and data modelling must be utilised.

In this paper, it is proposed that modelling of product families should be performed in a way
that multiple levels of abstraction can be identified and a top-down configuration approach
with specification of attributes and structure. This is especially suitable for order processing
over long time, where it is important to control the degree of freedom at different steps. It
is necessary to postpone certain decision until enough requirements are available.

The proposed approach is currently under implementation at the Danish case company,
Aalborg Industries, which is producing a range of boiler plants, primarily for the marine
sector. Here, the development of product family models and product configurators has been
carried on for several years starting with a simple model for calculation of quotations. In
later versions, data from the product configurator has been used as parameter input to
other software applications for producing data sheets and drawings. This development has
proved the necessity to set greater focus on product modelling on multiple abstraction
levels.

The current version of the product configurator is web-based so that sales and tendering
can take place everywhere around the world. This technology will also be used in the future
and the company is now developing a more advanced product model and related product
configurator software modules with the purpose of integrating more of the existing software
applications and get more optimised order processing and production planning.
Furthermore, supply chain management issues are taken into consideration so that
decisions about selection of manufacturing locations and suppliers can be optimised.
Especially, issues about interaction with ERP systems are important and require software
modules for automatic interfacing.

As described for the case company, the order horizon can be rather long and many changes
in the order specification occur. Hence, for this company, it will be important to rise to a
higher abstraction level by setting focus on specification of attributes and move away from
the structural model of configuration.

17

Configuration by performance

When configuring a boiler plant, the main functional attributes are often the following:
'Steam capacity', the amount of steam which the boiler is able to produce,
'Working pressure', the pressure of the steam delivered by the boiler, 'Waste heat recovery
capability', the ability of the boiler to transform heat from exhaust gas to steam and
'Fuel oil type', the type and viscosity of fuel oil the boiler can use.

The 'Steam capacity' and 'Working pressure' are the main attributes that determine which
type of boiler will meet the customer's requirements. Although some combinations of
capacity and pressure will allow the selection of different product types, the configuration of
these parameters will delimit the possible product types. Values of these parameters will
also have a major impact on other physical form of the boiler such as geometry and dry
weight. The waste heat recovery capability of the boiler however, is a binary attribute and
the selection of this will have major influence and narrow down the solution space. Finally,
the fuel oil type may also constrain the solutions substantially. If for example heavy fuel oil
is to be used, a number of product types will not be an option, since these are not
constructed to be able to burn heavy fuel oil, but solely marine diesel. The selection of fuel
type will also have a direct implication on the burner selection, which is a sub module to the
boiler. Hence, the configuration of this parameter will have implication on both the boiler,
and the subcomponents of the boiler.

Say for instance that a customer requires a 'Steam capacity' of 20 ton/hour, no 'Waste heat
recovery capability' and 'Fuel oil type' is marine diesel. Then the solution space is reduced to
two product families 'Mission OM' and 'Mission OL'. As 'Mission OL' is the cheapest for equal
capacities, this will be the primary choice. However 'Mission OL' is higher than 'Mission OM'
and must therefore be selected if the height is limited. Furthermore, multiple burners are
available for 'Mission OM' and not for 'Mission OL'. If, in addition, a certain 'Working
pressure' is needed the thickness of the boiler shell must be set appropriately. A pressure of
9 bar requires 18 mm thickness, while 18 bar increase the thickness to 32 mm.

As indicated, it will be very difficult to develop an algorithm, which can determine the
structure based upon requirements to the functional attributes. Consequently, the
preliminary plan is to develop a search algorithm, which can scan the possible solutions.
This algorithm will most likely also need to handle additional constraints like 'Cheapest fit' or
'3 best fit' and it must necessarily also provide some cost data.

Module supply

Many modules can be purchased as products from multiple suppliers, which can deliver with
a variety of properties for sizes, price, performance, quality, lead time, etc. Two examples
from the case company can illustrate this. In the first example, alternative feed water
pumps for boilers can be selected as illustrated in table 1.

Delivery head

Bar(gauge)
Capacity

m3/h
Supply voltage

V
Price

 €

(Requirements) (>= 22) (>= 25) (3 x 330)

Product 1 23 25.5 3 x 330 1600

Product 2 *) 25 30 3 x 330 2000

Product 3 **) 24 25 3 x 330 1800

18

*) Has frequency converter drive, i.e. significantly lower power consumption
**) Approved for running in explosion risky zones

Table 1 – Alternative feed water pumps specified with a set of attributes

The table shows that three sample requirements are specified and that tree different pump
products can satisfy the requirements. It also shows that additional attributes may be taken
into consideration if further specifications have to be made.

In the second example, it is shown that alternative safety valves can be selected (see table
2).

Set

pressure
Bar(gauge)

Size
Production

location
Delivery

time
Price

 €

(Requirements) (19) (DN50)
(Deliv. location:

Finland)

Product 1 19 DN50 Germany 2 days 200

Product 2 19 DN50 China 30 days 130

Table 2 – Alternative feed water pumps specified with a set of attributes

Two valve products satisfy the requirements but, as shown, with great difference between
the prices. A significant attribute is the delivery time, which may set serious limitations
regarding the time for procurement. However, this is dependent on the production location
so, if for instance the production location is changed to the East Asia, a dramatic reduction
of delivery time and price can be reached.

Abstraction by Classification

Two examples of abstraction by classification can also be presented (see [Jørgensen, 2008]
for description of the syntax). Example one is about oil fired boilers, where the module type
'OilfiredBoiler' is the super-type for two sub-types 'MissionOS' and 'MissionOL'. Two
attributes show the decision making, 'BurnerType' and 'Capacity'.

type OilfiredBoiler
{
 BurnerType : {KB,KBO,KBE,KBSA,KBSD};
 Capacity : [1.6 .. 15.5];
}

type MissionOS subtypeof OilfiredBoiler
{
 BurnerType : {KB,KBO} default KB;
 Capacity : [1.6 .. 6.5];
 ...
}

type MissionOL subtypeof OilfiredBoiler {...}
Etc.

19

For oil fired boilers, the burner type can be any of the listed values, while for mission OS
boilers only a subset of burners is valid. The capacity for mission OS boilers is similarly
narrowed compared to the oil fired boilers in total.

Example two regards feed water pump units, where there are two sub-types and where the
regulation type differs.

type FeedWaterPumpUnit
{ RegulationType : {OnOff,Modulating}; }

type FeedWaterPumpUnitOnOff subtypeof FeedWaterPumpUnit
{ RegulationType : {OnOff}; }

type FeedWaterPumpUnitModulating subtypeof FeedWaterPumpUnit
{ RegulationType : {Modulating}; }

Both examples show that the super-type modules represent decisions on a higher
abstraction level because selection of a general module type establish some degree of
specification while remaining decisions are postponed. In contrast, sub-types represent
decisions about more precise specifications. In the sales process, it will be possible to assist
the customers with decisions about how specific they must be from the beginning. A balance
must be obtained. Relatively specific decisions give more precise estimations (cost, required
capacity, delivery, etc.) but are most likely subject to changes and, on the other hand,
decisions on a more general level will lead to uncertainty about estimations. A key issue in
relationship with configuration is to develop models for calculating estimations based on
different levels of abstraction in decision making.

Conclusion

In this paper, it is underlined that there are some fundamental issues of information
modelling, which can be applied to product family modelling. For Product family models, it is
important to identify the attributes in the model of the end-products and, because some
attributes in models of product families will be assigned values during the configuration
process, they must be defined with optional values i.e. domains. It is also characteristic for
product family models that relations/constraints must be defined between attributes of the
possible end-products and the attributes of the identified modules/components.

As a basis for development of detailed information models, a generic model component is
presented. Likewise, a generic component type is introduced as the basis for creation of
information models. According to this type, the basic content of product family models is
proposed in form of a module type and a simple synthetic language is presented. The use of
this module type is illustrated by a number of examples.

In the paper, special focus is set on how to develop product family models, which can
support product configuration on multiple abstraction levels – suitable for some engineer-to-
order companies with long order horizons. First of all, it is proposed that configuration is
performed by specification of attributes instead of selection of modules. This means that the
structure of end-products is defined indirectly based on the values of attributes. Thereby,
configuration is more oriented towards customer needs because attributes are essential in
connection with the functional demands from customers. Further, it is proposed that, when
modules are selected, it is important to develop classifications of module types and form a
taxonomy. Such a structure is well suitable for identification of multiple abstraction levels by
classification, where specifications can range from a general level to a more specific level.

20

The aim of developing product family models is that they can be used as a foundation for
development of specific product configurator software and the proposed methodology,
included in this paper, is for the moment being used by a particular ETO company, which
intend to develop an advanced product family model and a product configurator that can
support many organisational functions in the company world wide. Especially, the top-down
approach with modelling on multiple abstraction levels are followed very closely and
considerable amount of specially designed software modules are being developed.

References

[Andreasen 2003]
Andreasen, Mogens Myrup (2003). Relations between modularisation and product
structuring. In Proceedings of the 6th workshop on Product Structuring – application of
product models, MEK-DTU, Denmark, pp. 1-15.

[Berman 2002]
Berman, B. (2002). Should your firm adopt a mass customization strategy? Business
Horizons, 45(4):51–60.

[Davis 1989]
Davis, S. (1989). From future perfect: Mass customizing. Planning Review.

[Du et al. 2000]
Du, X., Jiao, J., and Tseng, M. M. (2000). Architecture of product family for mass
customization. In Proceedings of the 2000 IEEE International Conference on
Management of Innovation and Technology.

[Faltings 1998]
Faltings, Boi and Freuder, Eugene C. (Ed.): Configuration - Getting it right. Special issue
of IEEE Intelligent Systems. Vol.13, No. 4, July/August 1998.

[Felfernig et al. 2001]
Felfernig, A., Friedrich, G., and Jannach, D. (2001). Conceptual modeling for
configuration of mass-customizable products. Artificial Intelligence in Engineering,
15:165–176.

[Gilmore and Pine 1997]
Gilmore, J. and Pine, J. (1997). The four faces of mass customization. Harvard Business
Review 75 (1).

[Halpin 2001]
T. Halpin: Information Modeling and Relational Databases: From Conceptual Analysis to
Logical Design, 3rd ed. Morgan Kaufmann 2001.

[Hammer 1978]
Hammer, Michael and McLeod, Dennis: The Semantic Data Model: A Modelling
Mechanism for Data Base Applications. Proceedings of ACM/SIGMOD International
Conference on Management of Data. Austin Texas, pp.144-156, 1978.

[Hvam 1994]
Hvam, L. (1994). Anvendelse af produktmodellering, -set ud fra en
arbejdsforberedelsessynsvinkel. PhD thesis, Driftteknisk Institut, DTU.

[Hvam 1999]
Hvam, L. (1999). A procedure for building product models. Robotics and Computer-
Integrated Manufacturing, 15:77–87.

21

[Jazayeri 2000]
Jazayeri, M.; Ran, A. and van den Linden, F.: Software architecture for product families:
Principles and practice. Addison-Wesley, 2000.

[Jiao et al. 1998]
Jiao, J.; Tseng, M. M.; Duffy, V. G. and Lin, F. (1998). Product family modeling for mass
customization. Computers & Industrial Engineering, 35:495–198.

[Jørgensen 1998]
Jørgensen, Kaj A.: Information Modelling: foundation, abstraction mechanisms and
approach. In: Journal of Intelligent Manufacturing, vol.9, no.6, 1998. Kluwer Academic
Publishers, The Netherlands.

[Jørgensen 2002]
Jørgensen, Kaj A.: A Selection of System Concepts. Aalborg University, Department of
Production, 2002.

[Jørgensen 2003]
Kaj A. Jørgensen: Information Models Representing Product Families. Proceedings of 6th
Workshop on Product Structuring, 23rd and 24th January 2003, Technical University of
Denmark, Dept. of Mechanical Engineering.

[Lampel and Mintzberg 1996]
Lampel, J. and Mintzberg, H. (1996). Customizing customization. Sloan Management
Review, 38:21–30.

[Männistö 2001]
Männistö, M. M.; Peltonen, H.; Soininen T. and Sulonen, R.: Multiple Abstraction Levels
in Modelling Product Structures. Data and Knowledge Engineering no.36, pp.55-78,
2001.

[Pine 1993]
Pine, B. Joseph: Mass Customization - The New Frontier in Business Competition.
Harvard Business School Press, Boston Massachusetts, 1993.

[Pine et al. 1993]
Pine, J., Victor, B., and Boyton, A. (1993). Making mass customization work. Harvard
Business Review 71 (5), 71(5):108–119.

[Pine and Gilmore 1999]
Pine, J. and Gilmore, J. (1999). The Experience Econmy : Work Is Theater & Every
Business a Stage.

[Reichwald et al. 2000]
Reichwald, R., Piller, F. T., and M¨oslein, K. (2000). Information as a critical succes
factor or: Why even a customized shoe not always fits. In Proceedings Administrative
Sciences Association of Canada, International Federation of Scholarly Associations of
Management 2000 Conference.

[Rosch 1978]
Rosch, Eleanor: Principles of Categorisation. In: Cognition and Categorization. Laurence
Erlbaum, Hillsdale, Jew Jersey, 1978.

[Rumbaugh et al. 1999]
Rumbaugh, J.; Jacobson, I. and Booch, G: The Unified Modeling Language Reference
Manual. Addison-Wesley 1999.

[Sabin 1998]
Sabin, D. and Weigel, R.: Product Configuration Frameworks - A survey. In IEEE
intelligent systems & their appplications, 13(4):42-49, 1998.

22

[Silveira et al. 2001]
Silveira, G. D., Borenstein, D., and Fogliatto, F. S. (2001). Mass customization:
Literature review and research directions. Int. Journal of Production Economics, 72:1–
13.

[Smith 1977a]
Smith, J. M. and Smith, D. C. P.: Database Abstractions: Aggregation. Communications
of the ACM vol.20, no.6. pp.405-413 New York 1977.

[Smith 1977b]
Smith, J. M. and Smith, D. C. P.: Database Abstractions: Aggregation and
Generalization. ACM transactions on Data Base Systems, vol.2, no.2. pp.105-133 New
York 1977.

[Sowa 1984]
Sowa, John F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

