1,592 research outputs found

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Approximating the Graph Edit Distance with Compact Neighborhood Representations

    Full text link
    The graph edit distance is used for comparing graphs in various domains. Due to its high computational complexity it is primarily approximated. Widely-used heuristics search for an optimal assignment of vertices based on the distance between local substructures. While faster ones only consider vertices and their incident edges, leading to poor accuracy, other approaches require computationally intense exact distance computations between subgraphs. Our new method abstracts local substructures to neighborhood trees and compares them using efficient tree matching techniques. This results in a ground distance for mapping vertices that yields high quality approximations of the graph edit distance. By limiting the maximum tree height, our method supports steering between more accurate results and faster execution. We thoroughly analyze the running time of the tree matching method and propose several techniques to accelerate computation in practice. We use compressed tree representations, recognize redundancies by tree canonization and exploit them via caching. Experimentally we show that our method provides a significantly improved trade-off between running time and approximation quality compared to existing state-of-the-art approaches
    • …
    corecore