61,745 research outputs found

    Autonomous Driving Platform Performance Analysis

    Get PDF
    Through data analysis of various plots and figures it will be possible to determine the best control parameters to get the best performance out of the autonomous driving platform. This data, presented in this thesis, will show quantitatively what the best control strategies are through comparison of different versions of the platform

    User interface and function library for ground robot navigation

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2017A web application user interface and function library were developed to enable a user to program a ground robot to navigate autonomously. The user interface includes modules for generating a grid of obstacles from a map image, setting waypoints for a path through the map, and programming a robot in a code editor to navigate autonomously. The algorithm used for navigation is an A* algorithm modified with obstacle padding to accommodate the width of the robot and path smoothing to simplify the paths. The user interface and functions were designed to be simple so that users without technical backgrounds can use them, and by doing so they can engage in the development process of human-centered robots. The navigation functions were successful in finding paths in test configurations, and the performance of the algorithms was fast enough for user interactivity up to a certain limit of grid cell sizes

    User interface and function library for ground robot navigation

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2017A web application user interface and function library were developed to enable a user to program a ground robot to navigate autonomously. The user interface includes modules for generating a grid of obstacles from a map image, setting waypoints for a path through the map, and programming a robot in a code editor to navigate autonomously. The algorithm used for navigation is an A* algorithm modified with obstacle padding to accommodate the width of the robot and path smoothing to simplify the paths. The user interface and functions were designed to be simple so that users without technical backgrounds can use them, and by doing so they can engage in the development process of human-centered robots. The navigation functions were successful in finding paths in test configurations, and the performance of the algorithms was fast enough for user interactivity up to a certain limit of grid cell sizes

    TiEV: The Tongji Intelligent Electric Vehicle in the Intelligent Vehicle Future Challenge of China

    Full text link
    TiEV is an autonomous driving platform implemented by Tongji University of China. The vehicle is drive-by-wire and is fully powered by electricity. We devised the software system of TiEV from scratch, which is capable of driving the vehicle autonomously in urban paths as well as on fast express roads. We describe our whole system, especially novel modules of probabilistic perception fusion, incremental mapping, the 1st and the 2nd planning and the overall safety concern. TiEV finished 2016 and 2017 Intelligent Vehicle Future Challenge of China held at Changshu. We show our experiences on the development of autonomous vehicles and future trends

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201
    • …
    corecore