4 research outputs found

    A survey of large-scale reasoning on the Web of data

    Get PDF
    As more and more data is being generated by sensor networks, social media and organizations, the Webinterlinking this wealth of information becomes more complex. This is particularly true for the so-calledWeb of Data, in which data is semantically enriched and interlinked using ontologies. In this large anduncoordinated environment, reasoning can be used to check the consistency of the data and of asso-ciated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insightsfrom the data. However, reasoning approaches need to be scalable in order to enable reasoning over theentire Web of Data. To address this problem, several high-performance reasoning systems, whichmainly implement distributed or parallel algorithms, have been proposed in the last few years. Thesesystems differ significantly; for instance in terms of reasoning expressivity, computational propertiessuch as completeness, or reasoning objectives. In order to provide afirst complete overview of thefield,this paper reports a systematic review of such scalable reasoning approaches over various ontologicallanguages, reporting details about the methods and over the conducted experiments. We highlight theshortcomings of these approaches and discuss some of the open problems related to performing scalablereasoning

    Scaling Up Description Logic Reasoning by Distributed Resolution

    Full text link
    Benefits from structured knowledge representation have motivated the creation of large description logic ontologies. For accessing implicit information and avoiding errors in ontologies, reasoning services are necessary. However, the available reasoning methods suffer from scalability problems as the size of ontologies keeps growing. This thesis investigates a distributed reasoning method that improves scalability by splitting a reasoning process into a set of largely independent subprocesses. In contrast to most description logic reasoners, the proposed approach is based on resolution calculi. We prove that the method is sound and complete for first order logic and different description logic subsets. Evaluation of the implementation shows a heavy decrease of runtime compared to reasoning on a single machine. Hence, the increased computation power pays off the overhead caused by distribution. Dependencies between subprocesses can be kept low enough to allow efficient distribution. Furthermore, we investigate and compare different algorithms for computing the distribution of axioms and provide an optimization of the distributed reasoning method that improves workload balance in a dynamic setting

    MapResolve

    Full text link
    corecore