12 research outputs found

    Fuzzy Logic Deadzone Compensation for a Mobile Robot

    Get PDF

    Modeling, Analysis, and Control of a Mobile Robot for \u3ci\u3eIn Vivo\u3c/i\u3e Fluoroscopy of Human Joints during Natural Movements

    Get PDF
    In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while dynamically tracking the desired skeletal joint of interest. In addition to the joint tracking, this also requires the robotic platform to move along with the subject, allowing the manipulators to operate within their ranges of motion. A comprehensive dynamic model of the robotic fluoroscope prototype was created, incorporating the dynamic coupling of the system. Empirical data collected from an RGB-D camera were used to create a human kinematic model that can be used to simulate the joint of interest target dynamics. This model was incorporated into a computer simulation that was validated by comparing the simulation results with actual prototype experiments using the same human kinematic model inputs. The computer simulation was used in a comprehensive dynamic analysis of the prototype and in the development and evaluation of sensing, control, and signal processing approaches that optimize the subject and joint tracking performance characteristics. The modeling and simulation results were used to develop real-time control strategies, including decoupling techniques that reduce tracking error on the prototype. For a normal walking activity, the joint tracking error was less than 20 mm, and the subject tracking error was less than 140 mm

    Control of an anthropomorphic manipulator involved in physical human-robot interaction

    Get PDF
    Dissertação de mestrado em Engenharia MecânicaThe objective of the dissertation is to flexibly control the end effector velocity of a redundant 7-DOF manipulator by using a differential kinematics approach, while ensuring the safety of the robotic arm from exceeding the physical limits of joints in terms of position, velocity and acceleration. The thesis also contributes with a real-time obstacle avoidance strategy for controlling anthropomorphic robotic arms in dynamic obstacle environments, taking account of sudden appearances or disappearances of mobile obstacles. A method for compensating force errors due to changes in the orientation of end effectors, independent from structures of force sensors, is developed to achieve high accuracy in force control applications. A novel method, the Virtual Elastic System, is proposed to control mobile manipulators for physical Human-Robot Interaction (pHRI) tasks in dynamic environments, which enables the combination of an Inverse Differential Kinematics for redundant robotic arms and a Dynamical Systems approach for nonholonomic mobile platforms. Experiments with a 7-DOF robotic arm, side-mounted on a nonholonomic mobile platform, are presented with the whole robot obstacle avoidance, proving the efficiency of the developed method in pHRI scenarios, more specifically, cooperative human-robot object transportation tasks in dynamic environments. Extensions of the method for other mobile manipulators with holonomic mobile platforms or higher degrees of freedom manipulators are also demonstrated through simulations

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Développement d’un simulateur de propulsion en fauteuil roulant manuel avec biofeedback haptique

    Get PDF
    La propulsion en fauteuil roulant manuel entraîne une charge élevée et répétée aux épaules, si bien que près d’un utilisateur sur deux y développera de la douleur chronique au cours de sa vie. Il est possible qu’une légère amélioration de l’efficacité de la propulsion contribuerait à réduire le risque et la prévalence de douleur à long terme. Or, l’entraînement de sujets en vue d’améliorer leur efficacité de propulsion a déjà été tenté à l’aide de biofeedback visuel et a fourni des résultats mitigés. En se basant sur les récentes avancées en réadaptation assistée par robotique, nous émettons l’hypothèse qu’un biofeedback haptique serait plus adapté que le biofeedback visuel pour modifier la direction des forces appliquées par l’utilisateur. Le développement d’un simulateur de propulsion en fauteuil roulant manuel constitue le sujet de cette thèse, ce simulateur permettant de fournir un biofeedback haptique à l’utilisateur de façon à rediriger son parcours de direction de forces vers un parcours prédéterminé. Un estimateur de l’orientation des roues avant d’un fauteuil roulant est tout d’abord développé et présenté, celui-ci permettant de déterminer l’orientation des forces de résistance au roulement. Sa précision est de ±5○ à ±8○ selon la trajectoire du fauteuil. Un modèle dynamique du fauteuil et une technique d’identification de ses paramètres sont ensuite développés et validés avec 10 sujets. Comparativement au modèle d’un ergomètre à rouleaux standard, ce modèle estime la vitesse des roues arrière avec près de la moitié de l’erreur lors de manoeuvres de tournants, avec des erreurs de vitesse RMS (valeur efficace) de 6 % à 13 % selon la trajectoire du fauteuil. En troisième lieu, un simulateur de propulsion en fauteuil roulant est réalisé en tant qu’interface haptique à commande d’admittance. Ce simulateur reproduit le modèle dynamique du fauteuil développé précédemment avec une erreur de vitesse RMS de moins de 0,9 %. Finalement, une étude préliminaire sur le biofeedback haptique est réalisée sur un sujet pilote. Cette étude a permis d’augmenter l’efficacité de la propulsion du sujet de 10 %. Le simulateur développé dans cette thèse servira dans un premier temps à étudier l’impact sur l’épaule de différents parcours de direction de forces, et contribuera à étendre les connaissances actuelles sur les meilleures techniques de propulsion. Par la suite, il permettra d’entraîner les utilisateurs de fauteuil roulant manuel à utiliser une technique de propulsion optimale, de façon à réduire le risque de développer de la douleur chronique à l’épaule

    Research on a semiautonomous mobile robot for loosely structured environments focused on transporting mail trolleys

    Get PDF
    In this thesis is presented a novel approach to model, control, and planning the motion of a nonholonomic wheeled mobile robot that applies stable pushes and pulls to a nonholonomic cart (York mail trolley) in a loosely structured environment. The method is based on grasping and ungrasping the nonholonomic cart, as a result, the robot changes its kinematics properties. In consequence, two robot configurations are produced by the task of grasping and ungrasping the load, they are: the single-robot configuration and the robot-trolley configuration. Furthermore, in order to comply with the general planar motion law of rigid bodies and the kinematic constraints imposed by the robot wheels for each configuration, the robot has been provided with two motorized steerable wheels in order to have a flexible platform able to adapt to these restrictions. [Continues.

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields
    corecore