32,094 research outputs found

    Automatic Metro Map Layout Using Multicriteria Optimization

    Get PDF
    This paper describes an automatic mechanism for drawing metro maps. We apply multicriteria optimization to find effective placement of stations with a good line layout and to label the map unambiguously. A number of metrics are defined, which are used in a weighted sum to find a fitness value for a layout of the map. A hill climbing optimizer is used to reduce the fitness value, and find improved map layouts. To avoid local minima, we apply clustering techniques to the map the hill climber moves both stations and clusters when finding improved layouts. We show the method applied to a number of metro maps, and describe an empirical study that provides some quantitative evidence that automatically-drawn metro maps can help users to find routes more efficiently than either published maps or undistorted maps. Moreover, we found that, in these cases, study subjects indicate a preference for automatically-drawn maps over the alternatives

    A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing

    Full text link
    Motivated by an open problem from graph drawing, we study several partitioning problems for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n lines in R^2, there is a line l such that in both line sets, for both halfplanes delimited by l, there are n^{1/2} lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines there is a point such that for any halfplane containing that point there are (n/3)^{1/2} of the lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and obtain a center transversal theorem, a same-type lemma, and a positive portion Erdos-Szekeres theorem for hyperplane arrangements. This is done by formulating a generalization of the center transversal theorem which applies to set functions that are much more general than measures. Back to Graph Drawing (and in the plane), we completely solve the open problem that motivated our search: there is no set of n labelled lines that are universal for all n-vertex labelled planar graphs. As a side note, we prove that every set of n (unlabelled) lines is universal for all n-vertex (unlabelled) planar graphs

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Upward Point-Set Embeddability

    Full text link
    We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph DD has an upward planar embedding into a point set SS. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of kk-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 11-switch tree), we show that not every kk-switch tree admits an upward planar straight-line embedding into any convex point set, for any k2k \geq 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure
    corecore