34,477 research outputs found

    MOON: MapReduce On Opportunistic eNvironments

    Get PDF
    Abstract—MapReduce offers a flexible programming model for processing and generating large data sets on dedicated resources, where only a small fraction of such resources are every unavailable at any given time. In contrast, when MapReduce is run on volunteer computing systems, which opportunistically harness idle desktop computers via frameworks like Condor, it results in poor performance due to the volatility of the resources, in particular, the high rate of node unavailability. Specifically, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate for resources with high unavailability. To address this, we propose MOON, short for MapReduce On Opportunistic eNvironments. MOON extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms in order to offer reliable MapReduce services on a hybrid resource architecture, where volunteer computing systems are supplemented by a small set of dedicated nodes. The adaptive task and data scheduling algorithms in MOON distinguish between (1) different types of MapReduce data and (2) different types of node outages in order to strategically place tasks and data on both volatile and dedicated nodes. Our tests demonstrate that MOON can deliver a 3-fold performance improvement to Hadoop in volatile, volunteer computing environments

    Locality-Aware Hybrid Coded MapReduce for Server-Rack Architecture

    Full text link
    MapReduce is a widely used framework for distributed computing. Data shuffling between the Map phase and Reduce phase of a job involves a large amount of data transfer across servers, which in turn accounts for increase in job completion time. Recently, Coded MapReduce has been proposed to offer savings with respect to the communication cost incurred in data shuffling. This is achieved by creating coded multicast opportunities for shuffling through repeating Map tasks at multiple servers. We consider a server-rack architecture for MapReduce and in this architecture, propose to divide the total communication cost into two: intra-rack communication cost and cross-rack communication cost. Having noted that cross-rack data transfer operates at lower speed as compared to intra-rack data transfer, we present a scheme termed as Hybrid Coded MapReduce which results in lower cross-rack communication than Coded MapReduce at the cost of increase in intra-rack communication. In addition, we pose the problem of assigning Map tasks to servers to maximize data locality in the framework of Hybrid Coded MapReduce as a constrained integer optimization problem. We show through simulations that data locality can be improved considerably by using the solution of optimization to assign Map tasks to servers.Comment: 5 pages, accepted to IEEE Information Theory Workshop (ITW) 201

    Garbage collection auto-tuning for Java MapReduce on Multi-Cores

    Get PDF
    MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests

    Efficient Multi-way Theta-Join Processing Using MapReduce

    Full text link
    Multi-way Theta-join queries are powerful in describing complex relations and therefore widely employed in real practices. However, existing solutions from traditional distributed and parallel databases for multi-way Theta-join queries cannot be easily extended to fit a shared-nothing distributed computing paradigm, which is proven to be able to support OLAP applications over immense data volumes. In this work, we study the problem of efficient processing of multi-way Theta-join queries using MapReduce from a cost-effective perspective. Although there have been some works using the (key,value) pair-based programming model to support join operations, efficient processing of multi-way Theta-join queries has never been fully explored. The substantial challenge lies in, given a number of processing units (that can run Map or Reduce tasks), mapping a multi-way Theta-join query to a number of MapReduce jobs and having them executed in a well scheduled sequence, such that the total processing time span is minimized. Our solution mainly includes two parts: 1) cost metrics for both single MapReduce job and a number of MapReduce jobs executed in a certain order; 2) the efficient execution of a chain-typed Theta-join with only one MapReduce job. Comparing with the query evaluation strategy proposed in [23] and the widely adopted Pig Latin and Hive SQL solutions, our method achieves significant improvement of the join processing efficiency.Comment: VLDB201
    corecore