166 research outputs found

    Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling

    Full text link
    Solving linear regression problems based on the total least-squares (TLS) criterion has well-documented merits in various applications, where perturbations appear both in the data vector as well as in the regression matrix. However, existing TLS approaches do not account for sparsity possibly present in the unknown vector of regression coefficients. On the other hand, sparsity is the key attribute exploited by modern compressive sampling and variable selection approaches to linear regression, which include noise in the data, but do not account for perturbations in the regression matrix. The present paper fills this gap by formulating and solving TLS optimization problems under sparsity constraints. Near-optimum and reduced-complexity suboptimum sparse (S-) TLS algorithms are developed to address the perturbed compressive sampling (and the related dictionary learning) challenge, when there is a mismatch between the true and adopted bases over which the unknown vector is sparse. The novel S-TLS schemes also allow for perturbations in the regression matrix of the least-absolute selection and shrinkage selection operator (Lasso), and endow TLS approaches with ability to cope with sparse, under-determined "errors-in-variables" models. Interesting generalizations can further exploit prior knowledge on the perturbations to obtain novel weighted and structured S-TLS solvers. Analysis and simulations demonstrate the practical impact of S-TLS in calibrating the mismatch effects of contemporary grid-based approaches to cognitive radio sensing, and robust direction-of-arrival estimation using antenna arrays.Comment: 30 pages, 10 figures, submitted to IEEE Transactions on Signal Processin

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization

    Full text link
    The Schatten-p quasi-norm (0<p<1)(0<p<1) is usually used to replace the standard nuclear norm in order to approximate the rank function more accurately. However, existing Schatten-p quasi-norm minimization algorithms involve singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each iteration, and thus may become very slow and impractical for large-scale problems. In this paper, we first define two tractable Schatten quasi-norms, i.e., the Frobenius/nuclear hybrid and bi-nuclear quasi-norms, and then prove that they are in essence the Schatten-2/3 and 1/2 quasi-norms, respectively, which lead to the design of very efficient algorithms that only need to update two much smaller factor matrices. We also design two efficient proximal alternating linearized minimization algorithms for solving representative matrix completion problems. Finally, we provide the global convergence and performance guarantees for our algorithms, which have better convergence properties than existing algorithms. Experimental results on synthetic and real-world data show that our algorithms are more accurate than the state-of-the-art methods, and are orders of magnitude faster.Comment: 16 pages, 5 figures, Appears in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, pp. 2016--2022, 201

    Smoothing algorithms for nonsmooth and nonconvex minimization over the stiefel manifold

    Full text link
    We consider a class of nonsmooth and nonconvex optimization problems over the Stiefel manifold where the objective function is the summation of a nonconvex smooth function and a nonsmooth Lipschitz continuous convex function composed with an linear mapping. We propose three numerical algorithms for solving this problem, by combining smoothing methods and some existing algorithms for smooth optimization over the Stiefel manifold. In particular, we approximate the aforementioned nonsmooth convex function by its Moreau envelope in our smoothing methods, and prove that the Moreau envelope has many favorable properties. Thanks to this and the scheme for updating the smoothing parameter, we show that any accumulation point of the solution sequence generated by the proposed algorithms is a stationary point of the original optimization problem. Numerical experiments on building graph Fourier basis are conducted to demonstrate the efficiency of the proposed algorithms.Comment: 22 page
    • …
    corecore