394 research outputs found

    Use of sonication for in-well softening of semivolatile organic compounds. 1998 annual progress report

    Full text link

    Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report

    Full text link

    Environmental Economics and Uncertainty: Review and a Machine Learning Outlook

    Full text link
    Economic assessment in environmental science concerns the measurement or valuation of environmental impacts, adaptation, and vulnerability. Integrated assessment modeling is a unifying framework of environmental economics, which attempts to combine key elements of physical, ecological, and socioeconomic systems. Uncertainty characterization in integrated assessment varies by component models: uncertainties associated with mechanistic physical models are often assessed with an ensemble of simulations or Monte Carlo sampling, while uncertainties associated with impact models are evaluated by conjecture or econometric analysis. Manifold sampling is a machine learning technique that constructs a joint probability model of all relevant variables which may be concentrated on a low-dimensional geometric structure. Compared with traditional density estimation methods, manifold sampling is more efficient especially when the data is generated by a few latent variables. The manifold-constrained joint probability model helps answer policy-making questions from prediction, to response, and prevention. Manifold sampling is applied to assess risk of offshore drilling in the Gulf of Mexico.Comment: 24 pages, 7 figures, 1 table. In Oxford Research Encyclopedia of Environmental Science. Oxford University Pres

    Incorporating Physics-Based Patterns into Geophysical and Geostatistical Estimation Algorithms

    Get PDF
    Geophysical imaging systems are inherently non-linear and plagued with the challenge of limited data. These drawbacks make the solution non-unique and sensitive to small data perturbations; hence, regularization is performed to stabilize the solution. Regularization involves the application of a priori specification of the target to modify the solution space in order to make it tractable. However, the traditionally applied regularization model constraints are independent of the physical mechanisms driving the spatiotemporal evolution of the target parameters. To address this limitation, we introduce an innovative inversion scheme, basis-constrained inversion, which seeks to leverage advances in mechanistic modeling of physical phenomena to mimic the physics of the target process, to be incorporated into the regularization of hydrogeophysical and geostatistical estimation algorithms, for improved subsurface characterization. The fundamental protocol of the approach involves the construction of basis vectors from training images, which are then utilized to constrain the optimization problem. The training dataset is generated via Monte Carlo simulations to mimic the perceived physics of the processes prevailing within the system of interest. Two statistical techniques for constructing optimal basis functions, Proper Orthogonal Decomposition (POD) and Maximum Covariance Analysis (MCA), are employed leading to two inversion schemes. While POD is a static imaging technique, MCA is a dynamic inversion strategy. The efficacies of the proposed methodologies are demonstrated based on hypothetical and lab-scale flow and transport experiments

    Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    Full text link
    Executive Summary Serious challenges must be faced in this century as the world seeks to meet global energy needs and at the same time reduce emissions of greenhouse gases to the atmosphere. Even with a growing energy supply from alternative sources, fossil carbon resources will remain in heavy use and will generate large volumes of carbon dioxide (CO2). To reduce the atmospheric impact of this fossil energy use, it is necessary to capture and sequester a substantial fraction of the produced CO2. Subsurface geologic formations offer a potential location for long-term storage of the requisite large volumes of CO2. Nuclear energy resources could also reduce use of carbon-based fuels and CO2 generation, especially if nuclear energy capacity is greatly increased. Nuclear power generation results in spent nuclear fuel and other radioactive materials that also must be sequestered underground. Hence, regardless of technology choices, there will be major increases in the demand to store materials underground in large quantities, for long times, and with increasing efficiency and safety margins. Rock formations are composed of complex natural materials and were not designed by nature as storage vaults. If new energy technologies are to be developed in a timely fashion while ensuring public safety, fundamental improvements are needed in our understanding of how these rock formations will perform as storage systems. This report describes the scientific challenges associated with geologic sequestration of large volumes of carbon dioxide for hundreds of years, and also addresses the geoscientific aspects of safely storing nuclear waste materials for thousands to hundreds of thousands of years. The fundamental crosscutting challenge is to understand the properties and processes associated with complex and heterogeneous subsurface mineral assemblages comprising porous rock formations, and the equally complex fluids that may reside within and flow through those formations. The relevant physical and chemical interactions occur on spatial scales that range from those of atoms, molecules, and mineral surfaces, up to tens of kilometers, and time scales that range from picoseconds to millennia and longer. To predict with confidence the transport and fate of either CO2 or the various components of stored nuclear materials, we need to learn to better describe fundamental atomic, molecular, and biological processes, and to translate those microscale descriptions into macroscopic properties of materials and fluids. We also need fundamental advances in the ability to simulate multiscale systems as they are perturbed during sequestration activities and for very long times afterward, and to monitor those systems in real time with increasing spatial and temporal resolution. The ultimate objective is to predict accurately the performance of the subsurface fluid-rock storage systems, and to verify enough of the predicted performance with direct observations to build confidence that the systems will meet their design targets as well as environmental protection goals. The report summarizes the results and conclusions of a Workshop on Basic Research Needs for Geosciences held in February 2007. Five panels met, resulting in four Panel Reports, three Grand Challenges, six Priority Research Directions, and three Crosscutting Research Issues. The Grand Challenges differ from the Priority Research Directions in that the former describe broader, long-term objectives while the latter are more focused
    • …
    corecore