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GENERAL ABSTRACT 

Geophysical imaging systems are inherently non-linear and plagued with the 

challenge of limited data. These drawbacks make the solution non-unique and sensitive to 

small data perturbations; hence, regularization is performed to stabilize the solution. 

Regularization involves the application of a priori specification of the target to modify 

the solution space in order to make it tractable. However, the traditionally applied 

regularization model constraints are independent of the physical mechanisms driving the 

spatiotemporal evolution of the target parameters. To address this limitation, we 

introduce an innovative inversion scheme, basis-constrained inversion, which seeks to 

leverage advances in mechanistic modeling of physical phenomena to mimic the physics 

of the target process, to be incorporated into the regularization of hydrogeophysical and 

geostatistical estimation algorithms, for improved subsurface characterization.  

The fundamental protocol of the approach involves the construction of basis vectors 

from training images, which are then utilized to constrain the optimization problem. The 

training dataset is generated via Monte Carlo simulations to mimic the perceived physics 

of the processes prevailing within the system of interest. Two statistical techniques for 

constructing optimal basis functions, Proper Orthogonal Decomposition (POD) and 

Maximum Covariance Analysis (MCA), are employed leading to two inversion schemes. 

While POD is a static imaging technique, MCA is a dynamic inversion strategy. The 

efficacies of the proposed methodologies are demonstrated based on hypothetical and 

lab-scale flow and transport experiments.  
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

Accurate estimation of subsurface dynamic processes is critical to diverse 

applications.  For example, subsurface characterization is of particular importance to the 

investigation of natural transient processes, such as infiltration of water [e.g., Daily et al., 

1992; Hinnell et al., 2010; Nenna et al., 2011], investigation of preferential flow 

pathways [Gish et al., 2002; Holden, 2003; Samouelian et al., 2003; Truss et al., 2007], 

and prediction of transport of contaminants in porous media [e.g., Binley et al., 1996; 

Kemna et al., 2002; Perri et al., 2012]. Investigation of the subsurface is also important 

for engineered systems, such as monitoring and evaluating the performance of 

remediation schemes [Lane et al., 2004, 2006; Hubbard et al., 2008; Johnson et al., 

2010)].  

Geophysical imaging is a non-invasive approach for characterizing the subsurface. 

However, geophysical imaging problems are inherently ill-posed and non-linear [Kirsch, 

1996], which require regularization [Tikhonov and Arsenin, 1977; Greenhalgh et al., 

2006] to stabilize the resulting image. Regularization, by definition, involves utilizing a 

priori (data independent) information to constrain the optimization procedure, thereby 

making the ill-posed problem tractable.  

Generally, Tikhonov-style regularization [Tikhonov and Arsenin, 1977] is the 

conventional approach used within geophysical imaging problems. The mathematical 
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optimization framework for Tikhonov-style regularization consists of two parts: the data 

norm (𝐄𝑑) and the model regularization norm (𝐄𝑚), i.e. 

𝐸(𝛔) =  𝐄𝑑 +  β𝐄𝑚

=  �𝐖𝑑�𝐕𝑜𝑏𝑠 − 𝒇𝑔(𝛔)��
2

+   𝛽�𝐖�𝛔 − 𝛔𝑟𝑒𝑓��2,                                  (1.1) 

where ‖∙‖2 shows the l2-norm, 𝛔 signifies the target model parameters being 

estimated; 𝛔𝑟𝑒𝑓 is a reference model representing assumed background values of the 

target; 𝐕𝑜𝑏𝑠 denotes measured data; 𝑓𝑔(𝛔) represents synthetic data obtained from 

geophysical forward model, 𝑓𝑔( . ). The data weighting matrix, 𝐖𝒅 represents the inverse 

of the covariance matrix. The first term in Eq.1.1 represents the data norm, which 

measures the agreement between the observed voltages with the synthetic voltages. The 

second term is the model regularization term that enforces a priori constraints for 

stabilizing the solution. The regularization parameter 𝛽 weights the relative importance 

of the data norm and the model regularization terms. Finally, 𝐖 is the regularization 

operator, which is used to enforce a priori relationship between parameters in the 

inversion scheme. 

The design of the regularization filter, 𝐖, is crucial to the retrieval accuracy of the 

optimization process. There are three a priori spatial model assumptions commonly used 

in the traditional formulation of  𝐖 in geophysical problems, namely: smallness, flatness, 

and smoothness constraints. The smallness regularization criterion seeks a solution that is 

closest to zero or some reference model, 𝛔𝑟𝑒𝑓. The flatness constraint uses the 1st-order 

spatial derivative filter to minimize the difference between neighboring model 
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parameters. In contrast, the smoothness constraint invokes smoothness in the distribution 

of the resultant estimated parameters through the use of the 2nd-order spatial derivative 

[e.g., Tikhonov and Arsenin, 1977; Pidlisecky et al., 2007].  

A notable drawback of the above listed traditional a priori model assumptions is that 

they are independent of the physical mechanisms of the underlying transport process that 

is driving the evolution of the target parameters. This limitation introduces artifacts in the 

tomograms [e.g., Moysey and Knight, 2004; Moysey et al., 2005]. For instance, Day 

Lewis and Lane [2004], in the context of inferring spatial statistics from radar 

tomograms, concluded that the influence of applied regularization criteria can erode the 

accuracy of estimating spatial covariance structure from tomograms. Singha and Gorelick 

[2005], in a field application,  observed a drastic underestimation of mass of the initially 

injected solute from resistivity tomograms. These authors attributed the underestimation 

of mass to the suppression of estimated concentrations due to the effects of 

regularization.  

Coupled inversion [e.g., Rucker and Ferré, 2004; Ferré et al., 2009; Hinnell et al., 

2010, Fowler and Moysey, 2011], is a recent advancement in hydrogeophysical inversion 

that is geared toward leveraging our a priori understanding of the physics of the 

underlying transport process for the purpose of employing physics-based information in 

constraining the estimation of the desired parameters. In the coupled inversion 

framework, a hydrologic model is coupled with a geophysical model in an effort to 

calibrate the parameters of the hydrologic model. Here, in order to accomplish the 



 

 

4 

 

 

coupling, the hydrologic variables (e.g., solute concentration) that we seek are directly 

coupled with their associated geophysical properties (e.g., electrical conductivity) via a 

petrophysical relationship [e.g., Archie, 1942]. The calibration of the hydrologic 

parameters then proceeds via least-squares minimization of the differences between 

observed and synthetic data.  

Hinnell et al. [2010] compared the resolution powers of coupled and uncoupled 

inversion schemes through resistivity monitoring of one-dimensional infiltration and 

redistribution. In the event when the assumed process simulator was representative of the 

structural features of the actual field under investigation, the authors observed the 

performance of coupled approach to be superior in comparison with that of the uncoupled 

strategy in terms of prediction uncertainty of the hydrologic properties. They concluded 

that where there are structural errors in the assumed hydrologic simulator, coupled 

inversion may be inaccurate.  

As a consequence, the recovered hydrologic patterns are limited to the hydrologic 

behaviors allowed for by the applied process simulator. It is reasonable, therefore, to 

assert that coupled inversion imposes an implicit hard process constraint on the inversion 

procedure.  

Novel imaging strategies are proposed in this dissertation in an effort to address the 

combined drawbacks of both traditional Tikhonov regularization and coupled inversion 

strategies. The suggested techniques are envisioned to infuse non-parametric, site-
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specific, physics-based a priori information to constrain geophysical inversion 

procedures in a comparatively flexible fashion, i.e., by invoking soft process constraints.  

The proposed approach for quantifying physics-based a priori information involves 

the extraction of basis functions from training images. Training images representing a 

particular site are generated via Monte Carlo simulations of the target process constrained 

to a conceptual model. The generated basis patterns are subsequently applied to constrain 

the geophysical optimization procedure. 

The general hypotheses posed in this dissertation are:  

(1) Physics-based soft process constraint can be implemented within existing Tikhonov 

scheme to improve retrieval accuracy of tomograms relative to the traditional Tikhonov 

and contemporary coupled inversion approaches.  

(2) Physics-based coupled patterns captured between two adjacent time steps can be 

applied as soft process constraints within existing Tikhonov framework to implement 

time-lapse monitoring of dynamic processes. 

Two statistical bases construction schemes are explored, Proper Orthogonal 

Decomposition (POD) and Maximum Covariance Analysis (MCA), leading to two basis-

constrained imaging methodologies, namely: 

i) POD-constrained inversion. 

ii)  MCA time-lapse inversion.  

 In principle, the basic dissimilarity between POD and MCA is that, whereas POD 

captures static (one time step) pattern information in the distribution of model 
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parameters, MCA extracts dynamic (adjacent time periods) patterns that explain the 

evolution of the system across consecutive time periods. As a consequence, the proposed 

POD-based inversion denotes a static imaging technique, whereas MCA represents a 

time-lapse (dynamic) inversion strategy.  

This dissertation comprises seven Chapters. While Chapters One and Seven provide 

general introduction and general conclusions, Chapters Two to Six introduce and evaluate 

the performance of the POD and MCA time-lapse inversion algorithms. Chapter Two 

introduces the original POD-constrained inversion algorithm. It also compares the 

accuracy of estimated concentrations based on the POD strategy with those estimated 

from the traditional Tikhonov and that of the contemporary coupled inversion schemes.  

The importance of robustness of an estimation algorithm to data and model 

uncertainties cannot be overemphasized. To evaluate this important feature, Chapter 

Three appraises the robustness of the POD-constrained imaging methodology in the 

presence of manifold data and model input uncertainties.  

Chapter Four focuses on the application of the POD algorithm to evaluate spatial 

moments of subsurface solute plumes. This is importance given the vital role that spatial 

moments of solute plumes play in various disciplines in environmental studies.  Chapter 

Four also addresses a limitation of the original algorithm, which pertains to a lack of 

translation of the basis vectors in the original algorithm. To fix that, Chapter Four 

introduces an adaptive version of the POD algorithm that addresses this limitation.  
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It is important to emphasize that the evaluation of the POD algorithm in Chapters 

two to four are based on hypothetical saturated flow and transport experiments, which is 

an important step in the development of original geophysical estimation algorithms. 

While field-data presents a more complicated and realistic dataset, their geometry and 

statistical properties are not exactly known. This presents a challenge when it comes to 

the appraisal of the viability of an original algorithm. As a consequence, the utility of 

hypothetical models (parsimonious models) for the first stage of proof-of-concept is 

crucial, given that their geometry and statistical properties are exactly known, which 

enables us to evaluate and validate the viability of a proposed technique.  

Inversion of real data, however, presents challenges such as measurement errors, 

non-parametric error distributions, lack of data sensitivity, faulty instruments, operational 

errors, etc. These challenges are usually simplified in hypothetical scenarios. To 

demonstrate the capability of the POD-constrained algorithm to invert real datasets, 

Chapter Five applies the POD algorithm to a lab-scale saline-tracer unsaturated flow 

experiment. It implements static imaging on time-lapse data. Finally, Chapter six 

introduces the MCA algorithm, which is a dynamic version of the POD-constrained 

algorithm. It also employs the same lab-scale dataset to illustrate the dynamic imaging 

capabilities of the MCA strategy.      



This Chapter was originally published in Water Resources Research.  

Oware et al. [2013] with doi:10.1002/wrcr.20462 
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CHAPTER TWO 

PHYSICALLY-BASED REGULARIZATION OF HYDROGEOPHYSICAL INVERSE 

PROBLEMS FOR IMROVED IMAGING OF PROCESS-DRIVEN SYSTEMS 

 

ABSTRACT 

We introduce a new strategy for integrating hydrologic process information as a 

constraint within hydrogeophysical imaging problems.  The approach uses a basis-

constrained inversion where basis vectors are tuned to the hydrologic problem of interest.  

Tuning is achieved using proper orthogonal decomposition (POD) to extract an optimal 

basis from synthetic training data generated by Monte Carlo simulations representative of 

hydrologic processes at a site.  A synthetic case study illustrates that the approach 

performs well relative to other common inversion strategies for imaging a solute plume 

using an electrical resistivity survey, even when the initial conceptualization of 

hydrologic processes is incorrect.  In two synthetic case studies we found that the POD 

approach was able to significantly improve imaging of the plume by reducing the root 

mean square error of the concentration estimates by a factor of two.  More importantly, 

the POD approach was able to better capture the bimodal nature of the plume in the 

second case study, even though the prior conceptual model for the POD basis was for a 

single plume.  The ability of the POD inversion to improve concentration estimates 

exemplifies the importance of integrating process information within geophysical 

imaging problems.  In contrast, the ability to capture the bimodality of the plume in the 
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second example indicates the flexibility of the technique to move away from this prior 

process constraint when it is inconsistent with the observed ERI data.   

 

1. INTRODUCTION 

There is growing interest in using geophysical methods, such as electrical 

resistivity imaging (ERI), to investigate systems where the evolution of subsurface 

properties through space and time are constrained by physical, chemical, or biologic 

processes, such as the infiltration of water or transport of solutes in porous media.  

Subsurface imaging using ERI, however, usually requires the solution of an ill-posed 

inverse problem.  While there are a variety of approaches addressing this issue in the 

inverse theory literature, Tikhonov regularization [Tikhonov and Arsenin, 1977] is 

commonly applied to ERI as it readily allows spatial constraints, such as smoothly 

varying property variations, to be enforced in subsurface images [e.g., Daily and 

Ramirez, 1995; LaBrecque and Yang, 2001; Kemna et al., 2002].  The spatial constraints 

applied in these inversions are typically generalized filters selected independently from 

the underlying processes affecting the target resistivity distribution (Figure 2.1a).  In the 

context of imaging solute transport, it is well known that this regularization can lead to 

imaging artifacts causing problems with mass recovery and poor spatial resolution [e.g., 

Singha and Gorlick, 2005].  

 In contrast, an emerging approach known as coupled inversion explicitly takes 

advantage of the dependence of geophysical properties on subsurface processes by using 
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geophysical measurements to calibrate the parameters of a hydrologic model [e.g., 

Rucker and Ferré, 2004; Ferré et al., 2009; Hinnell et al., 2010].  Figure 2.1b illustrates 

how the coupled hydrologic and geophysical models can be considered as a single model 

with hydrologic parameters as inputs and geophysical responses as outputs.  An 

advantage of the technique is that the coupled process model may have only a few 

parameters that control the detailed spatial and temporal evolution of hydrologic state 

variables in the subsurface, which in turn control the geophysical response.  Coupled 

inversion can therefore be viewed as an implicit form of regularization that enforces a 

physics-based constraint on the inversion through the physical process simulator, e.g., the 

flow and transport model.  A disadvantage of the approach, however, is that poor results 

may be obtained if the hydrologic model is subject to conceptual or structural errors or 

the geophysical model fails to capture the influence of non-hydrologic factors, such as 

background variations in resistivity.  

We propose a new approach for physics-based regularization of inverse problems 

that is dependent on, but less restricted by, assumptions about subsurface processes 

compared to coupled inversion (Figure 2.1c).  The approach uses proper orthogonal 

decomposition (POD) [e.g, Banks et al., 2000; Kunisch and Volkwein, 2003; Rathinam 

and Petzold, 2004; Pinnau, 2008] of a set of training data generated by Monte Carlo 

simulation of a hydrologic process to generate an optimal set of basis vectors for the 

imaging problem.  These hydrologically “tuned” basis vectors are subsequently used 

within a basis-constrained inversion framework to obtain a resistivity image.  
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Figure 2.1:  Schematic comparison of the (a) Tikhonov, (b) coupled, and (c) POD-based 

inversion strategies.   

 

To our knowledge this work is the first use of POD to constrain geophysical 

inversions by physical process information.  The use of training data to characterize 

spatially-distributed patterns, however, is well established in a variety of fields in the 

geosciences.  For example, the adoption of training images to infer spatial patterns in 

applications of multiple-point geostatitistics [e.g., Strebelle, 2000] is increasingly 
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common.  Moysey et al. [2005] applied the training data concept by using 

geostatistically-based Monte Carlo simulations of geophysical surveys to quantitatively 

capture and correct for spatially-variable inversion artifacts associated with non-linear 

imaging problems.  Similarly, Lehikoinen et al. [2010] used Monte Carlo simulations of 

flow in a heterogeneous vadose zone to construct a statistical model of approximation 

errors resulting from the assumption of a homogenous medium, which they were 

subsequently able to utilize within a Kalman filter to improve resistivity imaging of water 

content changes.  The use of simulations and training data to capture relevant information 

to constrain estimation and imaging problems is, therefore, already well-established in 

the literature.  The key contribution of this work is establishing the use of POD to capture 

patterns from training data and efficiently integrate this information as a constraint within 

an inverse problem.   

In this paper, we compare the results of POD-based inversion to results obtained 

using standard Tikhonov regularization techniques and coupled inversion for a problem 

where ERI is used to image a solute plume.  We investigate two distinct scenarios; one 

where the a priori understanding of flow and transport utilized in generating the training 

images for the inversions is correct and one where the training data are inconsistent with 

the actual processes.  
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2. POD-BASED IMAGING STRATEGY FOR ERI 

Details of ERI have been described by many authors [e.g., Kemna et al., 2002].  In 

principle, ERI surveys operate by sequentially applying electric currents (I) to the 

subsurface using different pairs of current electrodes.  The resulting voltage responses 

(Vobs) are measured at potential electrodes and depend strongly on the electrical 

conductivity distribution of the subsurface σ, where each element σm represents the 

electrical conductivity at spatial location xm and electrical resistivity is the inverse of 

conductivity (1/σm).  The inverse or “imaging” problem involves estimating the 

conductivity distribution σ from the voltage observations Vobs.  The Tikhonov objective 

function (Eq.1) addresses the ill-posed nature of the inverse problem by minimizing data 

misfit (Ed) subject to a model regularization constraint (Em), where β is a tradeoff 

parameter that balances these two objectives, fg(∙) represents the resistivity forward 

model, W is a spatial filter, and σo is a reference model or a priori estimate of 

conductivity. 

( ) ( ) ( )
22d m gE E E fβ β= + = − + −obs oσ V σ W σ σ
   (1) 

Basis-constrained inversions or subspace solutions [Greenhalgh et al., 2006] 

restrict the inverse problem by assuming that a finite number of orthogonal spatial (or 

spatiotemporal) basis functions can be linearly recombined using an appropriate set of 

scaling coefficients c to reconstruct σ within a specified level of accuracy (i.e., 

approximation errors given by ε = σ- σ̂ ).  
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σ ≈ σ̂ = Bc          (2)  

Here the Np columns of the matrix B each contain a basis vector of length Nm that 

captures a particular spatial pattern needed to reproduce σ.  Given a known set of basis 

vectors, B, the basis constrained inversion can be obtained by substituting the expansion 

of σ from Eq.2 into an appropriate objective function, i.e., Eq.1.  A regularization filter 

W can be designed to place an a priori constraint directly on c, e.g., to force coefficients 

of unnecessary basis vectors toward zero, or can be derived from spatial constraints on σ 

by projecting a desired spatial filter (i.e., W) onto the basis (i.e., W  = WB).  Likewise, 

the reference model for the coefficients co can be obtained by projection of σo onto the 

basis. The modified function fg
*(∙) in Eq.3 denotes that the electrical conductivity 

distribution must be reconstructed from the current estimate of c prior to applying the 

geophysical forward model fg(∙) to simulate the voltage responses.  Given that only a few 

basis vectors may be needed to reconstruct σ within an acceptable level of error [Jin et 

al., 2011], the basis constrained inversion should generally be more stable than standard 

inversion strategies as fewer parameters need to be estimated (i.e., Np<<Nm).  For this to 

be true, however, the basis vectors in B must be selected to allow for the reconstruction 

of σ in an efficient and accurate manner. 

( ) ( ) ( )
( ) ( )

22

*

22

g

g

E f

f

β

β

≈ − + −

= − + −

obs o

obs o

c V Bc W Bc Bc

V c W c c
    (3) 
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 Selection of an optimal basis constraint to minimize Np for a particular subsurface 

process is not trivial.  If a representative training data set is available, however, proper 

orthogonal decomposition (POD), which is also known as principal component analysis 

(PCA) or the Karhunen-Loève (KL) transform, can be used to derive an optimal 

orthogonal basis where the maximum amount of variability in the training data set (in a 

least-squares sense) is captured with the fewest number of basis vectors [Pinnau, 2008].  

While this decomposition is commonly used for image compression, pattern recognition, 

data analysis, and model order reduction in computational applications, it presents a 

challenge for subsurface imaging problems since high-resolution databases of real 

geologic environments do not exist.  We suggest that this problem can be addressed by 

using Monte Carlo simulations of subsurface processes to produce a set of training data 

that captures general patterns of subsurface variability expected for σ at a particular site, 

which can subsequently be analyzed by POD (or equivalently PCA) to generate the basis.   

 

3. METHODS 

3.1 Simulation Overview for Test Scenarios  

We use a numerical test to compare the performance of ERI for imaging a solute 

plume using the POD approach versus standard Tikhonov methods and coupled 

inversion.  The simulation domain for the tests consists of a 50m x 50m vertical cross 

section discretized into 0.5m x 0.5m cells. Refer to Figure 2.2 for an illustration of the 

experimental setup. The true target electrical conductivity distribution is obtained by 
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simulating conservative solute transport through a heterogeneous hydraulic conductivity 

(K) field.  The K field is generated using the algorithm SGSIM [Deutsch and Journel, 

1998] for a log-normal hydrologic conductivity distribution with mean ln(K) = -4.6 and 

variance ln(K) = 0.39 to produce K values (in m/s) typical of a silty sand [Freeze and 

Cherry, 1979].  The spatial variability of the K field is described using an isotropic 

exponential variogram model with a correlation length of 25m.  The longitudinal 

dispersivity and porosity throughout the domain are fixed to values of 3.0m and 0.3, 

respectively.  A uniform unit hydraulic gradient drives mean horizontal flow, while zero 

flux conditions were applied at the top and bottom boundaries of the domain.       

Two different transport scenarios are considered to test the ERI inversion techniques.  

In the first synthetic case the solute originates from a single source location (x=2.5m, 

z=10m) with an initial fixed concentration of 2g/L, thereby producing a unimodal plume 

at the time of imaging (see Figure 2.5a).  In contrast, the solute originates from two 

distinct source zones in the second scenario (x1=2.5m, z1=7.5m and x2=4m, z2=10m) each 

with an initial concentration of 2g/L, thereby producing a bimodal plume as the imaging 

target (see Figure 2.5e).  The initial background concentration in the aquifer was assumed 

to be uniform and equal to 140mg/L.  The total solute mass in the imaged area, including 

the background solutes, is therefore 1.6kg for synthetic #1 and 1.8kg for synthetic #2.  

The calculated values reported for the simulations in Table 2.1 are lower by 

approximately 1% and 3%, respectively, due to numerical errors in the transport 

simulation.  All concentration boundary conditions were fixed to the background 
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concentration throughout the simulation. Both the flow and transport simulations were 

performed using a finite-difference code written in MATLAB. 

 

Figure 2.2: Schematic illustration of the experimental setup of the 2-D flow and transport 

in a random hydraulic conductivity field, along with the resistivity survey design. While 

the red electrodes served as both current and potential electrodes, the black electrodes 

were used exclusively as potential electrodes.  

 

Solute concentrations were converted to electrical conductivities using Archie’s 

law: 𝜎(𝑥) =  𝜎𝑓𝑛𝑚, where n is porosity, the cementation exponent, m, was fixed to 1.3, 

and the electrical conductivity (S/m) of the fluid, 𝜎𝑓, is assumed to be 1.5x10-4 times the 

solute concentration (given in mg/L) [Lesmes and Friedman, 2005].  Dipole-pole surveys 

were performed using a total of 22 electrodes deployed along the upper surface of the 

simulation domain (see Figure 2.2), four of which were utilized as current electrodes.  

The voltage potential resulting from six independent current injections were monitored at 
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all remaining 20 electrodes, thereby producing 120 voltage measurements for each 

survey.  All ERI forward simulations were performed using a modified version of the 

MATLAB code by Pidlisecky et al. [2007].  Notably, all of the ERI surveys are 

performed for the single observation time t=5.85 years after the release of the solutes, i.e., 

the surveys do not represent time-lapse measurements.     
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Table 2.1: Summary of metrics for concentration and conductivity values estimated by 

ERI for the single source (synthetic #1) and dual source (synthetics #2) transport 

scenarios.  TI Mean refers to estimates obtained by taking the mean of the training 

images obtained by Monte Carlo flow and transport simulation, which are independent of 

the geophysical data.   

 

Total 

Mass 

(kg) 

Max Value RMSE 

Conc. 

(g/L) 
Log(σ) 

Conc. 

(g/L) 
Log(σ) 

Sy
nt

he
tic

 #
1 

True Plume 1.58 1.18 -3.30 - - 

TI Mean 1.56 1.14 -3.34 0.08 0.18 

Tikhonov 1.56 0.38 -4.43 0.07 0.17 

Coupled  1.51 0.51 -4.14 0.07 0.17 

POD 1.60 1.45 -3.09 0.03 0.07 

Sy
nt

he
tic

 #
2 

True Plume 1.75 1.79 -2.88 - - 

TI Mean 1.56 1.14 -3.34 0.13 0.28 

Tikhonov 1.63 0.93 -3.53 0.12 0.25 

Coupled  1.62 0.63 -3.93 0.12 0.25 

POD 1.70 1.64 -2.97 0.08 0.12 
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3.2 Details for the ERI Inversions 

Standard Tikhonov regularization of the ERI data using spatial smoothness and 

model smallness constraints was performed using RESINVM3D [Pidlisecky et al., 2007].  

An additional depth weighting factor equivalent to 1/z2 was used to penalize against 

changes in σ near the electrode locations as suggested by Pidlisecky et al. [2007].  The 

reference model σo was set to a constant value based on the initial solute concentration in 

the aquifer.  The regularization parameter β was optimized by trial and error.    

Models of varying complexity can be utilized to represent flow and transport in a 

heterogeneous domain for the coupled inversion approach.  We chose to use a very 

simple conceptual model given by the 2-D analytical solution for uniform lateral flow in 

Eq.4 [De Josselin De Jong, 1958].  The use of this model implicitly assumes that the 

influence of the hydraulic conductivity heterogeneity on the solute can be captured by 

effective transport parameters, which is clearly not an accurate assumption since the 

second synthetic example has two solute sources whereas the model assumes a single 

source.  Regardless, we chose this simplified model to highlight strengths and 

weaknesses of the coupled inversion approach when model errors exist.  We do not 

suggest that this is the only choice or even the optimal choice for providing accurate 

images of the plume using the coupled inversion approach.     

𝐶(𝑥, 𝑧, 𝑡) =
𝐶0𝐴

4𝜋𝑡(𝐷𝐿𝐷𝑇)1 2⁄ exp �−
[(𝑥 −  𝑥0) −  𝑣𝑥𝑡]2

4𝐷𝐿𝑡
−  

(𝑧 −  𝑧0)2

4𝐷𝑇𝑡
� ,                   (4)   

The initial tracer concentration Co is injected over an area A at location (xo,zo), such that 

the total solute mass in the system is given by M=CoA.  The plume moves through the 
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aquifer with a velocity vx and the concentration at time t after tracer injection is C(x,z,t).  

The longitudinal (DL) and traverse (DT) dispersion coefficients are defined as the product 

of velocity and dispersivity (α), i.e., Dj = vxαj, where for this example we chose αL=3.0m, 

and αT=αL/3.  We recognize that this choice is not general and limits the ability of the 

model to reproduce a full range of plume aspect ratios, but the limitation does not impact 

the conclusions made in this study. Since dispersion is controlled by the plume velocity 

and transport time in this model, there are three parameters in Eq.4 to be estimated: the 

mass of solute released from the source (M), the average lateral velocity of the plume 

(vx), and the total time since the release of the plume (t).  We used the trust-region-

reflective optimization algorithm lsqnonlin in MATLAB [Coleman and Li, 1996] to 

perform this optimization subject to the constraint that all three model parameters are 

positive.    

 Training data for the POD-based inversions were obtained by simulating flow and 

transport for the same conditions as the reference model with a single source zone, except 

that each simulation used an independent, randomly generated hydraulic conductivity 

realization.  To account for the fact that the true spatial structure of the subsurface would 

normally be uncertain, the K realizations were simulated using four different correlation 

lengths (15, 20, 25, and 30m).  A total of 400 flow and transport simulations were 

performed.  Each resulting concentration image was transformed to electrical 

conductivity using the form of Archie’s law given earlier.  Maps showing the mean and 

standard deviation of the training images are given in Figures 3a and 3b, respectively.  
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Four sample realizations illustrating differences in the morphology of the plumes in the 

training images are also given (Figures 2.3c-f).    

Prior to extraction of the basis vectors from the training data the center of mass for 

each realization was calculated and the plumes were aligned to the true center of mass for 

the reference (i.e., true) plume.  The plume centering step accounts for the translational 

dependence of the individual realizations in the training data and therefore reduces the 

number of realizations required to capture patterns that characterize an individual plume.  

We assume that the plume center of mass could generally be estimated directly from 

resistivity data based on the results of Fowler and Moysey [2011], who used numerical 

models to demonstrate that the effective plume velocity – which can be directly related to 

the center of mass – can be accurately estimated with a single four-electrode array, and 

Pidlisecky et al. [2011], who used a moment-based inversion to improve plume imaging, 

though this work was demonstrated for cross-borehole ground-penetrating radar 

tomography, which has significantly different data sensitivities from ground-based 

resistivity surveys.  The impact of our assumption is explored in the Discussion section of 

this paper, but we suggest investigation of robust methods for the estimation of the center 

of mass of a plume using resistivity surveys in complex, heterogeneous flow systems as a 

future research direction.   
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Figure 2.3: Mean (a) and standard deviation (b) maps of the log-electrical conductivity 

for the 400 images in the training data.  Four sample realizations are shown in c-f to 

illustrate the variability in the shape of the plumes observed in the realizations.  Note that 

the realizations have been shifted such that the center of mass of each plume is aligned 

with the center of mass of the true plume. 

 

  Singular value decomposition of the training data set was used to calculate the POD 

basis vectors [Pinnau, 2008], of which the first 300 were retained as these could account 

for 99.6% of the variability in the training data set.  Since only one coefficient needs to 

be estimated for each basis vector, this represents a 97% reduction in the number of 

parameters to be estimated in the inversion relative to the 10,000 pixels of the original σ 

image.  Examples of the patterns captured from the training data are illustrated by the 

first 20 POD basis vectors given in Figure 2.4.    
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Figure 2.4: Examples of the top 20 most important POD basis images extracted from the 

training data set. 

 

The regularization operator W  used in Eq.2 consisted of two components.  First, the 

same depth weighting function and spatial smoothness constraints on electrical 

conductivity used in the traditional Tikhonov regularization approach, i.e., W, were 
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applied here by projecting the previous regularization operator onto the basis vectors 

obtained from the training data, i.e., 1W =WB.  Second, a diagonal operator ( 2W ) 

containing the inverse of the singular values derived from the SVD of the training data 

was added to 1W  to force the basis coefficients, i.e., c, toward zero with a preference to 

retain the basis vectors most representative of the training data.  This constraint enforces 

a bias to produce ERI results that are similar to the mean of the training images.  The 

overall regularization operator used in Eq.2 for the basis constrained inversion is 

therefore 1 1 2 2
T T T Tγ γ= + = +W W W W W B W WB W      , where the parameter γ is an 

additional regularization parameter providing a relative weighting between these two 

terms.  The reference model co was obtained from projection of σo onto B.  

 Estimates of electrical conductivity obtained by each inversion technique were 

subsequently back converted to concentrations according to Archie’s law, as presented 

earlier.  A variety of metrics were then evaluated for each image to quantitatively 

compare the inversion strategies.  The metrics used here include root mean square error 

(RMSE) of the estimated concentrations, maximum (peak) plume concentration, and total 

plume mass (zeroth-order spatial moment).  

 

4.         RESULTS AND DISCUSSION 

A comparison of the electrical conductivity images estimated by each of the three 

different inversion schemes is given in Figure 2.5 and comparisons of the true and 
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estimated concentrations are given in Figure 2.6.  A summary of the metrics used to 

compare the estimated results to the true plume is given in Table 1.   

 

Figure 2.5: True (a,e) and estimated conductivity tomograms for Tikhonov regularization 

with spatial constraints (b,f), coupled inversion (c,g), and POD-based inversion for 

transport scenario 1 (unimodal plume; top row) and scenario 2 (bimodal plume; bottom 

row).  Inset on each plot is the root mean square error (RMSE), maximum estimated 

concentration (Peak; mg/L), and total estimated mass of solute (Mass; g).   

 

For synthetic #1, i.e., the scenario with a single solute source and unimodal plume, 

the traditional Tikhonov inversion with smoothness and smallness constraints produces 

an overly smooth and damped image compared to the true plume (Figure 2.5b).  As a 

result, the estimated concentrations are low compared to their true values (Figure 6a), 

resulting in a high concentration RMSE of 70mg/L.  The peak concentration of the plume 
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is also greatly underestimated at 380mg/L versus 1180mg/L for the true plume, i.e., a 

68% error.  The total mass of the estimated plume is 1.56kg versus 1.58kg, thus yielding 

only a 1% error for this example.  In this case the low mass error is presumably a result of 

the fact that the smoothness constraint in the Tikhonov inversion forces the estimated 

plume to spread out over a much larger region of the subsurface than the true plume, 

which compensates for the low concentration estimates.     

 

 

Figure 2.6: Scatterplots showing accuracy of concentration estimates for Tikhonov 

regularization with spatial constraints (a,d), coupled inversion (b,e), and POD-based 

inversion (c,f).  The dashed line in each figure shows the background concentration of the 

aquifer (140mg/L). 

 



 

28 

 

 

Coupled inversion does a better job capturing the compact morphology of the plume 

for synthetic #1 (Figure 2.5c).  The limitations of the analytical transport model are clear, 

however, as the irregular shape and off-axis rotation of the true plume cannot be 

reproduced.  We emphasize that these particular issues are limitations of the analytical 

model selected for this example, not inherent limitations of the coupled inversion 

approach.  Regardless, the analytical model facilitates localization of the solute mass 

within a distinct plume, thus allowing the estimate of the peak concentration to increase 

to 510mg/L, which yields an error of 57% (a decrease of 11% compared to the Tikhonov 

approach).  The average concentration misfit as quantified by the RMSE is similar to that 

observed for the Tikhonov inversion (70mg/L), but the error for the estimated total solute 

mass (M=1.51kg) is slightly higher in this case.   

The POD-based inversion provides the best overall estimate of both plume 

morphology and concentrations (Figure 2.5d and 2.6c).  The peak plume concentration 

estimated by the POD approach is 1450mg/L, which is an overestimate of the true peak 

concentration by 23%.  From Figure 2.6c, however, it is clear that only a small 

percentage of the 10,000 pixels in the image are significantly overestimated, whereas the 

concentration underestimation that occurred for the Tikhonov and coupled inversions was 

more systematic.  The total mass is also slightly overestimated, but with an error similar 

in magnitude to the other two inversion approaches (i.e., 1%).  The concentration RMSE 

in this case is only 30mg/L, however, which indicates a marked improvement in the 
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overall reproduction of the solute plume concentrations compared to either the Tikhonov 

or coupled inversion approach.   

Given that the POD inversion is dependent on the simulated training images to 

obtain the basis functions, it is important to evaluate whether the ERI data actually 

improved the concentration estimates or if the POD inversion results simply reflect the 

mean behavior of the training data.  In other words, we ask the question “Could an 

equally good estimation result be obtained using stochastic simulation alone?”.  

Comparing the image obtained by taking the mean of the training realizations (Figure 

2.3a) to the true plume (Figure 2.5a), it is apparent that the resulting images are 

substantially different.  The RMSE obtained for the mean of the concentration 

realizations is 80mg/L, which is higher than that obtained for any of the other ERI-based 

imaging methods.  The total mass and peak concentration estimated from the mean of the 

realizations, however, are similar to their true values.  The high degree of misfit indicated 

by the RMSE, but good match for the other two plume metrics suggests that the 

realizations capture some general characteristics of the true plume that are independent of 

the specific spatial distribution of the solute concentrations.  Including the ERI data in the 

estimation problem focuses the image toward the specific subsurface distribution of 

concentration for the true plume.   

As pointed out earlier, we made the assumption in this work that it would be possible 

to shift the training images to the true center of mass of the plume prior to performing the 

POD analysis.  To assess the significance of this assumption, we explored the 
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performance of the POD inversion under varying degrees of error in the estimated center 

of mass.  To account for differences in the lateral and vertical sensitivity of resistivity 

data, we considered cases where the estimated center of mass was shifted either laterally 

or diagonally relative to the true center of mass for the reference plume.  In an effort to 

gain quantitative insight into how the magnitude of the positioning error affected the 

imaging results, we tested cases where the training images were shifted by 10, 25, 50, 75, 

and 100% of the width of the plume (as quantified by the second spatial moment of the 

plume [Freyberg, 1986]).   

Overall the POD inversion appears to be relatively robust to errors in the plume’s 

estimated center of mass.  Figure 2.7 qualitatively illustrates that lateral shifts in the 

plume center of mass are minor for synthetic #1 until the training data are shifted by an 

entire plume-width.  In contrast, the image degrades significantly when the plume is 

shifted by 50% of its width in the diagonal direction.  These results are shown 

quantitatively in Figure 2.8 for both synthetic #1 and #2, where the RMSE of the 

estimated log-conductivity image does not become greater than that obtained using either 

the Tikhonov or coupled inversion strategies until the training images are shifted by at 

least 25% of the reference plume’s width.  It is also clear from this plot that lateral errors 

in the plume center of mass generally produce small increases in the imaging error.     
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Figure 2.7: True plume (a) versus estimated conductivity tomograms obtained when the 

center of mass of the training images used for the POD inversion is shifted longitudinally 

(first row, b-g) and diagonally (second row, h-m). The white + in each image denotes the 

position of the center of mass of the true plume, whereas the * indicates the center of 

mass used to shift the training images; the title above each column indicates the 

magnitude of the shift as a percentage of the plume width.   

Synthetic #2 was a more complicated problem in the sense that the two solute 

sources produced a bimodal plume (Figure 2.5e).  Since the Tikhonov inversion makes 

no assumptions about the underlying processes generating the target conductivity 

distribution, there is no conceptual inconsistency introduced in the imaging problem 

compared to synthetic #1.  The resistivity survey, however, consisted of only 120 

measurements over a limited range of electrode separations.  The sensitivity of the 

resistivity measurements for this data poor survey are therefore limited for imaging the 

deeper part of the plume in this particular example.  The result is that the upper portion of 

the plume is still not well estimated and the lower part is completely missed by the survey 

(Figure 2.5f).  The plume metrics from Table 1 now indicate a significant 
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underestimation of total mass (7%), peak concentration (48%), and high RMSE 

(120mg/L) for the Tikhonov-based estimates.   

The coupled inversion approach produces similarly poor estimation results based on 

the concentration metrics from Table 1 (7% error in total mass, 65% error in peak 

concentration, and 120mg/L concentration RMSE).  Figure 2.4g shows that the reason for 

this poor estimation is somewhat different than the Tikhonov case.  The estimated plume 

for the coupled inversion has shifted downward and grown to reflect the greater size of 

the true bimodal plume.  Since the analytical model used in the inversion only allows for 

plumes with a single peak, the coupled inversion produced a result that spread the solute 

mass over a larger part of the subsurface to account for the larger distribution of mass of 

the true plume.   

An improved estimate of the plume could, of course, be achieved by coupled 

inversion if the transport model were updated to allow for bimodal plumes, e.g., by using 

superposition of two unimodal plumes or increasing the degree of complexity by using a 

numerical transport model with multiple sources and heterogeneous flow and transport 

parameters.  The point of our example, however, is to very simply illustrate the problem 

that occurs when the hydrologic conceptual model is inaccurate, not to illustrate which 

method can produce the best possible image when the conceptual model is correct.  Our 

belief is that coupled inversion is the optimal approach for inversion when an accurate 

hydrologic model is available and estimating the value of the model parameters is the 

goal, though research is still continuing on this front.          
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The training images used for the POD analysis were also based on the incorrect 

conceptual model of a single solute source.  The fact that the concentration realizations, 

which are the same ones used in synthetic #1, capture the behavior of the incorrect 

conceptual model is made clear by comparing the mean image in Figure 3a to the true 

plume in Figure 2.5e.  Likewise the plume metrics for the training image realizations 

indicate a significant underestimation of mass 11% error) and peak concentration (36% 

error) because the second plume was not included within the conceptual model used to 

generate the realizations. 

Despite the incorrect conceptual model used to generate the training images for 

synthetic #2, the POD inversion result suggests that the ERI data are able to compensate 

to obtain a much improved estimate for the bimodal plume.  The POD inversion is able to 

recover 97% of the total solute mass, underestimates the peak concentration of the plume 

by only 8%, and has a concentration RMSE of 120mg/L, which is a factor of two less 

than the other methods.  More importantly, the plume image in Figure 2.5h suggests that 

the assumption of a unimodal plume for the distribution of solute mass may not be 

appropriate.  Though the bimodal plume is not fully reproduced, the imaging result does 

suggest that a reconceptualization of the underlying transport model would be 

appropriate.  In this way, the POD approach shows flexibility in moving estimates away 

from our preconceptions, while still providing the ability to account for the morphologic 

characteristics imparted to the target by the driving physical processes.        
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Figure 2.8: Change in RMSE for the estimated conductivity images as a function of the 

position error for the plume center of mass used to shift the training images prior in the 

POD analysis.   

 

5.         CONCLUSIONS 

In this paper we presented a new approach for integrating process-based information 

within geophysical inversions.  Specifically, proper orthogonal decomposition (POD) 

was used to extract a set of basis vectors for the imaging problem that are “tuned” for a 

particular hydrologic problem of interest using Monte Carlo simulation.  We explored the 
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approach here using two synthetic examples, one with a single source zone and one with 

two source zones leading to the formation of a bimodal plume.   

Although the examples presented here are simple, they effectively illustrate the 

potential of the POD-based inversion strategy for enforcing physical or biogeochemical 

process constraints on geophysical inverse problems.  When the conceptual transport 

model was correct in the first scenario, both coupled and POD-based inversions are able 

to produce better estimates of the target plume than the Tikhonov inversion.  In contrast, 

the coupled inversion failed when the conceptual model of transport was incorrect in the 

second scenario. The POD inversion, however, captured the bimodality of the plume by 

constraining the inversion by a priori process information while retaining the flexibility 

to honor observed geophysical data.   

The POD inversion is therefore a promising intermediate approach for enforcing 

physics-based regularization in a wide array of geophysical inverse problems.  When a 

process controlling the imaging target is not known or highly uncertain, the POD 

approach is unlikely to perform better than standard Tikhonov methods since the range of 

results captured by a process simulator could be large.  In contrast, when processes at a 

site are known and well understood, the coupled inversion approach can be an excellent 

choice for parameterizing models of the flow system.  The POD approach is therefore an 

intermediate strategy that should be applied in cases where the processes are generally 

known, but not fully defined.   



 

36 

 

 

Additional research is needed to more fully evaluate how uncertainty in site 

processes affects the overall performance of the POD approach compared to existing 

Tikhonov and coupled inversion techniques.  This work, however, provides a first 

introduction to the technique and the synthetic examples illustrate how it may perform for 

real imaging problems.  Many questions remain to be addressed in the future, however, 

such as how robust the technique is in the presence of noisy data?, what is the role of data 

coverage on estimation accuracy?, how uncertain and/or non-linear a hydrologic model 

must be before the POD approach will not work?, how will performance be affected by 

considering a three-dimensional system?, and what methods may be used for efficient 

solutions to estimate the POD coefficients and assess the imaging results.  We therefore 

feel that the POD methodology provides a novel new approach for geophysical imaging 

that is ripe for future exploration.   
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CHAPTER THREE 

ASSESSING THE ROBUSTNESS OF A POD-BASED INVERSION SCHEME FOR 

RESISTIVITY IMGAGING OF SOLUTE PLUMES. 

 

ABSTRACT 

Understanding the potential impacts of input data and model uncertainties on model 

resolution in geophysical estimation algorithms is crucial. We present an appraisal of the 

robustness of the recently developed POD-constrained inversion algorithm. Two 

hypothetical flow and transport scenarios were utilized as test cases. Uncertainties were 

evaluated based on three distinct error components, namely: (1) measurement errors, (2) 

uncertain a priori hypotheses and model complexity, and (3) varying data coverage. 

We noted increasing deterioration of model resolution with increasing measurement 

noise, which goes to emphasize the effects of the extensively researched bottleneck of 

measurement errors in geophysical investigations. Also, increasing the number of 

inversion parameters from 100 to 300 produced only marginal or no improvement in 

model resolution. This finding illustrates a potential application of the POD-algorithm for 

lossless truncation in the dimensionality of resistivity inverse problems, which can result 

in gains in computational overhead and potential reduction of ill-posedness.  Root mean 

square error of log electrical conductivity respectively ranged from 0.07 to 0.17 and 0.12 

to 0.3, in transitioning from a scenario with a fully understood conceptual model to a case 

where inaccurate a priori hypothesis underpinned the reconstruction. This demonstrates 
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the vital importance of a priori constraints on the performance of the POD algorithm. 

Finally, utilization of more data samples may not necessarily translate into gains in model 

resolution without considering optimal array configuration. An increase in the number of 

data samples seems to exaggerate the impact of data noise on model resolution. Also, 

there appears to be a trade-off relationship between data noise, data coverage, and 

accuracy of a priori constraints. The exaggerated effect of noise as a result of increased 

data samples is worsened by inaccurate basis constraints. This observation underscores 

the importance of optimal survey configuration as opposed to increasing data coverage. It 

also implies that improving our conceptual understanding of a system can presumably 

enhance the robustness of the POD-algorithm to measurement errors.    

 

1. INTROUCTION 

Geophysical imaging systems are inherently non-linear and plagued with limited 

data [Kirsch, 1996] as compared to the number of model parameters to estimate. These 

challenges make the solution non-unique and sensitive to small data perturbations. 

Regularization is, therefore, performed to stabilize the solution. Regularization involves 

the utilization of a priori understanding of the system of interest to condition the problem 

in order to make it tractable.  

Tikhonov regularization [Tikhonov and Arsenin, 1977] is often employed in 

geophysical imaging algorithms. It enforces spatial model constraints that seek a realistic 

and spatially coherent solution. There are three a priori spatial model constraints 
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commonly utilized in the Tikhonov regularization: smallness, flatness, and smoothness 

constraints. The smallness regularization criterion seeks a solution that is closest to zero 

or some baseline value. The flatness constraint uses the 1st-order spatial derivative filter 

to minimize the difference between neighboring model parameters. In contrast, the 

smoothness constraint uses the 2nd-order spatial derivative to penalize for roughness in 

the distribution of the solution.  

Tikhonov regularization enforces spatial constraints without considering the physics 

of the processes controlling the migration of the target parameters. To address this 

limitation, Oware et al. [2013] introduced the POD-constrained inversion strategy that 

implements physics-based regularization within a Tikhonov inversion framework.       

Understanding the potential impacts of input data and model uncertainties on model 

resolution in geophysical estimation algorithms is critical to the generalizability of the 

strategy. Toward this end, the objective of this Chapter is to evaluate and appraise the 

robustness of the POD-constrained inversion algorithm.     

Rodgers [1990] characterizes inversion retrieval errors into three broad components, 

namely: (1) random errors that stem from measurement noise. (2) systematic errors as a 

result of inexact system parameters and inverse model bias, and (3) null space errors 

attributable to insufficient observational data. The retrieval error components specified by 

Rodgers [1990] are adapted as a guideline to design, evaluate, and appraise the 

robustness of the POD-constrained algorithm in this study. It is important to emphasize 

that these error constituents may be insufficient assess the robustness of the POD 
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inversion scheme; however, they provide reasonable bases for testing the validity of the 

technique. 

In this Chapter, descriptions of the design of experiments according to the error 

component specifications by Rodgers [1990] are presented in section 2. Results and 

discussion of salient findings are detailed in section 3 whiles section 4 outlines the 

principal conclusions of the study.  

 

2. METHODS 

Detailed discussion of the theoretical underpinning of the POD-constrained inversion 

algorithm is provided in Chapter 2 Section 2. Details of the hydrological simulations of 

the two hypothetical test cases and details regarding the ERI inversions are presented in 

Chapter 2 sections 3.1 and 3.2, respectively. 

The relevant protocols for assessing the robustness of the POD-based inversion 

algorithm were designed according to the three retrieval error components outlined by 

Rodgers [1990]. 

To assess error Component One, which arises as a result of measurement noise, three 

conditions of data inexactness were explored. Noise-free data were corrupted with 

Gaussian noise according to the following noise model:  

𝐝𝑛𝑜𝑖𝑠𝑒 = 𝐝𝑛𝑜_𝑛𝑜𝑖𝑠𝑒 + 𝑛𝑝𝑒𝑟 ∙ 𝐝𝑛𝑜𝑛𝑜𝑖𝑠𝑒 ∙ N(0,1),                                       (1) 
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where 𝐝𝑛𝑜𝑖𝑠𝑒 and 𝐝𝑛𝑜_𝑛𝑜𝑖𝑠𝑒 represent the corrupted and noise-free data, respectively. 𝑛𝑝𝑒𝑟 

denotes the proportion of the voltage signal applied to corrupt the noise-free data. N(0,1) 

signifies a random normal distribution with zero mean and standard deviation of one.  

To test error Component Two, which stems from uncertainty in model parameters 

and inverse model errors, two scenarios of flow and transport with accurate and 

inaccurate a priori specifications were investigated. The same synthetic examples used 

by Oware et al. [2013] were applied here. In addition, inversions based on 100 and 300 

basis functions were explored. It should be noted that, in principle, the number of basis 

functions utilized implicitly characterizes the quantity of a priori information 

incorporated.      

To address error Component Three, which deals with varying data coverage, two 

observing systems with 120 and 560 data samples were studied. To achieve this, the 

number of source electrodes applied for current injection (see Chapter 2 section 3.1) was 

doubled from four to eight. This increased the number of independent current injections 

from 6 to 28 resulting in 120 and 560 resistivity measurements, respectively.  

All the data inversions are performed based on the prescribed combinations of error 

components presented in Table 3.1. In all, a total of 12 data inversions were performed 

for each of the two transport scenarios investigated.  
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Table 3.1: Combinations of parameters of error components investigated to characterize 

the robustness of the POD inversion algorithm. Each model uncertainty was investigated 

in terms of varying data coverage, signal noise additive, and number of basis vectors 

applied. A total of 12 data inversions were performed for each flow and transport 

scenario considered. 

 
 
 

3. RESULTS AND DISCUSSION 

In the context of error Component One, model resolution was found to degrade with 

increasing data corruption (Figures 3.1, 3.2, 3.3, and 3.4). This observation is expected 

because the excitation of the noise-free data with random noise diminishes the quality of 

resistivity measurements applied in the data inversion.  

Concerning the assessment of error component two, increasing the number of basis 

vectors utilized in the inversion from 100 to 300 results in only marginal or no 

improvement in the model resolution (Figures 3.1, 3.2a, 3.2b, 3.3, 3.4a, and 3.4b). This is 

presumably due to the marginal gain in the associated singular value weights contribution 

of the first 100 basis vectors in contrast with that of the first 300 basis functions.  

Particularly, whereas the first 100 singular values accounted for 97.99% of the total 

singular values weight extracted from the training dataset, that of the first 300 contributed 



 

47 

 

 

98.99%, representing a marginal increase of 1%. This observation suggests that 

increasing the number of basis vectors applied in the inversion, without a corresponding 

increase in the variability of the applied basis patterns as a result of the additional basis 

vectors, will only increase the number of parameters to be estimated without a 

commensurate gain in model resolution. It should be noted that the first basis function 

alone accounted for 89.27% of the total singular value weights. This suggests that we 

possibly could have performed further truncation in the number of basis vectors applied 

without much loss in the model resolution.  

Furthermore, while RMSE for synthetic #1 (i.e., the scenario with accurate a priori 

hypothesis) ranges from 0.07 to 0.17 (Figure 3.2), that of synthetic #2 (i.e., the case with 

incorrect a priori assumption) varies from 0.12 to 0.3 (Figure 3.4). The comparatively 

smaller RMSE values associated with reconstructions involving the target with accurate 

understanding of the underlying flow and transport process, in contrast with that of the 

scenario involving incorrect a priori hypothesis, demonstrates the critical importance of 

accurate a priori information in the performance of the POD-constrained inversion 

algorithm. 

With respect to error component three, increasing data coverage from 120 to 560 

data points almost invariably results in degradation of model resolution (Figures 3.1, 

3.2c, 3.2d, 3.3, 3.4c, and 3.4d). This observation appears to be more severe at the 10% 

noise level, in the case of synthetic #2 (Figures 3.4c and 3.4d). This phenomenon is 

presumably attributable to a lack of optimal survey configuration involving the observing 
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system of the 560 data samples as compared to that of the 120 data coverage. It must be 

emphasized that optimal array configuration was not considered in selecting the two 

observing systems here.   

In addition, we postulate that the aggregate impact of increasing data noise on model 

resolution appears to be exaggerated with increasing number of data samples. This 

exaggerated aggregate effect of noise appears multiplied in the case of synthetic #2 where 

the basis functions were also inaccurate. This suggests a trade-off relationship between 

data noise, data coverage, and accuracy of basis functions. This implies that increasing 

data coverage, in an effort to reduce the null-space (unobserved space), does not 

necessarily translate into improvement in the model resolution.  
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Figure 3.1: Reconstruction of log of electrical conductivity distributions. (a) Synthetic 

#1; Rows 1 and 2 utilized 100 basis (b-g), rows 3 and 4 utilized 300 basis (h-m); rows 1 

and 3 utilized 120 data samples (b-d and h-j), rows 2 and 4 utilized 560 data samples (e-g 

and k-m). Columns 1, 2, and 3 represent signal noise cases 0, 3, and 10 %, respectively. 
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Figure 3.2: Root mean square errors (RMSE) versus signal noise for synthetic #1. 

Application of 120 and 560 data samples based on (a) 100 basis functions, and (b) 300 

basis function; Utilization of 100 and 300 basis functions based on (a) 120 data points, 

and (b) 560 data points. Note that the plots are on the same axis to provide a sense of 

scale.    
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Figure 3.3: Reconstruction of log of electrical conductivity distributions. (a) Synthetic 

#2; Rows 1 and 2 utilized 100 basis (b-g), rows 3 and 4 utilized 300 basis (h-m); rows 1 

and 3 utilized 120 data samples (b-d and h-j), rows 2 and 4 utilized 560 data samples (e-g 

and k-m). Columns 1, 2, and 3 represent signal noise cases 0, 3, and 10 %, respectively. 
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Figure 3.4: Root mean square error (RMSE) versus signal noise for synthetic #2. 

Application of 120 and 560 data samples based on (a) 100 basis functions, and (b) 300 

basis function; Utilization of 100 and 300 basis functions based on (a) 120 data points, 

and (b) 560 data points. Note that the plots are on the same axis to provide a sense of 

scale.     

 

4. CONCLUSION 

In this contribution, we performed characterization and error analysis of the POD-

constrained inversion algorithm originally presented by Oware et al. [2013]. Two 

hypothetical flow and transport scenarios were utilized as test cases. Uncertainties were 
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evaluated based on three distinct error components, namely: (1) measurement errors, (2) 

uncertain a priori hypothesis, and (3) varying data coverage. 

On measurement errors, we observed increasing deterioration of model resolution 

with increasing measurements noise. This goes to emphasize the effects of measurement 

errors in geophysical investigations, which is extensively documented.  

Despite the advances in computational and parallel computing capabilities in recent 

years, there still exists the need to reduce the number of inversion parameters in 

geophysical imaging in a lossless fashion, in an effort to increase our capabilities to 

handle large-scale, 3D imaging problems, especially in field applications. Reducing the 

number of inversion parameters will not only result in reduction in computational 

overhead, but can also potentially reduce the ill-posedness of resistivity inverse problems.  

We have demonstrated that increasing the number of basis functions, in other words, 

increasing the number of inversion parameters, from 100 to 300 produced only marginal 

or no improvement in model resolution. This finding illustrates a potential lossless 

truncation capability of the POD algorithm that may avoid the estimation of unnecessary 

inversion parameters. In this regard, further study to determine optimal truncation 

criterion, either in terms of percentage contribution of singular values or image 

reconstruction error approach, will be a useful contribution to the advancement of the 

POD algorithm.  

Furthermore, the building of accurate conceptual models, which underpins the 

generation of the training dataset, is critical to the performance of the POD-constrained 
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inversion algorithm. Nevertheless, the ability of the approach to notice the bimodality in 

synthetic #2, even though the reconstruction of synthetic #2 was based on a conceptual 

model of a unimodal plume, illustrates a potential application of the technique to improve 

our conceptual understanding of hydrogeological systems. Since the initial hypothesis 

can now be reconceptualized to include bimodal plumes, after which the reconstruction 

process can then repeated in a similar manner. 

Increasing data coverage will not necessarily translate into gains in model resolution 

without considering optimal array configuration. In fact, it can lead to a net effect of 

deterioration of model resolution. Specifically, we demonstrated that an increase in the 

number of data samples exaggerates the aggregate impact of data noise on model 

resolution. Also, there appears to be an interesting trade-off relationship between the 

various error parameters appraised, which are data noise, data coverage, and accuracy of 

a priori constraints. The aggregate impact of noise as a result of increased data samples is 

worsened by inaccurate basis constraints. This observation implies that improving our 

conceptual understanding of a system, in a bid to improve the accuracy of basis 

constraints, can presumably enhance the robustness of the POD-algorithm to 

measurement errors.    
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CHAPTER FOUR 

GEOPHYSICAL EVALUATION OF SOLUTE PLUME SPATIAL MOMENTS USING 

AN ADAPTIVE POD ALGORITHM FOR ELECTRICAL RESISTIVITY IMAGING 

 

ABSTRACT 

We investigate the potential for characterizing spatial moments of subsurface solute 

plumes from surface-based electrical resistivity images produced within a proper 

orthogonal decomposition (POD) inversion framework.  The existing POD algorithm is 

improved here to allow for adaptive conditioning of the POD training images on 

resistivity measurements. The efficacy of the suggested technique is evaluated with two 

hypothetical transport scenarios: synthetic #1 is based on the case where the target plume 

and POD training images follow the same (unimodal) plume morphology, whereas a 

second source location in synthetic #2 makes the target plume bimodal and inconsistent 

with the POD training images.  The resistivity imaging results indicate that the adaptive 

algorithm efficiently and robustly updates the POD training images to obtain good quality 

resistivity images of the target plumes, both in the presence of data noise and when 

conceptual model inaccuracies exist in the training simulations. Spatial moments of the 

solute plumes recovered from the resistivity images are also favorable, with relative mass 

recovery errors in the range of 0.6 – 4.4%, center of mass errors in the range of 0.6 – 

9.6%, and spatial variance errors in the range of 3.4 – 45% for cases where the voltage 
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data had 0-10% noise. These results are consistent with or improved upon those reported 

in the literature.  Comparison of the resistivity-based moment estimates to those obtained 

from direct concentration sampling suggests that for cases with good quality resistivity 

data  (i.e., <3% noise), the imaging results provide more accurate moments until 6-10 

multi-level sampling wells are installed.  While the specific number of wells will depend 

on the actual field scenario, we suggest that this finding illustrates the general value of 

POD-based resistivity imaging techniques for non-invasively estimating the spatial 

moments of a solute plume. 

 

1. INTRODUCTION  

Hydrogeologists often employ statistical moments to describe the morphology of 

subsurface solute plumes and provide valuable insights to the spatiotemporal evolution of 

transport processes (e.g., Freyberg, 1986; Goltz and Roberts, 1987, Yeh et al., 2005). 

Spatial moments play a vital role in numerous hydrological applications such as the 

design of ground-water quality monitoring networks (e.g., Loaiciga et al., 1992), 

characterization of flow regimes (e.g., Ye et al., 2005; Yeh et al., 2005; Lazarovitch et al., 

2007; Xiong et al., 2011), and the analysis of solute plume behavior (Brewster et al., 

1995; Rubin, 2003; Fernàndez-Garcia et al., 2005; de Barros and Nowak, 2010).  The 

two-dimensional spatial moments,𝑚𝑖,𝑗, for the image of a solute plume with 

concentrations 𝐜(𝑥𝑘,𝑦𝑘) at locations xk and yk can be expressed as: 
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𝑚𝑖,𝑗 = � 𝐜(𝑥𝑘,𝑦𝑘)𝑥𝑘𝑖 𝑦𝑘
𝑗∆𝑥∆𝑦

𝑁𝑥𝑀

𝑘

,                                    (1)     

where 𝑚𝑖,𝑗 represents the spatial moment of interest and the overall order of the moment 

is defined by the sum 𝑖 + 𝑗.  Here 𝑘 represents the element index in a discretized 

representation of the subsurface, ∆𝑥 and ∆𝑦 are the dimensions of the pixels, and it is 

assumed that background concentration variations unrelated to the plume have been 

removed. The zero-order moment, 𝑚0,0, quantifies the total mass in the system. The x 

and y coordinates of the center of mass of the plume can be inferred from the first-order 

moments (𝑚1,0 and 𝑚0,1): 

𝜇𝑥 =  𝑚1,0 𝑚0,0⁄ , 

          𝜇𝑦 =  𝑚0,1 𝑚0,0⁄ . 

Similarly, the longitudinal and transverse dispersive spreading of the plume can be 

evaluated from the second-order moments (𝑚2,0, 𝑚0,2, and 𝑚1,1):  

𝜎𝑥 =  �𝑚2,0
𝑚0,0

− �𝑚1,0
𝑚0,0

 �
2

, 

       

𝜎𝑦 =  �𝑚0,2
𝑚0,0

− �𝑚0,1
𝑚0,0

 �
2

. 

Conventional direct-sampling of concentration approaches (e.g., Everett, 1980; 

Freyberg, 1986; LeBlanc et al., 1991) are typically applied to gain insight into the spatial 
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extent of subsurface solute plumes.  Direct sampling of concentrations, however, is 

invasive, expensive, and introduces contaminant mobilization risks.  In contrast, 

geophysical methods have the potential to noninvasively estimate spatial moments of 

conductive solute plumes with low costs and minimal risk.  

In a 2-D hypothetical example, for instance, Pidlisecky et al. (2011) formulated a 

distribution-based parameterization inversion framework from which they successfully 

characterized spatial moments of plumes from cross-borehole radar tomograms. In a 

field-scale application, Binley et al. (2002) accurately retrieved spatial moments of fluid 

flow in the vadose zone using electrical resistivity tomography (ERT).  Singha & 

Gorelick (2005) and Müller et al. (2010) used spatial moments from time-lapse ERT 

images to investigate transport processes.  Hubbard et al. (2001) went further by utilizing 

spatial moments derived from ERT images to calibrate aquifer flow and transport 

parameters. 

Some challenges regarding the accuracy of moments estimated from geophysical 

tomograms, such as underestimation of mass and smearing of plumes, have been reported 

as a result of imaging artifacts (e.g., Singha & Gorelick, 2005; Day-Lewis et al., 2007). 

To investigate the drawbacks associated with resolving moments from geophysical 

tomograms, Day-Lewis et al. (2007) derived a semi-analytical moment-resolution matrix. 

The authors used this tool to conclude that the geophysically recovered plume moments 

are dependent on the measurement sensitivity, survey geometry, regularization criteria, 

and measurement errors.  



 

59 

 

 

One particularly important cause of tomographic errors has been attributed to limited 

choices for regularization criteria needed to stabilize the mathematics of the imaging 

problem (e.g., Oware et al., 2013). Commonly utilized regularization constraints are 

based on deviations from a reference value or the minimization of the first and second 

spatial derivatives, which respectively invoke smallness, flatness, and smoothness in the 

recovered solution (Tikhonov & Arsenin, 1977; Pidliseky et al., 2007). While these 

constraints are often considered “objective” choices, they may not be optimal for 

representing how the physics of the underlying process, e.g., groundwater flow and 

transport, produce spatial property variations, i.e., plume concentrations.  

Oware et al. (2013) introduced a Proper Orthogonal Decomposition (POD) 

constrained inversion strategy to leverage site-specific, physics-based a priori 

information to constrain geophysical inverse problems in a flexible fashion by invoking 

soft process constraints. The technique applies POD (e.g., Banks et al., 2000; Kunisch 

and Volkwein, 2003; Rathinam and Petzold, 2004; Pinnau, 2008) to obtain a physics-

based POD basis, i.e., set of vectors representing process-relevant spatial patterns, from 

site-specific Training Images (TI). The basis patterns are subsequently utilized to 

constrain the inversion procedure. The TIs are generated using Monte Carlo simulations 

to mimic the perceived physical mechanisms of interest, which in this study are 

conservative groundwater flow and transport in heterogeneous aquifers.   

The POD algorithm is a model order reduction (MOR) technique since it maps a 

high-order dimensional state-space into a low-order dimensional coefficient-space via 
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optimally selected basis functions. The geophysical optimization then proceeds in the 

low-order dimensional coefficient-space resulting in the estimation of fewer inversion 

parameters compared to the original dimensionality of the problem. While MOR 

techniques are extensively researched in other scientific and engineering disciplines such 

as applied mathematics (e.g., Li et al., 2009; Yao and Meerbergen, 2013) and image 

processing (e.g., Milanfer et al., 1981), the technique remains largely under-explored in 

the field of hydrogeophysics.  In contrast to our use of POD as a sparse basis for 

representing the parameter space, the use of POD in groundwater inverse problems 

generally tends to focus on improving the computational efficiency of the forward model 

(e.g., Winton et al., 2011).      

In the context of solute plume imaging, available literature related to MOR mainly 

employs optimal parameterization of the state-space based on statistical moments (e.g., 

Pidlisecky et al., 2011) or object-based-inversion (OBI) (e.g., Miller et al., 2000; Lane et 

al. 2004, 2006) that seeks to reduce the number of inversion parameters required to fully 

describe the target plume, while simultaneously invoking a priori constraints regarding 

the physics or geometry of the target features. In contrast to these approaches POD is a 

MOR technique that can directly leverage advances in mechanistic modeling in an effort 

to capture and incorporate realistic, non-parametric, site-specific hydrological process 

patterns into hydrogeophysical inversion schemes.          

A problem with the proposed POD-based inversion scheme, however, was that it 

lacked the ability to shift basis patterns in space. Hence, the center of mass of the TIs had 
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to be positioned in close proximity to the true center of mass for the plume being imaged. 

Oware et al. (2013) assumed that the center of mass could be approximated prior to the 

detailed reconstruction of a resistivity image using methods similar to Pidlisecky et al.’s 

(2011) distributed parameterization or Fowler and Moysey’s (2011) coupled inversion 

approach, where resistivity data were used to calibrate the effective properties of an 

analytical transport model.  The dependence of the POD approach on this assumption is a 

major limitation of the algorithm as initially proposed by Oware et al. (2013). 

The objective of this paper is twofold. First, we address the limitations of the original 

POD imaging method to adaptively estimate the solute plume center of mass within the 

POD-constrained imaging algorithm. We hypothesize that the plume’s true center of 

mass can be evaluated by recursively reconstructing resistivity images as the center of 

mass of the POD training images is successively updated in each iteration, thereby 

adaptively conditioning the center of mass to the resistivity data. Second, we evaluate the 

accuracy of solute plume spatial moments derived from POD-based images using two 

synthetic transport experiments.  

In this paper, we present the proposed adaptive POD-constrained inversion algorithm 

in section two. Details of the numerical experiment used to test the efficacy of the 

suggested scheme are then provided in section 3. Results of the investigation including 

the impact of resistivity measurement errors on the POD-based spatial moments, and 

comparison to moments estimated by direct sampling from multi-level wells are outlined 

in section 4. Section 5 summarizes the key conclusions of the study.    
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2. ADAPTIVE ALGORITHM FOR POD-CONSTRAINED IMAGING  

The working details of traditional ERT are extensively documented in the literature 

(e.g., Kemna et al., 2002). The standard protocol for ERT surveys involves the successive 

application of electric current (I) to the subsurface via electrodes deployed in the ground. 

The current flow induces voltages (Vobs) dependent on the spatial distribution of electrical 

resistivity (inverse of electrical conductivity, 𝛔), which is controlled by the physical 

properties of the earth (e.g., solute concentrations). The observed voltages are 

subsequently utilized to reconstruct the electrical conductivity distributions. POD 

inversion described by Oware et al. (2013) is a variant of Tikhonov regularization that 

employs a physics-based a priori model to constrain the optimization procedure.   

The POD inversion represents subsurface conductivities as a linear combination of 

𝑀 basis vectors, i.e.,  

                                                        𝛔 = 𝐁𝐜,                                                                        (2) 

where the columns of the set 𝐁 ∈ 𝐑𝑀 𝑥 𝑀 represent the basis vectors that capture spatial 

patterns relevant to the imaging problem.  The rows of the expansion coefficient 𝐜 ∈

𝐑𝑀 𝑥 1 denote the magnitude of components of 𝛔 in the basis space (i.e., projected within 

the POD coordinate system). Implementing Eq.2 within the traditional Tikhonov 

regularization (Tikhonov & Arsenin, 1977), the objective function for POD-constrained 

inversion can be defined as:  

             𝐄(𝐜) =  𝐄𝑑 +  β𝐄𝑚 =  �𝐖𝑑[𝐕𝑜𝑏𝑠 − 𝒇𝑔(𝐁𝐜)]�
2

+   𝛽‖𝐖(𝐁𝐜 −  𝐁𝐜0‖2         
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=  �𝐖𝑑[𝐕𝑜𝑏𝑠 − 𝒇𝑔∗ (𝐜)]�
2

+   𝛽�𝐖�  (𝐜 −  𝐜0�2.                        (3)         

The 𝐄𝑑 term is the data norm, which measures the fit between observed and modeled 

data, whereas 𝐄𝑚 is the model norm, which introduces prior information about 𝛔. The 

data weighting matrix, 𝐖𝒅, is a diagonal matrix containing the inverse of the standard 

deviations of the measured data along its diagonal. In this study, 𝐖𝒅 is formulated 

according to Pidlisecky et al. (2007). The regularization parameter, 𝛽, is utilized to tune 

the relative importance of data fit versus model regularization. Additionally, 𝒇𝑔∗ (∙) 

denotes a transformed resistivity forward model functional that incorporates the 

reconstruction of 𝛔 from the POD basis. The regularization operator, 𝐖, contains 

information that enforces spatial criteria (e.g., flatness and continuity) within the 

reconstructed images. Notice that while the regularization operator, 𝐖, acts in the 

original model space, the composite regularization filter,𝐖� , acts in the transformed 

coefficient (𝐜) domain and is described in detail later. The reference conductivity model 

is denoted by 𝛔0 or equivalently 𝐜0 = 𝐁𝑇𝛔0. 

The conceptual algorithm for Oware et al.’s (2013) original POD-constrained 

inversion is outlined in Figure 4.1. The overall implementation proceeds in four major 

steps, namely: (i) Monte Carlo simulation of TIs that capture the influence of the target 

process on state variables, (ii) construction of POD basis (B), (iii) optimization of 

expansion coefficients (c), (iv) reconstruction of in-situ target profiles (𝛔). Note that if 

the retrieved model is found to be inconsistent with the assumptions underlying the 
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generation of the training dataset, the initial process hypotheses can be reconceptualized, 

e.g., based on the imaging results, and the entire data inversion process repeated in the 

same fashion for improved estimation. The POD approach can therefore also aid in 

conceptual model development.  

In the construction of the POD-bases, the rows of the training dataset,𝐃 ∈ 𝐑𝑁 𝑥 𝑀, 

contain the N realizations of the simulated TIs,𝛔𝑇𝐼 ∈ 𝐑1𝑥𝑀, obtained by Monte Carlo 

simulation of relevant flow and transport processes. The POD basis vectors can be 

approximated from 𝐃 in a least-square minimization manner (e.g., Kunisch and 

Volkwein, 2003; Pinnau, 2008), or via Singular Value Decomposition (SVD) (e.g., 

Castleman, 1996). Using SVD, the training dataset can be factorized into its respective 

left and right singular vectors U and V, along with their corresponding singular values 𝚲:  

𝐃 = 𝐔𝚲𝐕𝑇 ,                                                                  (4) 

where 𝐔 ∈ 𝐑𝑁 𝑥 𝑁 , 𝐕 ∈ 𝐑𝑀 𝑥 𝑀 and 𝚲 ∈ 𝐑𝑁 𝑥 𝑀. In practice, the spatial patterns most 

characteristic of the TIs are captured by the first 𝑝 basis vectors where 𝑝 ≪ 𝑀, such that 

𝐕 can be truncated without introducing significant reconstruction errors (Oware et al., 

2013). The truncation criterion is based on a user-defined threshold of percentage 

contribution of singular values of the 𝑝 selected basis vectors with respect to the overall 

𝑀 singular values weight. There are situations, however, where a single basis vector can 

account for over 99% of the overall variability in the training data. In this case, the above 

specified truncation criterion will fail to include high-order basis patterns vital to 

reconstructing details in the geometry of the target plume.  
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Figure 4.1: Schematic illustration of the conceptual algorithm for the implementation of 

the POD-constrained inversion. 

 

To address this challenge, we suggest an alternative truncation criterion based on 

imaging error. In this approach, an arbitrary hypothetical plume model is projected into 

the coefficient space and then reconstructed based on varying numbers (𝑝) of basis 

functions. The error of the reconstructed image can then be estimated as a function of p to 

identify an acceptable truncation. For this exercise, we suggest applying a more 

complicated hypothetical plume as compared to the TIs used in generating the basis 

library to avoid truncation of important high-order patterns. Illustrative examples of POD 

basis functions used in this study are shown in Figure 4.2.  
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Figure 4.2: Illustrative examples of the first 20 dominant basis patterns extracted from 

the decomposition of the training images. 

 

The formulation of the regularization filter, 𝐖, in the Cartesian model space is a 

combination of difference operators as suggested by Ellis and Oldenburg (1994a): 
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 𝐖𝑇𝐖 = 𝐠𝐱2𝑇𝐠𝐱2 + 𝐠𝐲2𝑇𝐠𝐲2 +  𝛿𝐌𝑤
𝑇𝐌𝑤 ,    

where 𝐠𝐱2 and 𝐠𝐲2 represent the discretized lateral and vertical second derivative spatial 

filters, respectively, which penalize for roughness in the spatial distribution of the model 

parameters. 𝐌𝑤  denotes the model weights matrix, which penalizes against the 

propagation of singular errors near the electrodes (e.g., Fox, 1979; Dey and Morrison, 

1979b). The smallness factor, 𝛿, is a fitting parameter that is utilized to tune the relative 

importance of these penalties. The filter 𝐖 is projected into the coefficient space as 

 𝐖� 𝑇𝐖� =  𝐁𝑇𝐖𝑇𝐖𝐁 + 𝝺𝐖𝑠𝑣,                                              (5)  

while introducing additional constraints 𝐖𝑠𝑣 based on the singular values of the training 

dataset D.  The singular values represents the variance (or importance) of the basis 

vectors in the POD coordinate system for capturing the training data, therefore, 𝐖𝑠𝑣 

imposes an a priori structural constraint on the optimization procedure that biases the 

images toward the TIs. Another fitting parameter, 𝝺, is applied to balance out the relative 

importance of the conventional regularization constraints versus the TIs.  

Following the generation of site-specific, non-parametric POD bases and the optimization 

of the transform coefficients, 𝐜, the in-situ electrical conductivity distributions can be 

approximated via Eq.2. (step 4 in Figure 4.1).   

The POD technique as described above is unable to shift the location of the basis 

vectors toward the location of the true plume during the optimization procedure.  The 

method therefore requires that the TIs can be located in the vicinity of the true plume 

prior to initiating image reconstruction. To overcome this limitation, we propose a simple 
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strategy to adaptively estimate the center of mass of the solute plume within the POD 

inversion scheme from surface-based resistivity measurements. 

The adaptive POD algorithm is heuristically illustrated in Figure 4.3. First, an initial 

estimate of the center of mass of the true plume is used to position the training images (or 

equivalently the POD basis); note that this location must be within the region of 

sensitivity of the resistivity measurements though it need not be in the immediate vicinity 

of the actual plume being imaged. The standard POD algorithm (Figure 4.1) is then used 

to obtain an estimate of the resistivity image.  After the data inversion, the center of mass 

of the retrieved tomogram is estimated and used to reposition the Tis (or POD basis 

vectors) for the next iteration. This process is repeated until convergence is reached, 

where we define the convergence criterion based on a data-fit tolerance limit.   

 

 

Figure 4.3: Conceptual algorithm to estimate the spatial moments of a targeted 

subsurface distribution from resistivity measurements. CoM refers to center of mass. 
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3. METHODS 

Two hypothetical transport experiments were applied to test the proposed strategy 

and evaluate the accuracy of the resulting plume moments. A schematic illustration of the 

experimental setup is provided in Figure 4.4. The simulations resulted in two synthetic 

targets, synthetic #1 and synthetic #2 (Figures 4.5a and 4.6a), Both examples assume 

conservative solute transport through a two dimensional, heterogeneous cross section of 

the subsurface in response to a horizontally applied uniform hydraulic gradient. The top 

and bottom boundaries of the system represent zero flux conditions. Resistivity surveys 

are collected using electrodes placed near the top of the model domain, i.e., at the ground 

surface. The difference between the two scenarios is that synthetic #1 contains a single 

source for the solute, thereby producing a unimodal plume, whereas synthetic #2 contains 

an additional solute source, leading to a bimodal solute plume. Archie’s law (Archie, 

1942) was used for both the forward and inverse transformation of concentration to 

electrical conductivity. We therefore do not explicitly account for petrophysical scaling 

effects as discussed in previous work by Moysey and Knight (2004), Moysey et al. 

(2004), and Singha and Moysey (2006). Refer to Oware et al. (2013) for further specific 

details of the hydrological simulations for the test examples and the training images, and 

also the details of the resistivity survey and the ERI inversions. 

The conceptual algorithm for the estimation of the plume center of mass (Figure 4.3) 

requires the selection of an initial location for the POD basis vectors. To explore the 

impact on the quantification of the true center of mass as a result of the anisotropic nature 
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of resistivity sensitivities (e.g., Keller and Frischknecht, 1966), three scenarios were 

investigated where the initial position was laterally, vertically, or diagonally shifted 

relative to the true center of mass.      

 

Figure 4.4: Schematic illustration of the experimental setup of the 2-D flow and transport 

in a random hydraulic conductivity field (image color scale denotes the value of the log 

of K). The design of the resistivity surveys illustrated by the electrodes along the ground 

(top) surface; while the red electrodes served as both current and potential electrodes, the 

black electrodes were used exclusively as potential electrodes leading to a total of 120 

resistance measurements in each survey.  

 

To control the positioning error, the initial center of mass was shifted in proportion 

to the true plume’s width as described by the lateral and vertical second spatial moments 

(e.g., Freyberg, 1986; Goltz & Roberts, 1987). While the lateral perturbation of the x-



 

71 

 

 

coordinate was 16 m, the y-coordinate was vertically shifted by 9 m. For instance, for a 

true center of mass of (x0,y0), the vertical, lateral, and diagonal positioning errors were 

(x0,y0+9), (x0+16,y0), (x0+16,y0+9), respectively. To provide a constant basis for 

comparing all the results, these positioning errors were kept constant for all the data 

inversions.  

Furthermore, in an effort to explore how data uncertainties affect the predictive 

power of the center of mass, we assumed random Gaussian errors with standard 

deviations proportional to the resistivity signals, according to the following noise model:  

𝐝𝑛𝑜𝑖𝑠𝑒 = 𝐝𝑛𝑜_𝑛𝑜𝑖𝑠𝑒 + 𝑛𝑝𝑒𝑟 ∙ 𝐝𝑛𝑜𝑛𝑜𝑖𝑠𝑒 ∙ N(0,1),                                       (6) 

where 𝐝𝑛𝑜𝑖𝑠𝑒 and 𝐝𝑛𝑜_𝑛𝑜𝑖𝑠𝑒 represent the corrupted and noise-free data, respectively. 𝑛𝑝𝑒𝑟 

denotes the proportion of the resistivity signal to be added as noise. In this study, we 

investigated scenarios where 𝑛𝑝𝑒𝑟 was set to 0, 0.03 (3%), and 0.1 (10%). N(0,1) 

signifies a random normal distribution with zero mean and standard deviation of one.  

While assuming simple Gaussian noise model may be adequate for our demonstrations 

here, empirical errors in applications can be estimated based on reciprocal measurements 

(interchanging injection and receiver electrodes) as presented by LaBreque et al. (1996). 

To evaluate the influence of noise on the center of mass estimation, the data inversion 

was performed for 100 datasets generated from the excitation of 𝐝𝑛𝑜_𝑛𝑜𝑖𝑠𝑒 with 100 

realizations of Gaussian noise.  
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4. RESUTLS AND DISCUSSION 

4.1. Estimation of Electrical Conductivity Images 

Estimated conductivity images of the plume obtained for each iteration of the 

adaptive POD inversion are shown in Figures 4.5 and 4.6 for synthetic #1 and synthetic 

#2, respectively; these results represent the case where the POD TIs were initially 

laterally displaced from the true center of mass by 16m. Note that the assumed center of 

mass used to position the POD TIs is shown as white star in these images, which moved 

progressively toward the true plume center of mass (shown as white cross) as the 

inversion proceeds. Results are presented for cases where 0, 3, and 10% errors were 

added to the voltage measurements prior to the inversion.   

As the adaptive POD inversion progresses for synthetic #1, the images in Figure 4.5 

consistently improve as the TIs are shifted toward the true location of the plume. The 

influence of noise is qualitatively apparent in the images as over fitting of the data errors 

causes spurious non-zero conductivities to appear in the regions away from the true 

plume, which is spatially compact. This observation is quantitatively supported by a 

consistent increase in the root mean square error (RMSE) of the estimated plume 

concentration with increasing noise (Table 4.1). It is also apparent, however, that noisy 

data requires more iterations for the algorithm to converge toward an acceptable image of 

the true plume. 
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Table 4.1: True and calculated spatial moments for the final concentration estimates    

obtained for scenarios with 0, 3, and 10 % signal noise in the resistivity data.   

 

 

The situation is somewhat different for synthetic #2, where the estimated images 

significantly degrade in early iterations before finally converging toward an acceptable 

solution (Figures 4.6b-j).  In this case, the adaptive POD algorithm also requires 

substantially more iterations to converge for the zero noise case compared to the cases 

with noise added (Figure 4.6), though the RMSE of the final concentration estimates is 

ultimately superior for the noise-free case (Table 4.1).  The difference in behavior 

compared to synthetic #1 is due to the fact that the model used to generate the POD TIs, 

i.e., a unimodal plume with a single source zone, is inconsistent with the actual solute 

plume being imaged in synthetic #2, i.e., a bimodal plume generated by releases from two 

distinct source zones.  The inconsistency between the a priori conceptual model of the 

system built into the POD basis versus the resistivity measurements that are 
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representative of the actual plume makes it more difficult for the algorithm to efficiently 

converge toward an acceptable solution.  The data noise stabilizes the inversion, but at 

the same time causes a loss of resolution in the final estimated images. 

The results in Figures 4.5 and 4.6 represent the case where the POD TIs were shifted 

laterally away from the true center of mass of the plume.  In Figure 4.7 we evaluate the 

sensitivity of the adaptive inversion to the direction in which the POD TIs are initially 

shifted relative to the true plume center of mass (i.e., lateral, vertical, or diagonal).  After 

each tomographic update the refined location of the TIs approaches the true center of 

mass of the plume, regardless of the direction in which the TIs were originally perturbed 

(Figure 4.7).  This continuous improvement reflects improved utilization of the resistivity 

data within the inversion to incorporate information about the true plume while 

decreasing the dependence on the assumed a priori transport model. This observation is 

consistent with the underlying hypothesis of this study. 

It is notable that the location of the training images converged to the same position 

regardless of the initial displacement direction for the TIs.  This observation suggests that 

the adaptive POD algorithm is insensitive to errors in TI positioning (though TIs must be 

located within a region of sensitivity to the resistivity measurements).  In contrast, it is 

also apparent that as noise is added to the measurements, the converged location of the 

TIs relative to the true center of mass deteriorates.  This observation suggests that the 

inversion approach is sensitive to data noise. 
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To investigate the influence of data noise on the adaptive updating of the TI 

positions we generated 100 realizations of Gaussian noise to corrupt the voltage 

measurements and subsequently performed an independent adaptive POD inversion for 

each corrupted data set.  Figure 4.8 shows the mean and standard deviation for the final 

converged location of the TIs performed with the set of 100 noisy datasets.  As the data 

noise increases, there are two clear impacts on how the TI positions are updated in the 

adaptive algorithm: (1) on average the position of the TIs converges farther away from 

the true center of mass of the plume, i.e., there is greater positioning error for the final 

image reconstruction step in the adaptive algorithm; and (2) there is substantially greater 

spread in the final converged position of the TIs for the cases with higher data errors.  

Both of these results suggest that the resistivity data contain less information to constrain 

the adaptive algorithm as the noise level increases, which is consistent with the 

degradation of the plume concentration estimates indicated by the RMSE values in Table 

1 and the general loss of performance of tomographic imaging techniques with noisy 

data.   

The final positioning errors appear to be minimized when starting the TIs with a 

vertical displacement relative to the true plume compared to lateral and diagonal shifts 

for both the 3 and 10% noise cases.  This observation, however, may be related to the 

specifics of the morphology and position of the true plume relative to the sensitivity 

pattern of the resistivity survey or the fact that the TIs were shifted proportionally to the 

concentration plume moments, thus the original TI displacement was effectively smaller 
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in the vertical than the lateral or diagonal directions.  Of greater concern, however, is an 

apparent systematic bias in the final position of the training images relative to the true 

plume regardless of how the TIs are initially perturbed.  Given that the training images 

capture patterns associated with the a priori model of transport, this bias could also be 

related to an inconsistency between the morphology of the TIs and the true plume.  The 

potential significance of the bias is therefore best assessed by directly comparing the 

spatial moments of the true and estimated concentration plumes.  
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Figure 4.5: Log of electrical conductivity tomograms demonstrating the iterative 

reconstructions to estimate center of mass from resistivity measurements for the case of 

lateral shift of the true center of mass. Synthetic #1 (a). Tomograms showing successive 

reconstructions from the first to the converged iterations for: 0 % data noise (b-d, 

column1), 3 % noise (e-k, column 2) and, 10 % noise perturbation (i-q, column 3). The 

white + in each image denotes the position of the center of mass of the true plume, 

whereas the white * indicates the location of the center of mass of the training dataset for 

that iteration. Note, it seems the location of the white * gets closer to the white + with 

each update, in most cases. 
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Figure 4.6: Log of electrical conductivity tomograms demonstrating the iterative 

reconstructions to estimate center of mass from resistivity measurements, for the example 

of lateral positioning error. Synthetic #2 (a). Tomograms showing successive 

reconstructions from the first to the converged iterations for: 0 % data noise (b-j, column 

1), 3 % noise (k-r, column 2) and, 10% noise perturbation (s-y, column 3). The white + in 

each image denotes the position of the center of mass of the true plume, whereas the 

white * indicates the location of the center of mass of the training dataset for that 

iteration. Note, it appears location of the white * gets closer to the white + with each 

update, in most cases. 
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Figure 4.7: Plots showing the update paths for the position of the POD training images: 

synthetic #1 (row 1), synthetic #2 (row 2). Red circles signify true CoM, black filled 

circles represent initial lateral shifts in the training image positions, whereas black open 

circles indicate diagonal shifts and plus symbols denote vertical shifts. Columns 1-3 

represent 0, 3, and 10 % signal noise additives, respectively. Observe that for each noise 

case studied, the estimation of the center of mass from all the perturbed directions, 

converged at a unique location.  
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Figure 4.8: Plots of the means and standard deviations of center of mass estimates based 

on 100 realizations of Gaussian noise additives (Eq.6). The green circle represents the 

true center of mass; the blue, red, and black denote the lateral, diagonal, and vertical 

positioning errors, respectively. The cross and the thick lines represent the final mean 

position of the realizations and one standard deviation for the 3% signal noise 

perturbations, whereas the circles and the broken lines mark the mean and standard 

deviation for the 10% signal noise case. The horizontal and vertical lines denote the 

lateral and vertical standard deviations. 
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4.2. Quantification of Plume Spatial Moments  

As mentioned earlier, the electrical conductivity images were back transformed to 

concentrations using the same equation applied in the forward transformation from 

concentration to conductivity when generating the test data.  It is also important to note 

that inherent errors as a result of forward and inverse transformations between electrical 

conductivities and concentrations, encountered in practical applications, were not 

accounted for in the results presented here. The accuracies of the zeroth, first, and second 

spatial moments of the concentration plumes were then estimated from the images using 

Eq.1. Given that differences in where the final positions of TIs converged in the 

preceding noise analysis were not significant, we report here only the results for the 

single realization of data noise associated with the images produced in Figures 4.5 and 

4.6.   

The spatial moments estimated from the plume images generally degrade with 

increasing data noise, though all results are reasonably similar to the moments obtained 

directly from the true plume (Table 4.1).  For the case of synthetic #1, the total mass 

(zeroth moment) was over-estimated by 0.6, 0.6, and 4.4% for the 0, 3, and 10% data 

errors, respectively. Relative errors in the estimated center of mass (first moment) for the 

0, 3, and 10% data uncertainty cases were -1.0, 0.6, and 5.0% for the lateral position and -

1.5, -1.3, and -9.6% for the vertical position.  Relative errors in the estimated plume size 

(second moment) for the 0, 3, and 10% data errors were -3.5, 9.7, and 32.6% (lateral 

variance) and -3.4, -21.9, and 19.3% (vertical variance).  These results indicate that 
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estimates of the total solute mass and location of the plume are relatively robust to noise, 

though the overall size of the plume is more difficult to constrain accurately. In the case 

of synthetic #2, the estimation accuracy of the spatial moments also generally degraded 

with increasing data noise (Table 4.1), though the errors were slightly larger and patterns 

not always clear.  For example, the relative error in the estimated center of mass in the 

lateral direction was -0.5, 0.6 and 4.0 for the 0, 3, and 10% data noise cases, which is 

consistent with what was observed for synthetic #1.  The center of mass in the vertical 

direction, however, has a substantially higher relative error (9%) for the 0% data noise 

case than the 3 and 10% data noise cases with relative errors of -5.4 and -3.8%, 

respectively.  Similarly, the lateral and vertical plume variance errors were 12.7, 11.7, 

and 3.3% (lateral variance) and -14.7, -36.5, and -45.0% (vertical variance), for the 0, 3, 

and 10% data uncertainties, respectively.  These inconsistencies compared to case #1 are 

associated with the fact that the TIs used to generate the POD basis are conceptually 

inaccurate for representing the bimodal plume of synthetic #2, as was pointed out early in 

the context of the reconstruction of Figure 4.6.  A close inspection of Figures 3.6j, 3.6r, 

and 3.6y, for example, reveal that the bottom portion of the bimodal plume (i.e., the 

second mode) was not fully reconstructed, which explains the relatively high errors in the 

quantified vertical plume variances for synthetic #2.  Regardless of these observations, 

the overall magnitude of the observed moment errors is relatively modest given that the 

estimates are obtained using a non-invasive imaging technique. 
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We emphasize that the laterally central locations of the target plumes were 

deliberately chosen for maximum resistivity sensitivity. Therefore, we anticipate the 

resolution of the lateral center of mass to degrade as the target plume is shifted toward the 

lateral terminals within the domain as pointed out by Day-Lewis et al. (2007).   

The literature suggests that the accuracy of the spatial moments estimated using the 

adaptive POD algorithm in this paper is generally consistent with or slightly better than 

past experiences achieved with geophysical tomography.  Pidlisecky et al. (2011), for 

example, found percentage mass recovery errors in the range of 0 to -12%, center of mass 

errors in the range of 0 to 30% (lateral) and 2.7 to 7.5% (vertical), and spatial variance 

calibration errors of -10 to -80 % (lateral) and -40 to -70% (vertical), though their 

experiment was a 2D synthetic study of cross-borehole ground-penetrating radar and 

therefore has substantially different resolution characteristics from the surface based 

resistivity surveys used in this paper.  While direct comparisons across studies with 

different survey geometries, transport processes, and imaging methods are difficult, the 

value of the resistivity-based spatial moments estimated in this study can be directly 

compared to the moments estimated from direct sampling of the solute concentrations.   

We simulate direct sampling of the solute plume in Synthetic #1 by placing synthetic 

boreholes at discrete locations along the cross-section, where for convenience we assume 

that the entire depth profile of concentration is sampled.  It is clear from Figure 4.9 that 

the estimation accuracy of plume moments from direct sampling is dependent on 

sampling coverage and the specific locations of the boreholes relative to the true plume.  
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The moments estimated by direct sampling approach the true plume moments as the 

number of boreholes increases, stabilizing when approximately 12 boreholes are present 

or, equivalently, 0.12% of the image has been sampled.  The estimate of the vertical 

center of mass is an exception which appears to retain a slight bias for the limited number 

of wells shown.        

Using Figure 4.9 to compare the center of mass estimates obtained from the 

resistivity surveys with no and 3% noise to those obtained by direct sampling indicates 

that the geophysically-based moments are more reliable than those obtained by direct 

sampling until at least 6-10 wells have been installed.  Direct sampling almost always 

outperforms the resistivity surveys with 10% data noise, however, which demonstrates 

that the quality of the resistivity data is an important factor in determining its overall 

value.  Similar conclusions can be made for the quality of estimates of the plume size 

(second moment) and mass (not shown).  While the particulars of this comparison are 

dependent on the details of the specific situation studied, we suggest that these results do 

support the conclusion that POD-constrained resistivity images provide a promising 

alternative to extensive direct sampling for reasonably accurate estimation of the spatial 

moments of solute plumes. 
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Figure 4.9: Plots comparing the plume spatial moments estimated from resistivity 

imaging versus direct sampling approaches; upper imagines show results for the center of 

mass estimated in the lateral (a) and vertical (b) direction, whereas the lower images 

show results for the plume size in the lateral (c) and vertical (d) directions.  
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5. CONCLUSIONS 

An adaptive POD-based ERT strategy for inferring the spatial moments of 

subsurface solute plumes was presented. The proposed approach extends the POD 

inversion strategy introduced by Oware et al. (2013) to iteratively update the spatial 

location of the POD training images (TIs) (or equivalently the POD basis functions). The 

algorithm recursively refines the position of the TIs until their position is conditioned on 

the observed resistivity data. The approach was tested using two hypothetical transport 

scenarios: synthetic #1, which consists of a unimodal plume that is consistent with the 

transport model used to produce the POD TIs, and synthetic #2, where the target plume 

has two source locations that result in a bimodal plume that is inconsistent with the POD 

TIs.  

The adaptive algorithm converged by shifting the TIs to a common region on the 

domain near the true plume regardless of TI starting position.  Although the mean final 

position of the TIs inverted with 100 different realizations of data noise converged farther 

away from the center of mass of the true plume as the noise level of the resistivity data 

was increased, Oware et al. (2013) demonstrated that the TIs did not have to be precisely 

positioned at the center of mass of the true plume for the POD strategy to be successful.  

In all cases the final resistivity images provided reasonably accurate representations of 

the solute plume regardless of issues associated with data noise, the initial TI positioning, 

or conceptual inconsistencies between the target plume and simulations used to generate 

the TIs.   
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Estimates for the spatial moments of the plume based on the proposed imaging 

strategy were compared to those retrieved from the direct sampling of concentration 

values.  Overall, the total mass and center of mass of the plumes could be accurately 

quantified by the resistivity results, but the spatial spread of the plume was more difficult 

to constrain.  The estimation accuracy of the moments was found to deteriorate as the 

noise in the resistivity data increases.  Spatial moment evaluations for synthetic #1 are 

better than the estimates for synthetic #2 due to the inaccurate basis functions applied to 

constrain the reconstruction of synthetic #2. We also found, however, that the data noise 

stabilized the inversion process in the case of synthetic #2.  For low noise cases (i.e., the 

0 and 3% noise cases in this study), the moments estimated from the resistivity images 

were found to outperform estimates based on direct concentration sampling until 6-10 

multi-level sampling wells were installed.  Although this particular number of wells is 

specific to our example, installing any number of multi-port sampling wells in field 

applications is not trivial given the time, labor, and cost involved in installing boreholes.   

The POD algorithm appears particularly appealing due to its MOR capabilities. For 

instance, in this study, we achieved 97% truncation in the dimensionality of the original 

problem (i.e., 300 coefficients were estimated to reconstruct an image with 10,000 

pixels). Reducing the number of parameters in an inverse problem may result in 

reductions in computational overhead and a possible improvement in the ill-posedness of 

the problem.  
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While our study illustrates a successful application of the adaptive POD-based 

imaging technique, there are a variety of issues that should be noted.  First, the approach 

will not overcome fundamental sensitivity limitations of resistivity data. For example, if 

the training images are initially located beyond the influence of the resistivity data, then it 

will not be possible to shift their locations toward the location of the plume using our 

framework.  Second, the POD basis is limited to capturing patterns representative of the 

conceptual model used to generate the TIs.  Additional research is required to evaluate 

how this problem might be overcome using adaptive training data, supplementing the 

POD basis with additional patterns, or using geostatistical tools to capture additional 

spatial variability.  Finally, we have not evaluated how the POD imaging technique or the 

estimated spatial moments of a plume may be affected by fluctuations in the background 

resistivity of the aquifer caused by geologic variability or associated uncertainties in the 

petrophysical relationship between concentration and bulk resistivity.      

Despite these limitations, we conclude from this synthetic study that POD-based 

resistivity imaging provides a viable means for the inference of spatial moments of solute 

plumes in a noninvasive and cost-effective manner.  We look forward to future efforts to 

undertake field-scale studies to evaluate the generalizability of our numerical findings to 

real-world settings. 
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CHAPTER FIVE 

TIME-LAPSE APPLICATION OF POD FOR GEOELCTRICAL MONITORING OF 

LAB-SCALE SALINE-TRACER EXPERIMENT. 

 

ABSTRACT 

The ability of a geophysical estimation algorithm to invert real-world data is 

important to establishing useful scientific applications. We demonstrate the use of the 

POD-constrained adaptive inversion algorithm on real-world dataset. The POD algorithm 

is based on recursive refinements of center of mass (CoM) of tomograms in an effort to 

minimize the fidelity between the true and estimated CoMs. Resistivity measurements 

obtained from lab-scale saline-tracer unsaturated flow experiment were applied for the 

purpose of demonstrating the utility of the algorithm to interpret real-world datasets.  

 The estimation error of the solute release point is 17.6% with respect to the lateral 

spread of the target plume. This illustrates a potential utilization of the POD adaptive 

algorithm as a possible non-invasive tool for identifying unknown contaminant sources. 

This also shows that the algorithm can be applied to locate a region of maximum 

concentration of contamination, which can inform the design of remediation or sampling 

schemes. The continuous improvement in the misfit between the true and estimated 

release points is driven by high-order basis functions, which demonstrates the need for 

capturing more variability in the basis constraints. The dynamics of the respective 

contributions of the basis functions as the adaptive iteration progresses depict a shift from 

the patterns deemed important from the stochastic simulations of the target toward 



 

 99 

 

patterns relevant for the reconstruction of the actual target. This illustrates the flexibility 

of the POD-constrained algorithm to move away from the characteristics of the a priori 

constraints in order to represent the observed resistivity data, i.e., the algorithm enforces 

soft process constraint. The POD algorithm presents a potential tool to leverage advances 

in mechanistic modeling to incorporate physics-based specifications into geophysical 

imaging. The complexity of the patterns to incorporate is unlimited, as long as it can be 

numerically simulated.   

 

1. INTRODCUTION  

Time-lapse electrical resistivity tomography (ERT) is becoming an increasingly 

important tool for monitoring subsurface processes due to advances in computational 

capabilities and field instrumentation. The increased rate of data acquisition facilitates 

static imaging (snapshots) of the subsurface through time. ERT time-lapse has been 

applied to monitor evolving targets such as infiltration [e.g., Binley et al., 2001;  Nimmo 

et al., 2009], solute transport [e.g., Slater et al., 2000; Kemna et al., 2002, Singha and 

Gorelick, 2005], engineered in-situ remediation [e.g., Ramirez et al., 1996; Lane et al., 

2004; Hubbard et al., 2008].  

Of particular relevance to this study are the works of Oware et al. [2013] and Oware 

and Mosey [2014]. Oware et al. [2013] introduced a POD-constrained inversion 

algorithm that incorporates physics-based a priori constraints into geophysical imaging 

schemes. The algorithm constructs basis functions from training images. The basis 

functions are then applied to condition the geophysical optimization process. A limitation 
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of the original algorithm is that the basis vectors are not translational in space during the 

inversion procedure.  

To address this limitation, Oware and Mosey [2014] introduced the POD adaptive 

algorithm. The adaptive algorithm recursively updates the center of mass (CoM) of 

tomograms in order to minimize the misfit between the true and estimated CoM, 

conditioned on geophysical measurements.  

Both Oware et al. [2013] and Oware and Mosey [2014] utilized hypothetical 

saturated flow and transport experiments to demonstrate the original and the adaptive 

versions of the POD algorithm. The objective of this study, in the spirit of advancement 

of the POD algorithm, is to demonstrate the performance of the POD strategy using a lab-

scale, saline-tracer unsaturated experiment. The study also aims to illustrate the time-

lapse imaging capability of the POD algorithm. 

Two commonly applied time-lapse imaging strategies are the difference inversion 

and cascaded time-lapse inversion. The difference inversion involves the subtraction 

from the time-lapse data, data acquired from the target system at some baseline condition 

(reference data). The differenced data is then inverted, which is referred to as pre-data 

differencing time-lapse inversion. When the differencing is done after the inversion of the 

time-lapse and reference datasets, it is called post-model differencing time-lapse 

inversion. Singha and Gorelick [2005] reported that they did not observe significant 

differences between model resolutions recovered from post-model differencing in 

contrast to those obtained from pre-data differencing inversions, in a field-application. 
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The cascade time-lapse inversion, on the other hand, applies the inverted reference 

dataset as a starting model to invert subsequent time-lapse datasets. Miller et al. [2008], 

in their study to evaluate the performance of different time-lapse inversion techniques, 

found the post-model differencing and the cascaded time-lapse approaches to be superior. 

The authors, however, pointed out their preference for the latter approach due to its faster 

convergence rate and its ease of implementation compared to the difference approach. 

Therefore, the cascaded time-lapse inversion is adopted for the implementation of the 

POD time-lapse inversion in this study. 

 

2. METHODS 

2.1. Overview of Lab-scale Saline-tracer Experiment for Test Case 

We performed a lab-scale, saline-tracer unsaturated experiment in a homogenous 

sand matrix to illustrate time-lapse imaging capability of the POD-constrained inversion 

algorithm. The experiment was performed in an acrylic tank of dimension 100 cm x 2 cm 

x 30 cm. An image of the experimental setup is shown in Figure 5.1. The small thickness 

(2 cm) of the model was specifically selected to produce a quasi-two-dimensional flow 

[e.g., Pollock and Cirpka, 2012], in an effort to generate a 2-dimensional parsimonious 

test case as opposed to a complicated 3-dimensional target.  

To avoid enhanced flow from micro-layers as a result of uneven packing of the tank, 

we applied wet packing with continuous stirring. Afterwards, the saturated medium was 

allowed to drain under gravity for one hour before the commencement of the experiment. 
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This short drainage time allowed the infiltration domain to remain fairly moist in order to 

ameliorate the effects of high contact resistance for the resistivity measurement.  

Sodium chloride solution with electrical conductivity of 18.91 S/m was utilized as a 

tracer in order to accentuate the electrical conductivity contrast between the background 

electrical conductivity values and those of the infiltrating media. Dye was also added to 

the inflow solution to enable video monitoring of the experiment.  Brilliant Blue dye (C.I. 

Food Blue 42090) was selected due to its favorable properties such as mobility, high 

visibility, and low toxicity [Flury et al., 1994].   

 

Figure 5.1: A schematic diagram of the experimental setup. A total of 48 surface 

electrodes were deployed with 2 cm spacing between them.  

 

The dyed saline solution was released at the 50 cm mark on the surface of the tank 

(Fig. 5.1) with a continuous drip rate of 0.59 ml/min. The experiment lasted for three 

hours. A total of 106 ml of the saline solution was released over the course of the 

experiment. 
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A Syscal Pro ten-channel resistivity-meter with a 48 switch board by IRIS 

Instruments was used to perform the resistivity monitoring. All of the 48 electrodes were 

distributed on top of the sand matrix with 2 cm spacing between them (Fig. 5.1). Dipole-

dipole electrode configuration was employed for all measurements in the resistivity 

survey.  A total of 45 independent current pairs were triggered within each complete 

survey resulting in a total of 1035 quadripole measurements. To estimate data errors, 

reciprocal measurements (i.e., interchanging the positive and negative current sources) 

were also performed during each survey. The acquisition time for both the forward and 

reciprocal measurements lasted for 4.5 mins for each complete survey. The surveys were 

repeated every 0.6 mins to enable time lapse monitoring of the experiment. 

 

 2.2. Details for Generating Case-specific POD Basis Patterns  

The POD inversion scheme requires the construction of basis functions from training 

images (TIs) in a bid to capture relevant hydrological features specific to the system 

under investigation. To generate the training dataset for this purpose, we applied Monte 

Carlo sampling of the target process [e.g., Oware et al., 2013] using HYDRUS 2D/3D 

[Simunek et al., 2008] variably saturated flow and transport model. The process of 

interest in this study is an infiltrating saline-tracer through a fairly homogeneous, variably 

saturated sand matrix (Fig. 5.1).  

The Hydrus simulations were based on a conceptual model of the experimental 

design applied in generating the test case (Section 2.1), in an effort to generate problem-

specific TIs that captures our conceptual understanding of the lab-scale test case. To 
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increase the variability in the training dataset in order to capture a wide range of 

uncertainties in an attempt to increase the chances of capturing basis patterns that may be 

relevant in reconstructing the target, multiple combinations of typical hydraulic 

properties of sand (Tab. 5.1), varying antecedent matrix saturations (0.08 and 0.12), and 

varying injection flux (1 and 1.5 m/day) were applied to generate the TIs, in an effort to 

capture multiple rates of infiltrating fronts and multiple solute morphologies. The 

combinations resulted in the simulations of a total of 1374 TIs. 

 In most practical applications, while the region of solute release (i.e., contaminant 

source) may be known, the exact location is, however, rarely known. To appraise the 

performance of the POD algorithm in the event of uncertain knowledge about the solute 

release location, the initial inflow point in the simulation of the TIs was shifted to the 70 

cm mark as opposed to the true release location of 50 cm.     
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Table 5.1: Typical hydraulic parameter values for sand were used in generating the 

training images (TIs). The values in parenthesis indicate the step size applied to generate 

multiple combinations of parameters to simulate the TIs. 𝑄𝑟 and 𝑄𝑠 denote the mean 

residual and saturated water contents, respectively. Alpha and n are empirical constants 

that determine the shape of the water retention curve [van Genuchten, 1980] while 𝐾𝑠 

signifies saturated hydraulic conductivity.  Sources of Parameters: [Rawls et al, 1982; 

Schaap, 1999].    

 
 

The simulated concentration profiles were converted to electrical conductivity based 

on the relationship 2 mg/L = 1µS/cm [Keller and Frischknecht, 1966].  The electrical 

conductivities, thereafter, were converted to bulk electrical conductivities (σ𝑏𝑢𝑙𝑘) 

according to the following Archie’s [Archie, 1942] unsaturated petrophysical model: 

σ𝑏𝑢𝑙𝑘 =  σ𝑓𝑛𝑚𝑆𝑑,                                          (10) 

where n is the porosity, which was estimated to be 0.4; σ𝑓 represents pore fluid electrical 

conductivity;  m denotes the cementation factor, which is a measure of pore connectivity 

[Jackson et al., 1978] and was set to 1.3; 𝑆 denotes water saturation; and d represents 

saturation index, which was set to 2.3. Effect of surface conductivity in the clean sand 

was assumed to be negligible due to the absence of clay [McNeil, 1980].  
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Background bulk electrical conductivity was estimated to be about 6.14 mS/m, based 

on inversion data (reference tomogram) from resistivity monitoring of the background 

condition prior to the onset of infiltration. Electrical conductivity of tap water was 

measured to be 9.5 mS/m.   

The simulated TIs were decomposed into their basis functions as explained in 

Chapter 2 section 3.2. Images of the first twenty principal patterns captured from the TIs 

with their release point located at the 70 cm mark are shown in Figure 5.2. 

 

 

Figure 5.2: Images of first twenty dominant POD basis functions for the first time-step. 

They are numbered in decreasing order of dominance. Those of the subsequent time steps 

are not shown, but they follow similar patterns with increasing spread (see mean of 

training images in Figure 5.7 for a sense of scale). Note that the lateral center of mass of 

the basis is located at the 70 cm mark whereas the true injection point is at 50 cm. Also, 

the wide spread of the basis images is due to logarithmic scaling of the basis, since the 

target is the log of conductivities. 
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2.3. Details for the Resistivity Inversions  

In this section, we provide a description of the inversion protocol. The experiment 

was monitored at three time steps, i.e., 30, 60, and 90 mins after onset of infiltration.  

The POD adaptive algorithm presented by Oware and Moysey [2014] was applied to 

estimate the release point. It was assumed that the release was at the surface, therefore, 

only the lateral coordinate of the release point was estimated. The POD adaptive 

algorithm is based on recursive refinement of center of mass (CoM) of tomograms in 

order to minimize the misfit between true and estimated CoM. Specifically, the first POD 

data inversion was performed with the basis functions localized at the 70 cm mark.  

Afterwards, the lateral CoM of the recovered image was estimated. The estimated lateral 

CoM then served as the location of the basis vectors for the next iteration of the inversion 

process. The inversion was recursively repeated in this fashion until convergence. That is, 

until there was no significant changes in the estimated lateral CoM.   

The full inversion of all the time-step datasets then proceeds with the basis functions 

localized at the estimated CoM. Since we adapted the cascaded time-lapse approach, the 

reference tomogram was applied as the starting model for the inversion of each time-step 

dataset.                                                                                                                                                                                                                                                                                                                                                                                                                                                

Data errors were assumed to be normally distributed and uncorrelated; therefore, the 

diagonal elements of the data weighting matrix, 𝐖𝒅 in Eq.9, comprised the inverse of 

data standard deviations. Tiedman and Green [2013] discuss the effect of neglecting 

correlations in observed errors on parameter estimation. Data variances were estimated 

from reciprocal measurements as presented by LaBrecque et al., 1996 as:             
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  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 = 𝐴2 + 𝐵2(𝑑𝑖)2,                                                          (11) 

where 𝑑𝑖 denotes the 𝑖𝑡ℎ data point, and 𝐴2 and 𝐵2 are fitting parameters, which were 

estimated in this study to be 0.64 and -0.19, respectively. However, the estimation of 𝐴2 

and 𝐵2 were found to be severely underestimated as the inversion would not converge. 

The 𝐴2 and 𝐵2 parameters were, therefore, scaled by 1000. Note that the estimation of 𝐴2 

and 𝐵2, in a least-squares sense, involved a pool of recorded data from all the time-steps 

considered.  

 

3. RESULTS AND DISCUSSION 

3.1. Adaptive estimation of release point 

As the iterations progress the estimated plume begins to form coherently at a 

particular region (Fig. 5.3) and the evaluated release point approaches the true value (Fig. 

5.4). A plausible explanation for the observed continuous reduction in the misfit between 

the estimated and true release points can be deduced from the dynamics of the FofC 

weights as the iterations progress (Figs. 5.5 and 5.6). The comparatively small FofC 

weight of the first-order basis at the beginning of the iteration (Fig. 5.6) implies that the 

optimization at the early iterative stages depends more on the wide spread of the high-

order basis in order to reach the sensitivity region of the target plume, which bias the 

updated release point toward the true value.  

For instance, the white cross in Fig. 5.3 iteration 1 shows the initial location of the 

basis functions, which also depicts the central location of the first-order basis. However, 

the reconstruction in Fig. 5.3, iteration 1 shows a high electrical conductivity in the 
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sensitivity region of the target plume, a region that is far beyond the lateral spread of the 

first-order basis (Fig. 5.2). This observed reconstruction in a region far beyond the lateral 

reach of the first-order basis is as a result of the accentuation of high-order bases whose 

lateral spread extends to the sensitivity region of the target plume, which explains the 

comparatively small fraction of coefficient contribution from the first-order basis for the 

for the first iteration (Fig. 5.6).  
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Figure 5.3: Recovered tomograms after each update to estimate the injection point. The white half star shows the starting and 

estimated release points, whereas the white half cross depicts the true release point. Note: the cross and star symbols are 

supposed to be on the surface. They were slightly shifted downward to enhance visibility. The inversion technique is based on 

the POD adaptive algorithm by Oware and Moysey [2014]. Since we were interested in estimating the injection point, an 

expected high conductivity region, the estimated background conductivity values, including estimated conductivity values 

greater than the estimated background, were set to zero prior to each CoM estimation, in order to accentuate the plume
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As the misfit between the true and the estimated release point reduces, however, the 

reverse of this process occurs. The spread of the first-order basis begins to reach the 

sensitivity zone of the target plume and, therefore, more weight is now shifted unto the 

first-order basis in order to reconstruct the target. These phenomena suggest that while 

the construction of the target profile is controlled by the first-order basis, the drifting of 

the estimated release point toward the true value, during the early stages of the adaptive 

optimization is, on the other hand, driven by the high-order basis. 

 

 

Figure 5.4: Comparison of true lateral release location (50 cm) with those estimated after 

each update. Estimation of the release location attained an asymptotic value of 45.7 cm 

after 5th iterations.   

 

In the same context of the dynamics of coefficient contribution of the high-order 

basis as iteration progresses, analysis of Fig. 5.5 discloses that while basis numbers 3, 6, 

and 13 were the 3rd, 6th, and 13th (Fig 5.2) principal features extracted from the training 
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dataset, they were however the 2nd, 4th
, and 5th (Fig. 5.5, iteration 9) most important 

patterns in reconstructing the target. This reflects the utilization of the resistivity 

measurements to capture details about that target that were not represented in the 

stochastic simulations of the target, i.e., the training images. It also demonstrates the 

flexibility of the POD algorithm to drift away from the a priori specifications in order to 

represent the recorded data from the target. That is, the POD algorithm invokes a soft 

process constraint.        

 

 
 

Figure 5.5: Plots illustrating the dynamics of the high-order basis coefficient weights 

during the adaptive optimization process. The optimization process is more dependent on 

the high-order basis at the early stages of the iteration (see also Fig. 6). Note that the 

numbering of the high-order basis starts from 2. Also FofC defines fraction of coefficient.    
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Inspections of the tomograms in Figure 5.3 and the plots in Figure 5.4 indicate that 

the estimation converged after six iterations with an asymptotic value of 45.7 cm. The 

lateral spread of the target was estimated to be 24.5 cm based on the dye plume. This 

translates into a relative estimation error of 17.6% with respect to the lateral spread of the 

target.  Since the geometry of the evolved plume appears slightly asymmetric (Fig. 5.7b), 

we are of the opinion that the estimated release point may be closer to the lateral center of 

mass of the true plume in contrast with the actual release point. We noted some artefacts 

in the background values of the converged solution, which we believe are due to outline 

of some of the high-order bases used for the inversion. 

   

 
 

Figure 5.6: Plot depicting the dependence of the adaptive optimization on the first-order 

basis function with increasing number of iterations. Note: FofC defines fraction of 

coefficient.    
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3.2 Time-lapse Implementation of the POD-constrained Inversion Framework  

There seems to be underestimation of the lateral and vertical spatial variances of the 

POD EC reconstructions (Fig. 5.7, column 3). A close examination of Fig. 5.7 discloses 

better match-ups between the dye images (Fig 5.7, column one) of, for instance, time-step 

t and the reconstructed images of time-step t+1. This suggests that the resistivity response 

is lagging the dye plumes by one time-step. Further explanation and evidence that support 

this assertion are provided in Chapter Six, section 3. As a result of this temporal 

discrepancy, the analysis that follows associates dye plume images of time-step t with 

POD reconstructions of time-step t+1.  

Fig. 5.7, column two shows results of the mean of stochastic sampling of the target 

plume anchored to a conceptual model of the imaging domain and uncertain release point 

(70 cm). These TI mean images depict how the targets would have been stochastically 

characterized based on the physics of the process alone, without any geophysical 

constraints. Fig. 5.7, column three, on the other hand, presents results of the POD-

constrained EC reconstructions constrained to the resistivity measurements.  

In this study, whiles the stochastic sampling alone would have missed the location of 

the true plume, the fusion of the resistivity data using the adaptive algorithm helped to 

resolve the uncertainty regarding the location of the true plume. However, in terms of the 

target’s morphology, qualitative comparison of the dye plumes with images of TI mean 

and the POD reconstructions reveals that the POD reconstructions could not capture 

small details in the morphology of the target beyond the details captured by the TI means. 

The inability of the POD technique to reconstruct small details in the target is presumably 
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due to lack of variability in the basis functions. Examination of the high-order basis in 

Fig. 5.2, for example, shows several circularly shaped patterns due to the homogeneous 

assumption upon which the generation of the training dataset is based.   
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Figure 5.7: Comparison of images of the lab-scale target with those of the mean of simulated training images (TI mean) and 

those obtained from the POD reconstructions. (Colum one) Lab-scale target; (Column two) TI mean; (Colum three) POD 

snapshots. The white half star on the TI means shows the starting release points (70 cm), whereas the white half cross depicts 

the true release point (50 cm). The cross and star symbols are supposed to be on the surface. They were slightly shifted 

downward to enhance visibility. 
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4. CONCLUSIONS 

We demonstrate the applicability of the POD-constrained inversion algorithm and its 

adaptive version presented by Oware et al. [2013] and Oware and Mosey [2014]. 

Resistivity measurements obtained from lab-scale saline-tracer unsaturated flow 

experiment were applied to test the potential applicability of the POD inversion scheme 

on real-world data. 

Real-world data present uncertainty challenges such as measurement errors, non-

parametric error distributions, lack of data sensitivity, faulty instruments, operational 

errors, errors as a result of approximation of a 3-dimensional world to 2-dimensional 

case, etc. While the model resolutions presented here are not be elegant, they demonstrate 

the potential utility of the POD-constrained algorithm in practical applications, 

especially, given that is the very first application of the POD-constrained inversion 

algorithm on real-world data. The issue of lack of variability in the basis function will be 

addressed in the future in an effort to improve the POD reconstructions. 

We have demonstrated that the continuous improvement in the fidelity between the 

true and estimated release points, in the adaptive algorithm, is driven by the high-order 

basis functions, which usually have spatial spread that may extend to the sensitivity 

region of the target. This stipulates the need for capturing more variability in the basis 

constraints, especially, patterns with wide spatial reach.     

The dynamics of the respective contributions of the basis functions as the adaptive 

iteration progresses show a drift from the patterns that were deemed important from the 

stochastic simulations of the target anchored on the conceptual specification of the 



 

 118 

 

experimental design. This finding reflects the incorporation of additional information 

from the resistivity measurements to reconstruct features of the target that were not 

captured in the unconditional stochastic simulations alone. It also illustrates the flexibility 

of the POD-constrained algorithm to shift away from the characteristics of the a priori 

constraints in order to represent the observed resistivity data, i.e., the ability the algorithm 

to enforce soft process constraint.      
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CHAPTER SIX 

MCA TIME-LAPSE INVERSION: A NEW APPROACH TO GEOELCTRICAL 

MONITORING OF DYNAMIC HYDROLOGICAL PROCESSES 

 

ABSTRACT 

Geophysical time-lapse inversion is a useful non-invasive tool for monitoring 

subsurface dynamic processes. The cascaded time-lapse inversion is a popular time-lapse 

inversion strategy that utilizes inverted baseline data as a starting model for inverting 

subsequent time-lapse datasets. This approach implicitly assumes time-invariance of the 

transient system and, therefore, does not consider the physics of the process driving the 

evolving system from the reference condition to the current state. We propose a new 

time-lapse inversion scheme, maximum covariance analysis (MCA) time-lapse inversion, 

which incorporates into each starting model, the physics of the time-variant process 

responsible for the state transitioning between two adjacent time-periods. The strategy 

uses training images (TIs) to construct temporal covariance structure between two 

adjacent time-periods of interest.  The TIs are generated via Monte Carlo simulations of 

the target process anchored to a conceptual model of the imaging system. MCA is then 

applied to construct coupled patterns between the two adjacent time-steps from the 

temporal covariance matrix. Given a known or an estimate of the t time-step parameters, 

an unconditional estimate (UCE) of the t+1 time-period model is retrieved via the 

coupled relationship, based on the concept of maximum covariance regression. The UCE 

then serves as a starting model for the inversion of the t+1 dataset. We apply a lab-scale, 
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saline-trace experiment to demonstrate the potential of the proposed strategy. Qualitative 

comparison of dye monitored images of the lab-scale target with those retrieved from the 

proposed scheme and those obtained from the cascaded time-lapse based on the POD-

constrained inversion strategy are made. The proposed MCA strategy appears to 

outperform the cascaded time-lapse as the monitored time-periods increase. We observed 

that resistivity response lags dye monitored plume by about 30 mins.  

  

1. INTRODUCTION  

Geophysical time-lapse inversion is becoming a popular non-invasive tool for 

gaining qualitative and quantitative insights into subsurface dynamic processes. Electrical 

resistivity tomography (ERT) time-lapse inversion, in particular, has been applied to 

monitor subsurface evolving targets such as vadose zone water movement [e.g., Park, 

1998; Yeh et al., 2002; French et al., 2002], conductive tracer migration [e.g., Slater et 

al., 2000; Singha and Gorelick, 2005; Kim et al., 2009] and, remediation processes 

[Ramirez et al., 1993; Daily and Ramirez, 1995]. 

There are several time-lapse inversion strategies such as ratio inversion [e.g. Daily et 

al., 1992], difference inversion [e.g., LaBrecque and Yang, 2001], cascaded time-lapse 

[Anno and Routh, 2007; Odenborger et al., 2007; Miller et al., 2008], simultaneous time-

lapse inversion [e.g., Hayley et al., 2011].  

The difference and cascaded time lapse appear to be the commonly utilized time 

lapse techniques. Difference inversion [LaBrecque and Yang, 2001], inverts the 

difference between data at a particular time and data obtained at a reference time 
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(reference data), which is referred to as pre-data difference inversion. The differencing 

can also involve the difference between the inverted data at a particular time and the 

inverted reference data, which is also referred to as post-model difference inversion. The 

cascaded time-lapse, on the other hand, utilizes the inverted reference data as initial 

model for the inversion of subsequent time-lapse datasets.       

Miller et al. [2008], in their application of ERT for watershed characterization, 

appraised various strategies for inverting time-lapse data and found the post-model 

difference and the cascaded time-lapse approaches to be superior. The authors, however, 

pointed out their preference for the cascaded time-lapse. Therefore, the cascade time-

lapse inversion is adopted as a reference time-lapse methodology to compare with the 

maximum covariance analysis (MCA) strategy proposed in this paper. 

Miller et al. [2008] described some advantages of the cascaded time-lapse inversion, 

such as faster convergence rate and its ease of implementation compared to the difference 

approach. While these benefits are significant, we believe that applying a base tomogram 

as a starting model for inverting future time-lapses data does not consider the physics of 

the underlying time-variant process that is driving the transition of the target variables 

from the baseline condition to its current state. 

We propose a new dynamic inversion strategy, MCA time-lapse inversion, which 

incorporates into each starting model the physics of the time-variant process driving the 

spatiotemporal evolution of the target parameters.  

MCA [Meehl, 1973; Meehl and Yonce, 1996; von Storch and Zwiers, 1999], which is 

also known as singular value decomposition [Kutzbach, 1967; Bretherton et al., 1992; 
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Wallace et al., 1992], maximizes the covariance between two co-varying fields. MCA is 

used in climate studies for applications such as identification of coupled patterns between 

two fields, for statistical downscaling of GCM (Global Circulation Model) data to the 

local scale, and also for forecasting [e.g., Bretherton et al., 1992].  

Of particular relevance to this contribution are the works of Oware et al. [2013], 

Oware and Mosey [2014], and Oware and Mosey [Chapter five]. Oware et al. [2013] 

presented the original POD-constrained strategy that incorporates non-parametric, site-

specific physics-based patterns into geophysical inversion framework. A notable 

limitation of the original POD-constrained algorithm was that it lacked the ability to shift 

the basis images during the optimization procedure. To address this limitation, Oware 

and Mosey [2014] presented an adaptive version of the POD-constrained scheme, which 

recursively shifted the center of mass of the basis functions, in an effort to minimize the 

misfit between the estimated and true centers of mass, conditioned on the geophysical 

measurements. Oware and Mosey [Chapter five] employed lab-scale data to demonstrate 

the POD- constrained algorithm in a cascaded time-lapse inversion fashion. 

The fundamental difference between the POD-constrained scheme and the proposed 

MCA strategy is that, while POD bases are constructed from covariance matrix denoting 

one time-step (field), the construction of coupled MCA basis, on the contrary, is based on 

the cross-covariance between two time-steps (fields). This implies that the POD-

constrained inversion is a static imaging strategy, whereas, MCA is a dynamic imaging 

technique. 
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The computational framework for the implementation of the proposed MCA time-

lapse inversion proceeds in five major steps (Fig. 6.1): (1) Monte Carlo simulation of 

training images based on a conceptual model of the imaged system; (2) construction of 

coupled patterns. A homogenous half space model of background values is then projected 

onto the t+1 basis to serve as starting model (𝒄0); (3) the optimization then proceeds to 

retrieve 𝒄𝑡+1 conditioned on geophysical measurements; (4) the reconstruction of the 

model parameters, 𝐦𝑡+1; (5) the recovered 𝐦𝑡+1 is utilized as 𝐦𝑡 for the next iteration, 

which is projected onto the t+1 basis to serve as input starting model (𝒄𝑡) for the next 

iteration. The process is repeated for all the imaging time steps. 

 



 

 127 

 

 

Figure 6.1: Computational scheme for the implementation of the MCA time-lapse 

inversion modality. See section 2.2 Eq.9 for definition of variables and explanation of the 

optimization model.  
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2. MAXIMUM COVARIANCE ANALYSIS (MCA) THEORY  

This section provides details of the proposed mathematical framework for 

constructing coupled patterns between two consecutive time-steps (section 2.1). Section 

2.2 outlines how the proposed MCA strategy will be implemented in the standard 

Tikhonov geophysical inversion framework. Detailed description of MCA is provided by 

von Storch and Zwiers [1999]. 

 

 2.1 Obtaining Coupled Pairs of Maximum Covariance Patterns (MCP)  

Coupled variability between two successively evolving fields can be constructed by 

maximizing the co-variability between the two fields. Consider two adjacent time series 

of “left” and “right” state parameters 𝛔𝑡 ∈ 𝐑 𝑀 and 𝛔𝑡+1 ∈ 𝐑 𝑀, respectively. Each field 

can be expressed as a linear combination of its basis patterns, that is:      

𝛔𝑡 = 𝐁𝑡𝐜𝑡  and  

𝛔𝑡+1 = 𝐁𝑡+1𝐜𝑡+1,                                        (1) 

where 𝐜𝑡 and 𝐜𝑡+1 are the time series expansion coefficients and 𝐁𝑡 and 𝐁𝑡+1 are the 

pairs of coupled patterns between the “left” and “right” spaces. Note that the expansion 

coefficients represent the transformed data, or the component of the original data in the 

optimal basis space (transformed coordinate system). Specifically,  

𝐜𝑡 = 𝐁𝑡𝑇𝛔𝑡  and  

𝐜𝑡+1 = 𝐁𝑡+1𝑇 𝛔𝑡+1,                                        (2) 

where 𝑇 denotes transpose. From Eq.2, the covariance between the two expansion 

coefficients can be written as: 
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Cov(𝐜𝑡, 𝐜𝑡+1) = 𝐁𝑡𝑇𝐒σ𝑡σ𝑡+1𝐁𝑡+1                           (3) 

where Cov denotes covariance and 𝐒σ𝑡σ𝑡+1 ∈ 𝐑
𝑀𝑥𝑀 represents the cross-covariance 

between the two successive domains. To identify the pairs of coupled patterns that 

capture the most coupled variability between the two fields, we maximize Eq.3. The 

identified basis functions must be linearly independent for Eq.1 to be valid. Therefore, 

the maximization of Eq.3 is subject to the orthogonality criterion defined as: 

𝐁𝑡𝑇𝐁𝑡 = 1 and  

𝐁𝑡+1𝑇 𝐁𝑡+1 = 1.                                          (4)    

The temporal covariance, 𝐒σ𝑡σ𝑡+1, can also be factorized into its “left” and “right” 

coupled basis using singular value decomposition (SVD) [e.g., Castleman, 1996; Oware 

and Moysey, 2014] as follows: 

𝐒σ𝑡σ𝑡+1 = 𝐁𝑡𝚲𝐁𝑡+1𝑇                                                (5) 

where 𝚲 ∈ 𝐑𝑀𝑥𝑀 is a diagonal matrix representing singular values. It can be deduced 

from Eq.s 3, 4, and 5 that: Cov(𝐜𝑡, 𝐜𝑡+1) =  𝚲. Hence, SV decomposition of the temporal 

covariance between two adjacent time steps will yield the maximum covariance between 

their respective expansion coefficients and also identify their coupled pairs of maximum 

covariance patterns (MCP)  

 

2.2 MCA time-lapse inversion 

Given a priori coupled pairs of MCP between two successive time steps, it follows 

from maximum covariance regression (MCR) that if the left state parameters of a coupled 
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system are known (predictor), then its associated right parameters can be predicted 

(predictand), and vice versa [e.g., Troccoli et al., 2008], that is: 

𝐦�𝑡+1 = 𝐁𝑡+1𝐆𝐁𝑡𝑇𝐦𝑡,                                              (6) 

where, 𝐦𝑡 is the predictor and 𝐦�𝑡+1 denotes the predictand; G represents the variance 

normalized singular values, i.e., 𝐆 = [𝚲 𝑣𝑎𝑟(𝐁𝑡𝑇𝐦𝑡)⁄ ].  

For geophysical time-lapse imaging applications, the predictand (𝐦�𝑡+1) in Eq.6 can 

be viewed as an unconditional estimate of model parameters at time t+1. In other words, 

the known or estimated model parameters at time t have been projected into the next time 

step, t+1, through the a priori temporal covariance, 𝐁𝑡+1𝐆𝐁𝑡𝑇. Since temporal covariance 

captures coupled modes of variability between two fields, by this temporal projection, we 

have accounted for the time-variant process responsible for the excitation of the state 

parameters from 𝐦𝑡 to 𝐦�𝑡+1.        

The next step is to estimate 𝐦𝑡+1 conditioned on geophysical data measured at t+1. 

For this reason, we suggest that the coefficients in Eq.6, i.e., 𝐜𝑡 = 𝐁𝑡𝑇𝐦𝑡 are scaled with 

an appropriate data conditioning matrix, § ∈ R𝑀 𝑥 𝑀, where § is a diagonal matrix with its 

diagonal elements corresponding to the appropriate scaling values. To do this, Eq.6 can 

be recast to reflect the data conditioning procedure as follows: 

𝐦𝑡+1  =  𝐁𝑡+1𝐆𝐜𝑡§.                                                (7) 

To increase the flexibility of the proposed scheme to drift away from the a priori 

constraints in order to represent the observed data, 𝐆 in Eq.7 is absorbed into the 

formulation of the composite regularization operator [see, Oware and Moysey, 2014]. 
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Also, since the product 𝐜𝑡§ in Eq.7 will result in another vector of coefficients, Eq.7 can 

therefore be rewritten in the following compact form: 

𝐦𝑡+1  =  𝐁𝑡+1𝐜𝑡+1,                                                  (8) 

where 𝐜𝑡+1 is the expansion coefficients at t+1, and 𝐜𝑡 is instead applied as starting 

coefficients for the optimization of 𝐜𝑡+1.  

To optimize for the expansion coefficients, 𝐜𝑡+1  Eq.8 is implemented within the 

traditional Tikhonov regularization [Tikhonov & Arsenin, 1977]. The objective function 

for the optimization can be defined as:  

𝐄(𝐜𝑡+1) =  𝐄𝑑 +  β𝐄𝑚 =  �𝐖𝑑[𝐕𝑜𝑏𝑠 − 𝒇𝒈(𝐁𝑡+1𝐜𝑡+1)]�
2

+   𝛽‖𝐖(𝐁𝑡+1𝐜𝑡+1 −  𝐁𝑡𝐜𝑡)‖2   

                         =  �𝐖𝑑[𝐕𝑜𝑏𝑠 − 𝒇𝑔∗ (𝐜𝑡+1)]�
2

+   𝛽�𝐖�  (𝐜𝑡+1 −  𝐜𝑡)�2.                 (9)         

The 𝐄𝑑 term is the data norm, which measures the misfit between observed and modeled 

data, whereas 𝐄𝑚 is the model norm, which introduces prior information about 𝛔. The 

regularization parameter, β, is utilized to tune the relative importance of data fit and 

model regularization. Additionally, 𝒇𝑔∗ (∙) denotes a transformed resistivity forward model 

functional that incorporates the reconstruction of 𝛔 from the POD basis. The 

regularization operator, 𝐖, contains information that enforces spatial criteria (e.g., 

flatness and continuity) within the reconstructed images. Note that while the 

regularization operator, 𝐖, acts in the original model space, the composite regularization 

filter,𝐖� , acts in the transformed coefficient domain. Detailed exposition of the 

formulation of the composite operator is presented in Oware and Moysey [2014]. The 

data weighting matrix 𝐖𝒅 is the inverse of the square root of the data covariance matrix.  
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Following the optimization of 𝐜𝑡+1, 𝐦𝑡+1 is evaluated based on Eq.8. To monitor the 

evolution of the subsequent time periods, the calculated 𝐦𝑡+1 is applied as 𝐦𝑡 for the 

current time step, and the process is repeated recursively in a likewise fashion.  

 

3. RESULTS AND DISCUSSION  

The same lab-scale experiment used in Chapter five is applied to demonstrate the 

suggested MCA time-lapse scheme presented here. Therefore, refer to section 2 in 

Chapter five for the methods. Images of the first twenty principal basis functions captured 

for POD and MCA are presented in Figs. 6.2 and 6.3, respectively. Comparison of 

images of the lab-scale target with tomograms obtained from cascaded (POD) time-lapse 

(see Chapter Five) and those retrieved from the MCA unconditional estimate (Eq. 6) and 

MCA reconstructions (Eq. 8) are presented in Fig. 6.4. Also, images of the lab-scale 

target are contrasted with the mean of simulated training images (TI mean) in Fig. 6.5.  

The lateral and vertical spreads of the electrical conductivity (EC) reconstructions 

obtained from both the cascaded time-lapse (Fig. 6.4, column 2) and the MCA (Fig. 6.4, 

column 4) appear underestimated. Inspection of the images in Fig. 6.3, however, reveals 

better match-up of the images of the dye plume of, for instance, time-step t with 

reconstructed images of the next time-step t+1. This implies that images of the dye plume 

are leading the images recovered from the resistivity measurements by one time-step 

(about 30 mins). This observation is plausibly attributable to faster flow rate of the inflow 

solution at the interface between the glass walls and the soil matrix in contrast to the flow 

rate within the soil matrix itself. It is important to note that both the dye and resistivity 
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monitoring were done on the same computer; therefore, there was synchronization of the 

dye and resistivity monitoring time clocks. 

 

 

Figure 6.2: Images of first twenty dominant POD basis captured for the first time-step. 

They are numbered in decreasing order of dominance. Those of the subsequent time steps 

are not shown, but they follow similar patterns with increasing spread . 
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Figure 6.3: Images of first twenty dominant maximum covariance patterns (basis) 

captured for the first time-step (right basis). They are numbered in decreasing order of 

dominance. Those of the subsequent time steps are not shown, but they follow similar 

patterns with increasing spread.  
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Figure 6.4: Comparison of images of the lab-scale target with tomograms obtained from cascaded (POD) time-lapse and those 

obtained from the MCA unconditional (Eq. 6) and MCA reconstructions (Eq. 8). (Colum one) Lab-scale target; (Column two) 

Cascaded (POD); (Colum three) MCA unconditional estimates; (Column four) MCA.
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There was clogging of the tracer inflow pipe at the beginning of the experiment, 

which was detected and rectified. Analyses of all picture frames from video monitoring 

of the experiment (picture frames not shown) put this clogging event at about 15-25 mins 

into the experiment. As a consequence, the seeming low peak EC values estimated by 

both cascade and MCA for the 60 mins time-step compared to the estimated peak EC 

values for the 30 and 90 mins time-periods (Fig. 6.4) is possibly a further confirmation of 

the assertion that the resistivity response is lagging the dye plume by about 30 mins. This 

stems from the fact that the underestimation, which is presumably due the clogging, was 

expected to be evident in the 30 mins reconstructions instead of the 60 mins tomograms.   

Furthermore, even though Fig. 6.5 depicts fairly good match-ups in the lateral and 

vertical dispersions of the dye images compared to those of the TI mean, those match-ups 

were, however, not translated into the EC reconstructions. This demonstrates the 

flexibility of both inversion strategies to drift away from the imposed a priori constraints 

in order to represent the behaviors dictated by the resistivity measurements.    

We postulate that the observed temporal discrepancy in the resistivity response time 

in contrast to that of the dye plume possibly stems from a fast flow rate of the inflow 

tracer at the interface between the glass walls and the soil matrix, which was monitored 

by the video camera, as compared to the flow rate within the soil matrix itself, which was 

monitored by the resistivity measurements.  
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Figure 6.5: Comparison of images of the lab-scale target with those of the mean of 

simulated training images (TI mean).  (Colum one) Lab-scale target; (Column two) TI 

mean. 

 

In the context of comparison of the cascaded (POD) and the MCA time-lapse 

inversions, qualitative comparison of the dye images (at time-step t) with tomograms 

obtained from the two strategies (at time-step t+1) indicates that the recast from MCA 

seems superior to those obtained from the cascade (POD) approach. Whiles the MCA 

approach detected the slightly southwest pointedness in the morphology of the dye 

plume, the cascaded technique failed to detect that detail. We suggest that the inability of 

the cascaded (POD) to detect that small detail in the morphology of the target is 

attributable to lack of variability in the basis functions.  
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Inspection of the high-order basis in Fig. 6.2, for example, shows several circularly 

shaped patterns as a result of the homogeneous hypothesis which underpinned the 

generation of the training dataset. Nevertheless, the same training dataset was utilized in 

constructing both POD and MCA basis functions (Figs. 6.2 and 6.3). This demonstrates 

the utility of the complimentary physics-based information incorporated into the starting 

model of the MCA inversions, which presumably resulted in improved MCA estimations. 

For instance, while the cascaded approach utilized a baseline tomogram as starting 

model, the MCA applied their associated unconditional estimates (Fig. 6.4, column three) 

as starting model, which provided the MCA reconstruction with an additional a priori 

physics-based specification. 

   

4. CONCLUSIONS 

We present a novel time-lapse inversion strategy, MCA time-lapse inversion, which 

seeks to incorporate into starting models of time-lapse inversion procedures, the physics 

of the time-variance process responsible for the state transitioning between two adjacent 

time-periods. The potential of the proposed concept was illustrated based on resistivity 

measurements obtained from lab-scale, saline-tracer unsaturated flow experiment. 

We have demonstrated that the incorporation of the physics of the time-variance 

process into time-lapse starting models provides additional physics-based complimentary 

information which can result in improved model resolution, as compared to 

reconstructions based on cascaded time-lapse inversion, which implicitly assumes time-

invariance of the process between two adjacent time-periods. However, it is important to 
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emphasize that the predictive ability of the proposed strategy is dependent on the degree 

of empirical cross-covariance captured between the two successive time steps under 

study. Therefore, the applicability of the technique may be limited to the investigation of 

systems in which the physics of the underlying processes are not changing rapidly. In the 

event of a rapidly changing system, however, we recommend a reduction in the 

monitored time-step size in order to capture reasonable temporal covariance between the 

two adjacent fields. Nevertheless, flow in most aquifers is laminar; therefore, the 

perturbations of the monitored features, in most cases, may typically vary over only 

diurnal or seasonal temporal spaces. 

In this study, we found that the movement of the dye plume leads the resistivity 

response by about 30 mins. We are of the opinion that the 30 mins temporal discrepancy 

could probably be smaller if smaller time-step sizes were considered. Whiles lab-scale, 

dye monitored experiments provide good basis for comparison and validation of 

geophysical reconstructions, care must, however, be taken to reconcile the infiltrating 

front of the dye plume with those obtained from the geophysical inversions. Further 

studies to develop standard techniques to accomplish this reconciliation will be helpful to 

the advancement of the utilization of dye monitored tank experiments for validating 

geophysical inversion techniques.          

Finally, the study encountered some logistical bottlenecks such as lack of variability 

in the training dataset due to the assumption of a homogeneous conceptual model. This is 

in spite of efforts made in packing the tank in order to achieve a homogeneous infiltrating 

domain. We recognize that this is an almost impossible objective to achieve in real-world 
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application. This challenge will be addressed in future conceptual model by including 

some small level of heterogeneity in a bid to increase the variability captured in the 

training dataset. This will enable us to fully demonstrate the true potential of the 

proposed strategy compared to the cascaded (POD) time-lapse inversion. 
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CHAPTER SEVEN 

 

GENERAL CONCLUSIONS 

This dissertation presents two strategies to incorporate physics-based information 

into geophysical and geostatistical estimation schemes. The inversion strategies presented 

are Proper Orthogonal Decomposition (POD) and Maximum Covariance Analysis 

(MCA). The fundamental protocol for both strategies involves the extraction of a set of 

basis functions for the imaging problem that mimics a particular hydrologic problem of 

interest using Monte Carlo simulation.   

Two synthetic transport scenarios were utilized to test the POD algorithm. Synthetic 

#1 presents a unimodal plume in which the conceptual transport model was accurate, 

whereas Synthetic #2 represents a bimodal target that was inconsistent with the 

conceptualized hypothesis.  

First, the performance of the POD inversion strategy was compared with those of the 

traditional Tikhonov and contemporary coupled inversion schemes. When the conceptual 

transport model was correct in the first scenario, both coupled and POD-based inversions 

are able to produce better estimates of the target plume than the Tikhonov inversion.  In 

contrast, the coupled inversion failed when the conceptual model of transport was 

incorrect in the second scenario. The POD inversion, however, captured the bimodality of 

the plume by constraining the inversion by a priori process information while retaining 

the flexibility to honor observed geophysical data.   
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Second, the robustness of the POD-constrained inversion algorithm to input data and 

model uncertainties were evaluated based on three distinct error components, namely: (1) 

measurement errors, (2) uncertain a priori hypothesis and model complexity, and (3) 

varying data coverage. 

Model resolution deteriorates with increasing measurement noise. Regarding basis 

constraints, increasing the number of basis functions (inversion parameters) from 100 to 

300 produces only marginal or no improvement in model resolution. This finding 

illustrates a potential lossless truncation capability of the POD algorithm that can reduce 

the number of inversion parameters. Furthermore, the accuracy of basis functions is 

critical to the performance of the POD-constrained inversion algorithm. In terms of data 

coverage, increasing data coverage will not necessarily translate into improvement in 

model resolution without considering optimal array configuration. In fact, it can lead to a 

net effect of deterioration of model resolution.  

Third, we evaluated the application of the POD algorithm to calibrate subsurface 

plume spatial moments. An adaptive version of the POD algorithm was also introduced to 

shift the basis functions to the region of the location of the target plume. The adaptive 

algorithm recursively refines the position of the basis functions until their position is 

conditioned on the observed resistivity data.  

Final resistivity images provided reasonably accurate representations of the solute 

plume regardless of issues associated with data noise, the initial training images (TIs) 

positioning, or conceptual inconsistencies between the target plume and simulations used 

to generate the TIs.   
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Estimates for the spatial moments of the plume based on the proposed imaging 

strategy were compared to those retrieved from the direct sampling of concentration 

values.  Overall, the total mass and center of mass of the plumes could be accurately 

quantified by the resistivity results, but the spatial spread of the plume was more difficult 

to constrain.  The estimation accuracy of the moments was found to deteriorate as the 

noise in the resistivity data increases.  Spatial moment evaluations for synthetic #1 are 

better than the estimates for synthetic #2 due to the inaccurate basis functions applied to 

constrain the reconstruction of synthetic #2. For low noise cases (i.e., the 0 and 3% noise 

cases in this study), the moments estimated from the resistivity images were found to 

outperform estimates based on direct concentration sampling until 6-10 multi-level 

sampling wells were installed.  Although this particular number of wells is specific to our 

example, installing any number of multi-port sampling wells in field applications is not 

trivial given the time, labor, and cost involved in installing boreholes.   

While our study illustrates a successful application of the adaptive POD-based 

imaging technique, there are a variety of issues that should be noted.  First, the approach 

will not overcome fundamental sensitivity limitations of resistivity data. For example, if 

the training images are initially located beyond the influence of the resistivity data, then it 

will not be possible to shift their locations toward the location of the plume using our 

framework.  Second, the POD basis is limited to capturing patterns representative of the 

conceptual model used to generate the TIs.  Additional research is required to evaluate 

how this problem might be overcome using adaptive training data, supplementing the 

POD basis with additional patterns, or using geostatistical tools to capture additional 
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spatial variability.  Finally, we have not evaluated how the POD imaging technique or the 

estimated spatial moments of a plume may be affected by fluctuations in the background 

resistivity of the aquifer caused by geologic variability or associated uncertainties in the 

petrophysical relationship between concentration and bulk resistivity.      

The second inversion strategy introduced here is the MCA time-lapse inversion. In 

contrast, while POD is a static imaging scheme, MCA is a time-lapse inversion 

technique. The MCA strategy seeks to account for the time-variant process responsible 

for the state transitioning between two consecutive states of an evolving system. 

Resistivity measurements obtained from lab-scale, saline-tracer unsaturated flow 

experiment were applied to demonstrate the MCA concept. The MCA approach was also 

compared with the cascaded time-lapse inversion, which does not consider the time-

variant mechanism driving the state transitioning.   

The MCA results are slightly superior compared to those obtained from the cascaded 

time-lapse. This observation demonstrates the potential utility of the incorporation of the 

time-variant process into time-lapse starting models, which provides complimentary 

information to improve model resolution, as compared to reconstructions based on 

cascaded time-lapse inversion, which implicitly assumes time-invariance of the process 

between two consecutive time-periods.  

The predictive ability of the MCA strategy is, however, dependent on the degree of 

empirical cross-covariance captured between the two successive time steps. Therefore, 

the applicability of the technique may be limited to the investigation of systems in which 

the physics of the underlying processes are not changing rapidly. In the event of a rapidly 
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changing system, however, we recommend a reduction in the monitored time-step size in 

order to capture reasonable temporal covariance between the two adjacent fields. 

Nevertheless, flow in most aquifers is laminar, therefore, perturbations of the monitored 

features, in most cases, may typically vary over only diurnal or seasonal temporal spaces.      

This study encountered some logistical bottlenecks. We suspect potential resistivity 

sensitivity problems, and also lack of variability in the training dataset due to the 

assumption of a homogeneous conceptual model. These challenges will be addressed in 

the future in order to fully demonstrate the MCA concept. The lab experiment will be 

redesigned and repeated, and small level of heterogeneity will also be introduced into the 

conceptual model underpinning the generation of the training dataset, in an attempt to 

increase the variability in the extracted basis functions.  

Finally, whiles resistivity data were specifically employed to illustrate the inversion 

strategies developed in this dissertation, it is important to note that the concepts can be 

implemented in other geophysical and geostatistical inversion algorithms.  
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