Motivated by an open problem from graph drawing, we study several
partitioning problems for line and hyperplane arrangements. We prove a
ham-sandwich cut theorem: given two sets of n lines in R^2, there is a line l
such that in both line sets, for both halfplanes delimited by l, there are
n^{1/2} lines which pairwise intersect in that halfplane, and this bound is
tight; a centerpoint theorem: for any set of n lines there is a point such that
for any halfplane containing that point there are (n/3)^{1/2} of the lines
which pairwise intersect in that halfplane. We generalize those results in
higher dimension and obtain a center transversal theorem, a same-type lemma,
and a positive portion Erdos-Szekeres theorem for hyperplane arrangements. This
is done by formulating a generalization of the center transversal theorem which
applies to set functions that are much more general than measures. Back to
Graph Drawing (and in the plane), we completely solve the open problem that
motivated our search: there is no set of n labelled lines that are universal
for all n-vertex labelled planar graphs. As a side note, we prove that every
set of n (unlabelled) lines is universal for all n-vertex (unlabelled) planar
graphs