5 research outputs found

    Manifold learning for image-based gating of intravascular ultrasound(IVUS) pullback sequences

    Get PDF
    Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional images of internal coronary vessel struc- tures. The IVUS frames are acquired by pulling the catheter back with a motor running at a constant speed. However, during the pullback, some artifacts occur due to the beating heart. These artifacts cause inaccu- rate measurements for total vessel and lumen volume and limitation for further processing. Elimination of these artifacts are possible with an ECG (electrocardiogram) signal, which determines the time interval cor- responding to a particular phase of the cardiac cycle. However, using ECG signal requires a special gating unit, which causes loss of impor- tant information about the vessel, and furthermore, ECG gating function may not be available in all clinical systems. To address this problem, we propose an image-based gating technique based on manifold learning. Quantitative tests are performed on 3 different patients, 6 different pull- backs and 24 different vessel cuts. In order to validate our method, the results of our method are compared to those of ECG-Gating method

    Manifold learning for image-based gating of intravascular ultrasound (IVUS) pullback squences

    Get PDF
    Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional images of internal coronary vessel structures. The IVUS frames are acquired by pulling the catheter back with a motor running at a constant speed. However, during the pullback, some artifacts occur due to the beating heart. These artifacts cause inaccurate measurements for total vessel and lumen volume and limitation for further processing. Elimination of these artifacts are possible with an ECG (electrocardiogram) signal, which determines the time interval corresponding to a particular phase of the cardiac cycle. However, using ECG signal requires a special gating unit, which causes loss of important information about the vessel, and furthermore, ECG gating function may not be available in all clinical systems. To address this problem, we propose an image-based gating technique based on manifold learning and a novel weighted ultrasound similarity measure. The parameters for our image-based gating technique were chosen based on the experiments performed on 25 different in-vitro IVUS pullback sequences, which were acquired with the help of a special mechanical instrument that oscillates with given length and frequency. Quantitative tests are performed on 12 different patients, 25 different pullbacks and 100 different longitudinal vessel cuts. In order to validate our method, the results of our method are compared to those of ECG-Gating method. In addition, comparison studies against the results obtained from the state of the art methods available in the literature were carried out to demonstrate the effectiveness of the proposed method

    A deep learning methodology for the automated detection of end-diastolic frames in intravascular ultrasound images.

    Get PDF
    Coronary luminal dimensions change during the cardiac cycle. However, contemporary volumetric intravascular ultrasound (IVUS) analysis is performed in non-gated images as existing methods to acquire gated or to retrospectively gate IVUS images have failed to dominate in research. We developed a novel deep learning (DL)-methodology for end-diastolic frame detection in IVUS and compared its efficacy against expert analysts and a previously established methodology using electrocardiographic (ECG)-estimations as reference standard. Near-infrared spectroscopy-IVUS (NIRS-IVUS) data were prospectively acquired from 20 coronary arteries and co-registered with the concurrent ECG-signal to identify end-diastolic frames. A DL-methodology which takes advantage of changes in intensity of corresponding pixels in consecutive NIRS-IVUS frames and consists of a network model designed in a bidirectional gated-recurrent-unit (Bi-GRU) structure was trained to detect end-diastolic frames. The efficacy of the DL-methodology in identifying end-diastolic frames was compared with two expert analysts and a conventional image-based (CIB)-methodology that relies on detecting vessel movement to estimate phases of the cardiac cycle. A window of ± 100 ms from the ECG estimations was used to define accurate end-diastolic frames detection. The ECG-signal identified 3,167 end-diastolic frames. The mean difference between DL and ECG estimations was 3 ± 112 ms while the mean differences between the 1st-analyst and ECG, 2nd-analyst and ECG and CIB-methodology and ECG were 86 ± 192 ms, 78 ± 183 ms and 59 ± 207 ms, respectively. The DL-methodology was able to accurately detect 80.4%, while the two analysts and the CIB-methodology detected 39.0%, 43.4% and 42.8% of end-diastolic frames, respectively (P < 0.05). The DL-methodology can identify NIRS-IVUS end-diastolic frames accurately and should be preferred over expert analysts and CIB-methodologies, which have limited efficacy

    Manifold Learning for Image-Based Gating of Intravascular Ultrasound(IVUS) Pullback Sequences

    No full text
    Abstract. Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional images of internal coronary vessel structures. The IVUS frames are acquired by pulling the catheter back with a motor running at a constant speed. However, during the pullback, some artifacts occur due to the beating heart. These artifacts cause inaccurate measurements for total vessel and lumen volume and limitation for further processing. Elimination of these artifacts are possible with an ECG (electrocardiogram) signal, which determines the time interval corresponding to a particular phase of the cardiac cycle. However, using ECG signal requires a special gating unit, which causes loss of important information about the vessel, and furthermore, ECG gating function may not be available in all clinical systems. To address this problem, we propose an image-based gating technique based on manifold learning. Quantitative tests are performed on 3 different patients, 6 different pullbacks and 24 different vessel cuts. In order to validate our method, the results of our method are compared to those of ECG-Gating method
    corecore