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Kemal Kalkan, Dr. Holger Hetterich and Dr. Johannes Riebber for their valuable guidance and

support.

I would like to also thank our project partners at Technical University of Munich: Prof.

Nassir Navab, Dr. Martin Groher and Max Baust for their support, guidance and hospitality.

In addition I would like to thank Dr. Carlo Gatta, for kindly sharing in-vitro data with us

and Timur Aksoy for providing me a useful program.
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Abstract

Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional im-

ages of internal coronary vessel structures. The IVUS frames are acquired by pulling the catheter

back with a motor running at a constant speed. However, during the pullback, some artifacts

occur due to the beating heart. These artifacts cause inaccurate measurements for total vessel

and lumen volume and limitation for further processing. Elimination of these artifacts are pos-

sible with an ECG (electrocardiogram) signal, which determines the time interval corresponding

to a particular phase of the cardiac cycle. However, using ECG signal requires a special gating

unit, which causes loss of important information about the vessel, and furthermore, ECG gating

function may not be available in all clinical systems. To address this problem, we propose an

image-based gating technique based on manifold learning and a novel weighted ultrasound simi-

larity measure. The parameters for our image-based gating technique were chosen based on the

experiments performed on 25 different in-vitro IVUS pullback sequences, which were acquired

with the help of a special mechanical instrument that oscillates with given length and frequency.

Quantitative tests are performed on 12 different patients, 25 different pullbacks and 100 different

longitudinal vessel cuts. In order to validate our method, the results of our method are compared

to those of ECG-Gating method. In addition, comparison studies against the results obtained

from the state of the art methods available in the literature were carried out to demonstrate the



effectiveness of the proposed method.
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INTRAVASKÜLER ULTRASON(IVUS) ÇEKİM DİZİLERİNİN MANİFOLD ÖĞRENMESİ

KULLANILARAK GÖRÜNTÜ TABANLI GEÇİTLENMESİ

GÖZDE GÜL İŞGÜDER

EE, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Gözde ÜNAL

Anahtar Kelimeler: manifold öğrenmesi, sınıflandırma, IVUS, intravasküler ultrason,

görüntü tabanlı geçitleme, ECG geçitlemesi, validasyon

Özet

İntravasküler Ultrason(IVUS) iç koroner damarların kros-kesitlerinin görüntülenmesine olanak

sağlayan bir görüntüleme tekniğidir. IVUS çerçeveleri, sabit hızlı bir motor yardımıyla kateterin

damardan geriye doğru çekilmesiyle elde edilmektedir. Ancak, bu geriçekilme esnasında kalbin

atmasından ötürü görüntü üzerinde istenmeyen bozulmalar meydana gelmektedir. Bu bozul-

malar damar ve iç damar hacim ölçümlerini yanıltmakta ve işlemlerin devamlılığını sınırlandırmaktadır.

Kardiyo sisteminin bulunduğu faza ait olan zaman aralığını tespit edebilen ECG( elektrokardiyo-

gram ) sinyaliyle bu bozulmalarn önlenmesi mümkündür. Ancak, ECG sinyalinin kullanılabilmesi

için özel bir geçitleme ünitesine ihtiyaç vardır ve bu ünitenin kullanımı damarla ilgili önemli bil-

gilerin kaybolmasına yol açabileceği gibi, her klinikte mevcut olmayabilir. Bu problemi çözmek

üzere manifold öğrenmesine ve yeni bir ağırlıklı ultrason benzerlik ölçütüne dayalı bir görüntü

tabanlı geçitleme tekniği önerilmiştir. Görüntü tabanlı geçitleme tekniğimizin parametreleri,

verilen uzunluk ve frekansla salınabilen IVUS çekimlerini gerçekleştirebilen özel bir enstrümanla

alınan 25 farklı veri kümesi üzerinde deneyler yapılarak belirlenmiştir.

11 değişik hasta, 22 değişik IVUS çekimi ve 88 değişik damar kesiti üzerinde nicel testler uygu-

lanmıştır. Metodun geçerliliğini test etmek amacıyla metodun sonuçları, ECG geçitlemesinin

sonuçlarıyla karşılaştırılmıştır. Ḃuna ek olarak, literatürde mevcut olan diğer görüntü tabanlı

geçitleme yöntemleriyle karşılaştırmalar yapılarak, önerilen metodun verimliliği gösterilmiştir.
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Chapter 1

Introduction

1.1 Motivation

Intravascular Ultrasound is invasive catheter-based imaging technology that yields a high

resolution, real-time cross-sectional view of the blood vessels from inside-out. The cross-sectional

images are acquired by pulling a catheter back with a motor running at a previously defined

constant speed, which is referred as a pullback. An illustration of cross-sectional and longitudinal

views is shown in Fig. 1.1.

Since IVUS modality provides a very detailed information about the internal vessel structures,

it is a unique tool for the diagnostics of coronary artery diseases(CAD) and plaque characteriza-

tion. For diagnosis and assessment of the disease, accurate measurements of the total vessel and

the lumen volume in the suspicious lesion areas are crucial. However, quality of the IVUS evalu-

ations, and accuracy of the measurements deteriorate due to artifacts caused by heart movement

during a pullback [14]. The most obvious artifact is the back and forth movement of the catheter

in the vessel longitudinal direction due to the periodical change in the blood flow while the

heart muscles are contracting and expanding. As the transducer moves back and forth, it passes

through the same locations of the vessel multiple times; thus it oversamples the vessel. This

means sampling unnecessary information which leads to computational inefficiency for further

processing. Furthermore, due to the heart movement, the longitudinal cut of the vessel has a

saw-toothed appearance(see Fig. 1.2) which makes the segmentation of the vessel even harder.

Another artifact caused by the cardiac cycle is the change of the vessel morphology due to the

varying blood pressure during the cycle. The change in the morphology leads to the variations in

the lumen area observed at different cardiac phases (systole,diastole). In [14],[4], it is stated that

measured lumen and vessel volumes in non-gated image sets are significantly larger than normal

1



Figure 1.1: Illustration of cross-sectional and longitudinal view of the blood vessels. Longitudinal

views are obtained by cutting the vessel in longitudinal direction with different angles and 2D

cross-sectional views are obtained by cutting the vessel in orthogonal direction.

and the choice of the suitable phase is still a question. A way to account for the problems above

is introducing an electrocardiogram (ECG) signal, which is capable of giving information about

the heart’s current physical status. By utilising the ECG signal, heart and IVUS transducer are

synchronized so as to capture the frames only near the predetermined fraction of the RR-interval

[14]. An example of RR-Interval is shown in Fig. 1.10 and explained in Section 1.3.1. However

online-ECG gating requires an ECG unit, which often increases the image acquisition time and

which may not be always available to the physician.

In this work, we introduce a robust image-based gating method based on manifold learning.

By designing this method, our overall aim is to retain only the necessary information about the

vessel, (the frames at a particular fraction of the RR-interval), which will adequately provide

accurate lumen volume measurements and vessel length; at the same time will avoid loss of

important plaque information in the lesion areas.

In the following sections, more detailed information on the medical background is given

to introduce the subject more clearly and with more depth. In Section 1.1.1, Intravascular

Ultrasound(IVUS) properties and how it is acquired is briefly explained. In Section 1.2, the

artifacts that occur during the acquisition is explained in details. In Section 1.3, the hardware

2



Figure 1.2: Longitudinal cut view of a nongated IVUS pullback shows a jagged character.

solution ECG(ElectroCardiogram) Gating and the previous software solutions for the problem

that exist in the literature are introduced. After that in Section 1.4, contributions of this thesis

are itemized. Finally in the last section, outline of the thesis is given.

A preliminary version of thesis work is published in [15], and presented at International Work-

shop on Medical Imaging and Augmented Reality 2010. This work is a substantially expanded

and revised version of [15].

1.1.1 Intravascular Ultrasound (IVUS)

Coronary Artery disease(CAD) arises when the coronary arteries become clogged with fatty

deposits called plaque(See Fig. 1.3). Regarding 2006 Statistics done by American Heart Asso-

ciation, coronary heart disease caused 425,425 deaths and is the single leading cause of death in

America today. (Other mortality: total cancer 559,888; accidents 121,599; HIV (AIDS) 12,113.)

Intravascular ultrasound (IVUS), a diagnostic imaging technique, offers a unique view of the

morphology of the arterial plaque and displays the morphological and histological properties of

a cross-section of the vessel. IVUS is an important intravascular imaging technique, since it

provides us with detailed information about the lumen, plaques and plaque types. It allows the

application of ultrasound technology to see from inside blood vessels out through the surrounding

blood column, visualizing inside of the blood vessel wall tissue in living individuals. Thus, these

properties make IVUS unique, in diagnosis of coronary artery diseases that are caused by the

arterial plaques. In Fig. 1.4, IVUS images are overlaid with segmentation contours obtained by

Unal et al [2]). On the left side, the popular view of IVUS that are mostly used by cardiologists

3



Figure 1.3: Vessel with CAD (Adopted from [1]).

are shown, while on the right side, the same image in polar domain is shown. The area inside the

yellow contour is referred as lumen. It is the inner open space of the vessel, wherein blood flows.

The wall that is shown with cyan contour is called media and represents the outer vessel wall. The

arterial plaques that cause coronary artery diseases lie in the area separated by lumen and media-

adventitia contours. In order to diagnose CAD, the cardiologists need accurate information about

the lumen volume and plaque configuration between the lumen and media-adventitia contours.

Acquisition

Intravascular ultrasound (IVUS) is acquired using a specially designed catheter with a minia-

turized ultrasound probe attached to the distal end of the catheter. The proximal end of the

catheter is attached to computerized ultrasound equipment [16]. In Fig. 1.5, an illustration of

IVUS acquisition is shown.

First step is inserting the guidewire into the part of the coronary vessel that is to be im-

aged(shown in Fig. 1.5 (1)) from outside the body. The guidewire has a very soft and pliable tip

and has a certain length around 200 cm. During the insertion of the guide-wire, the physician

simultaneously checks the angiogram of the subject vessel in order to decide which direction to

steer the wire.

4



Figure 1.4: a)IVUS display domain b)IVUS polar domain(taken from [2]).

Secondly, the ultrasound catheter tip is slid in over the guidewire so that its tip is positioned

to be at the farthest away position to be imaged. Also, the other end of the catheter is connected

to the motor unit referred as pullback device.

Finally the ultrasound catheter tip is slid backwards, under motorized control usually at a

speed of 0.5 mm/s as shown in Fig. 1.5 (3). This whole process is referred as a pullback.

1.2 Artifacts

Two main artifacts occur during the acquisition of the IVUS due to heart movement. Those

two artifacts and their complications are discussed in the following subsections.

1.2.1 Cardiac Motion and Vessel Morphology Change

A 3D reconstruction of sample coronary vessels in different phases of the cardiac cycle is

shown in Fig. 1.6. The area shadowed with red, shows the dramatic change that the coronary

arteries go through during the expansion(diastole) and contraction(systole).

This change is also observable in IVUS images as shown in Fig. 1.7. The change in the mor-

phology leads to the variations in the lumen area observed at different cardiac phases(systole,diastole).

Lumen is 20% larger in Diastole(expansion) phase [14],[4] and calcified Plaque Area is larger in

systole phase [4].

Due to the fact that lumen volume and plaque configuration differ in different phases of the

cardiac cycle and IVUS images are acquired at all phases of the cardiac cycle; it is critical to
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Figure 1.5: IVUS acquisition steps.

Figure 1.6: Yellow shows the position of the coronary arteries during expansion(diastole), blue

shows the position of the coronary arteries during contraction(systole)(adopted from [3]).
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Figure 1.7: Lumen Area Difference between systole and diastole (taken from [4]).

evaluate IVUS images taken at the same phase for correct diagnosis.

1.2.2 Catheter Motion

As stated in Section 1.1, the most obvious artifact is the back and forth movement of the

catheter in the vessel longitudinal direction due to the periodical change in the blood flow while

the heart muscles are contracting and expanding. In [4], the authors observe that the IVUS

transducers within coronary vessels have a longitudinal movement of average 1.50 ± 0.80 mm

during each cardiac cycle. In Fig. 1.8, the black arrows illustrate the back and forth motion of

the catheter, where the thick blue arrow shows the pullback direction.

Due to the back and forth motion of the catheter, it is not possible to estimate the position

of the catheter tip from the parameters of the IVUS pullback, hence the exact coronary arterial

cross-section that is being imaged at a given time. Thus, it causes an important obstacle in

extraction of true 3D geometry of the vessel subject to the pullback.

Moreover, as the catheter moves along, it samples the same sections of the vessel multiple

times, thus gives us an oversampled data. Further analysis of the oversampled data is time-

consuming and provides no extra valuable information, therefore should be avoided.

1.3 Literature Review

The problems that were discussed in Section 1.2 can be solved by choosing the ”stable frames”

from the pullback where the heart is almost motionless. However, even in medicine literature,

the most stable phase of the heart is still not exactly defined, and also it is still an issue of debate
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Figure 1.8: Rough Illustration of Catheter Movement, where solid lines show the forth movement

and dashed lines illustrate the back movement of the catheter.

on which phase gives the best representation of the arteries in IVUS images[14]. However, the

problem can be partially solved by choosing a group of frames that are acquired at the same

cardiac phase. This choosing process is called ”gating” and illustrated in Fig. 1.9. In the figure

a) the original pullback without gating is shown and in b) the frames that belong to the same

cardiac phase are shown with dashed lines. Finally in c) the pullback is reconstructed by stacking

up the frames that are chosen in b). It can be observed that the resolution of the reconstructed

view is much lower than the ungated view, however they appear very similar. It is because that

the chosen amount of frames can adequately represent the vessel as well as all the frames in the

pullback.

There are two possible methods of gating: First one is a hardware solution, called ECG

Gating, and is explained in section 1.3.1; second one is a software solution based only on the

image information, that is proposed in this thesis and is discussed in section 1.3.2.
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Figure 1.9: Illustration of gating idea. a) Ungated pullback b)Dashed lines: The frames acquired

in the same cardiac phase, c) Reconstruction of the pullback.

1.3.1 ECG(Electrocardiogram) Gating

Electrocardiography (ECG, or EKG [from the German Elektrokardiogramm]) is a transtho-

racic interpretation of the electrical activity of the heart over time captured and externally

recorded by skin electrodes[17]. In Fig. 1.10, an examplary signal that is produced by the

electrocardiography device is shown. The signal is referred as an R-Wave.

The acquisition procedure that was explained in Section 1.1.1, slightly changes if ECG gating

will be incorporated. As can be seen in Fig. 1.11, the special gating unit is connected to the

IVUS machine, in order to sample at a certain fraction of the RR interval.

ECG Gating has some advantages such as being accurate and not requiring a post processing,

as well as disadvantages such as not being available in all clinics, increasing the acquisition time

and causing loss of important information about the plaques[14].

1.3.2 Previous Solutions

In [18], a method for classification of the IVUS frames as end-diastolic and not end-diastolic

is presented. As preprocessing, important image characteristics such as edges are enhanced,
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Figure 1.10: RR Interval.

Figure 1.11: ECG Gating Procedure.
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Figure 1.12: Flowchart of the gating process. Left to right: ungated pullback; D matrix and the

shortest path; D̂ matrix and chosen frames on diagonals; gated pullback.

different feature vectors based on spatial and frequency characteristics of the images are defined,

and finally a nearest neighbor search based on the Euclidean distance between the feature vectors

is used to classify the frames.

In [11], the authors present a method to retrieve the cardiac phase by examining a circular

region of interest in all images. They define Average Intensity(AI) and Absolute Intensity Differ-

ence(AID) as two different features for each frame. Those signals are extracted from each frame

and then is filtered with a Butterworth bandpass filter for noise elimination purposes. In their

work, only the filtered signals are shown and the central frequency is extracted. Gating is not

actually performed on the signal.

In [19],[13], an image-based gating algorithm is proposed where a Dissimilarity Matrix(D)

based on the Normalized Cross Correlation (NCC) is built between each 2-tuples of the pullback.

The matrix is forced to have 0-values on diagonals, also the matrix is forced to be positive and

symmetric. After that, D is filtered with an X-shaped inverted Gaussian kernel, which highlights

the frames with high similarity, and is called D̂. Then a dynamic programming technique is

incorporated in order to find the shortest path along the matrix D by tracing only down and

right, starting from the right diagonal neighbor of the main diagonal. Finally a simple tracing

algorithm is introduced to find the highest local maxima along the shortest path on the diagonals

of D̂, that represents the optimal gating frames. The whole process is shown in Fig. 1.12.

In [20], the authors use a similar technique to [19], by building the dissimilarity matrix D

based on the image descriptors which are defined based on Gabor patches. A 1D signal is

extracted from D, which defines the similarities between the frames and finally a local minimum

search over the 1D signal is performed to obtain the best frames.
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In [10], the authors define a motion blur signal, which is based on the vertical derivative

of the IVUS images in polar domain. The method is based on the idea that a motion blur

effect proportional to the speed of the tissue movement occurs due to tissue displacement. Then

the extracted signal is filtered with Butterworth high pass filter for noise elimination purposes.

Only in-vitro experiments are done, where in-vitro data was acquired with the help of a special

mechanical device that simulates the heart beat with a given constant length of oscillation and

frequency.

1.4 Contributions

The previous work on gating of IVUS pullback sequences in the absence of ECG gating

device, indicate that the important point is to be able to extract an R-Wave like 1D Signal

or a signature using image intensity properties from IVUS pullback frames. In this thesis, our

hypothesis is that using a nonlinear dimensionality reduction technique, we could transform the

IVUS image space into a low-dimensional space on which one can cluster the images that are

similar in some defined sense, and extract a 1D signal from which a stable image frame can be

selected, hence gating is achieved. We present the required mathematical methodology, and the

necessary experimental validation in our attempt to prove that the proposed technique improves

the image-based gating of IVUS pullback sequences. Our contributions in this thesis can be

summarized as follows. We have:

• Adopted and applied the manifold learning framework to our problem of image-based

gating of IVUS pullbacks;

• Proposed a new similarity measure for ultrasound images and showed that the new measure

is superior to others in IVUS pullbacks;

• Proposed a new validation method that approximates lumen volume measurements by

employing lumen area measurements for different longitudinal vessel cuts calculated in

different angles;

• Presented extensive comparison results among the existing image-based IVUS gating algo-

rithms in the literature.
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1.5 Outline

This thesis is organized as five chapters including the Introduction chapter. In Chapter 2,

a background on current linear and nonlinear dimensionality reduction techniques are given.

Proposed image-based gating algorithm based on manifold learning is given in Section 3. The

experimental results are provided and discussed in Chapter 4. In the last chapter, the conclusions

and future work are expressed.
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Chapter 2

Dimensionality Reduction Techniques

In this chapter, well-known dimensionality reduction techniques that are most commonly used

for medical imaging problems are described. In the first section, linear dimensionality reduction

techniques are presented. In the second section of the chapter, nonlinear reduction techniques

are introduced.

Together with the recent rapid technological development in the medical imaging field, more

complex tools for imaging are introduced every day. These tools provide the doctors more

advanced, high-resolution, detailed images and thus a higher rate of diagnosis, planning and

evaluation. However, those high-dimensional, complex data yield time-consuming, inefficient

further computations, difficulty for extracting the underlying relation between the images and

visualization of the general structure. In addition to that, in many cases, not all the measured

variables are important for understanding the underlying phenomena of interest. Other than

these, it is difficult to extract statistical information from high dimensional data.

All the reasons stated above, give the researchers the motivation for finding ways of rep-

resenting the high dimensional data in a low dimensional space. This process is referred as

”dimensionality reduction”. In mathematical terms:

Given a set of k points x1, ..., xk in Rd, where k is the number of samples and d is the

dimension of the data; find another set of k points y1, ..., yk in Rm , where m� d.

Dimensionality reduction is a helpful tool for multidimensional observations, that is applied

prior to any analysis or processing application such as clustering and classification. A variety of

dimensionality reduction techniques have been proposed in the literature and they can be broadly

classified into two groups as linear and nonlinear methods. Dimensionality reduction techniques

do not just reduce the dimension, but also preserve the structure of the high-dimensional data
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after the projection of the high dimensional data onto a low dimensional space with minimum

loss of information.

2.1 Linear Dimensionality Reduction Techniques

If the mapping of the high dimensional data is linear, the technique is called ”linear dimen-

sionality reduction”. The general procedure for all linear dimensionality reduction is the same.

First of all, a mxd transformation matrix W = [w1,w2, ...,wm]T , such that f = Wx is cre-

ated. Our aim is to find d-dimensional column vectors(basis vectors) wi’s that will constitute

the rows of the transformation matrix W . Finally input data x is projected onto these basis by

multiplying with W .

W =



wT
1

wT
2

.

.

.

wT
m


.

Since we assume that the rows of W are orthogonal, the coefficients fi’s that represent x as

a linear combination of basis elements wi’s can be found. We can calculate the approximation

of x, which is represented with x̂, by using basis coefficients, as following:

x̂ ∼=
m∑
i=1

fiwi. (2.1)

2.1.1 Principal Component Analysis(PCA)

The criterion that Principal component analysis (PCA) maximizes is the variance of the

sample points [12]. It tries to spread the sample points as far as possible so that the differences

between the sample points become obvious. PCA provides an orthonormal basis for the best

subspace that gives minimum least squared error on samples. First principal component is in

the direction of the maximum variance in the data and the second component is in the direction

of the second maximum variance in the data and so on. In dimension reduction by using PCA,

characteristics of the data that contribute most to its variance are kept by keeping lower-order
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(a) (b)

Figure 2.1: (a)3D Gaussian Data (b) 2D Projection of the data in (a) projected by PCA.

principal components. So, by using less amount of information, most of the variance of the data

is captured. The rows of the transformation matrix, W are selected as the eigenvectors that

corresponds to the m highest eigenvalues of the scatter matrix S are selected,

S =
n∑
k=1

(xk − µ)(xk − µ)T , (2.2)

where xk represents the kth sample and µ is the sample mean.

A toy example for PCA is shown in Fig. 2.1. It can be noticed that the calculated basis

vectors by PCA nicely represent the direction of the maximum variances.

PCA explains variance but is very sensitive to outliers [21]. Even a little amount of outliers

may ruin the results of PCA, thus it is usually used for visualization in order to have a rough

idea about the input. The results can be improved by using more robust distances, such as

Mahalanobis distance.

2.1.2 Normalized Principal Component Analysis(NPCA)

Normalized PCA is introduced for generalization purposes of regular PCA. In regular PCA,

an unweighted sum of the squared distances is maximized. The idea in normalized PCA is to

place samples from different class further from each other in the projected space by introducing

a weighting scheme. In [5], it is shown that PCA maximizes the sum of all squared pairwise

distances between the projected vectors. Hence solving the maximization of this sum in the

projected space yields to the same result with regular PCA.

Let’s show the sum of squared distances in the projected space as
∑

i<j(distmij )
2 where distmij

is the distance between elements i and j in the projected space, then we seek the projection that
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Figure 2.2: PCA vs Normalized PCA (taken from [5]).

maximizes the weighted sum: ∑
i<j

dij(distmij )
2. (2.3)

dij’s are called pairwise dissimilarities, so by defining these pairwise dissimilarities, we can place

elements from different classes further from each other. If we set dij = 1, we get the same

result with regular PCA. In [5], pairwise dissimilarities are introduced as dij = 1

distij
where

distij is the distance between elements i and j from different classes, in the original space. The

solution of the maximization problem in Eq. 2.3 leads to the the generalized eigenvectors that

corresponds to the m highest eigenvalues of XTLdX or XTX, where Ld is a Laplacian matrix

derived by pairwise dissimilarities and X is data matrix (one sample in each row). It is shown

that the matrices XTLdX and the covariance matrix XTX are identical up to multiplication

by a positive constant[5]. Please see [5] for proof of the maximization problem stated in Eq. 2.3.

By selecting pairwise dissimilarities as inversely proportional to their distances in the original

space, on the overall criterion we emphasize the elements that are close to each other and give

less importance to the elements that are already apart. If elements i and j belong to same class,

dij can be set to 0, which means we are not interested in separating elements within the same

class. As a conclusion, normalized PCA becomes able to discriminate classes in the projected

space where PCA may fail as it does not take class information into account.

In the Figure 2.2, a 2-D dataset is projected to 1-D by using both PCA and Normalized PCA
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into two different directions. In PCA case, PCA fails to discriminate classes in the projected

space. However, by the introduction of pairwise dissimilarities Normalized PCA is able to capture

the class decomposition.

2.1.3 Multidimensional Scaling(MDS)

Multidimensional Scaling places the high dimensional points on a low dimensional map, such

that the pairwise distances dij for all i, j = 1, ..N where N is the number of samples, are preserved

[22]. The distance can be chosen amongst the popular metrics such as Euclidean distance (L2

norm) or Manhattan distance (L1 norm). In mathematical terms;

Given n items {xi}ni=1 ∈ Rd and a symmetric distance matrix M= δij, i, j = 1, ..., N , the

result of a m-dimensional MDS will be set of points {yi}ni=1 ∈ Rm such that the distances

dij = d(yi, yj) are as close as possible to a function f of the corresponding proximities f(δij) [23],

where δij = d(xi, xj). The following function is minimized.

f̂ = argmin
f

√∑
i,j[f(δij − dij)]2

scalefactor
(2.4)

where the scale factor is usually based on
∑

i,j[f(δij)]
2 or on

∑
i,j d

2
ij.

Finally the best projections yis are determined as follows:

Ŷ = argmin
Y

f̂ (2.5)

If distance measure is chosen as the Euclidean distance and f is identity in Eqn. 2.4, the

procedure is the same as PCA, however the computation time is much longer. In Figure 2.3, the

approximated travel distances between cities after applying MDS are shown with the real world

map(taken from [21]). It can be seen that the distances are preserved as well as possible.

2.2 Nonlinear Dimensionality Reduction Techniques

Even though most of the linear dimensionality reduction methods are easy to implement and

efficient, they are not suitable for the real world problems, which contain nonlinearities. As an

example, take a face recognition application, where a face is represented as a two-dimensional,

100x100 image. Thus, we can say that each face is is a point in a 10,000 dimensions. As we

take pictures of a person slowly rotating his/her head from left to right; the sequence of images
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(a) (b)

Figure 2.3: (a)Real World Map (b)Projection of real world distances by MDS.

we capture follows a trajectory in the 10,000-dimensional space and this is not linear[21]. These

trajectories define a manifold in the 10,000-dimensional space, which we want to model. Thus,

nonlinear dimensionality reduction techniques(NLDR) are introduced to generate better results

where linear methods break down at the nonlinearities like in the application explained above.

Linear approximations for the nonlinear problem is the essence of the NLDR’s. Most of the

NLDR’s are based on k nearest neighbor(knn) graphs, where the connectedness between pairs

are defined to estimate local properties of the manifold. Then the best global mapping that

preserves the local distances is calculated.

2.2.1 Isometric Feature Mapping (Isomap)

In the previous section(2.1.1), PCA is discussed. In PCA, Euclidean distances were used as a

measure of similarity between the sample points. However, in nonlinear cases Euclidean distances

do not give us the right distance between two samples. A typical example of a nonlinear data,

swissroll, and the two different distances between two sample points are given in Fig. 2.5. As

can be seen Fig. 2.5 b) gives more reasonable explanation than 2.5 a) for the distances between

two sample points. That distance is referred as geodesic distance. Geodesic distance preserves
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locality.

(a) (b)

Figure 2.4: (a)Euclidean Distance between two selected points(blue line)(b)Geodesic Distance

between two selected points(red line)

In Isomap [6], geodesic distances between all pairs of data points are used. Since the data

is assumed to be locally linear, the Euclidean distances between the neighboring points can be

used. After the Euclidean distances between the neighboring points are calculated, the geodesic

distance between the non-neighbor points can be approximated by summing up the Euclidean

distances of the in-between points.

In order to employ the geodesic distances dG(i, j) between xi and xj in the calculation,

Isomap defines a weighted neighborhood graph G =< X,E >, where the nodes correspond to N

points: X = {x1, x2, ..., xN} and edges E correspond to the weights between each pair of nodes.

The weights between each pair is defined as the shortest path between those nodes. Dynamic

programming techniques such as Djikstra[24] can be used to calculate the shortest path between

the nodes. In mathematical terms, following is done:

Initialize, dG(i, j) = dX(i, f) if connected, ∞ otherwise. For each i = 1, 2, ..., N,

replace dG(i, j) = min(dG(i, j), dG(i, k) + dG(k, j)).

In Fig. 2.6, the steps of calculating the geodesic distances are shown. In A, the nonlinear data

is given as a swissroll. In B, the neighborhood graph is shown and in C, the geodesic distance

between two sample points(in red) and the true shortest distance(in blue) is shown. In Fig. 2.7,

some results from a real world problem is shown. As can be seen, two chosen eigenvectors explain

the variation in light condition and up-down pose of the image compactly and in a continuous

manner.
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Figure 2.5: Steps of Isomap Algorithm(adopted from [6]).

Figure 2.6: Isomap Result, showing the variation of light in left-right direction; and variation of

up-down pose in up-down direction (adopted from [6]).
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After the geodesic distances, matrix DG , is calculated; MDS (See Section 2.1.3) is applied

on the distances in order to reduce the dimension.

One drawback of the Isomap is that it does not provide a general mapping that can map a

new test point without running the algorithm again. Another drawback is that the algorithm is

sensitive to the neighborhood parameters.

2.2.2 Locally Linear Embedding(LLE)

The motto of locally linear embedding is: ”Fit Locally, Think Globally” [7]. In other words,

it assumes that local patches of the manifold can be approximated linearly by writing each

data point as a linear combination of its neighbors. With this assumption, given points, X =

{x1, x2, ..., xN} the method minimizes the reconstruction error

ε(W ) =
∑

i

∣∣∣xi −∑
j

Wijxj

∣∣∣2(2.6)

where the weights Wij summarize the contribution of the jth data point to the ith recon-

struction. Function is minimized with least squares subject to
∑

jWij = 1 and Wii = 0 for all

i.

After the Wijs are calculated, a linear mapping yi of the point xi is found by using the

previously fixed weightings by minimizing the following function:

ε(Y ) =
∑

i

∣∣∣ȳi −∑
j

Wij ȳj

∣∣∣2(2.7)

The three steps of LLE algorithm is shown in Fig.2.8 clearly. In step 2, the weightings are

calculated and in step 3, projections are calculated.

As with the Isomap, LLE can also not find a general mapping to project a new high-

dimensional test point and is sensitive to neighborhood parameter. As stated in [21], different

neighborhood relations can be used in different linear patches of the manifold, but it is still open

to research. In literature, a special LLE called Hessian LLE exists. This method is very similar

to LLE but it computes embedding based on Hessians.
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Figure 2.7: Steps of LLE Algorithm (taken from [7]).

2.2.3 Laplacian Eigenmaps

Laplacian Eigenmap[8] uses a similar idea to Isomap and LLE. Different from Isomap and

LLE, this approach computes a low-dimensional projection of the data using the notion of a

Laplacian of the graph. This embedding reflects the intrinsic geometric structure of the manifold.

The algorithm is relatively insensitive to noise and outliers since it uses Laplacian-Beltrami

operator [8]. It is an effective, geometrically motivated technique, which is used to solve a

variety of vision problems such as segmentation, registration, tracking and object recognition.

The technique was validated to be successful, particularly if the input has smooth appearance

variation or smooth deformation[8].

Similar to Isomap and LLE, this approach incorporates the neighborhood information of the

input to build a weighted graph. After building the graph, a low-D representation of the input

that optimally preserves local neighborhood information, is computed by using the Laplacian of

the graph. It is worth noting that, since the approach is geometrically motivated, the resulting

mapping will be a discrete approximation of a continuous map from the high dimensional space

to the low-D manifold.

The first step is to construct a graph G with representative k nodes for each xi and edges

between the nodes xi and xj , if the nodes are close enough. The relationship of being close can
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be defined as an ε neighborhood ||xi − xj|| < ε, where ||.|| denotes the Euclidean norm. The

disadvantage of this choice is the parameter setting. Another option is using n nearest neighbors,

where one can put an edge between the nodes xi and xj if j is one of the n nearest neighbors of

i.

Another important issue is defining a similarity measure for the nodes xi and xj. Most

commonly used similarity measures, such as Sum of Squared Distances (SSD), Sum of Absolute

Difference (SAD) or Normalized Cross Correlation (NCC) can be used.

It is assumed that the graph G, constructed in the previous step, is connected. The second

step is to weight the edges in the graph by appropriate weights. The weight function is inspired

from the heat kernel given by

Wij = exp−||xi−xj ||
2/2σ2

(2.8)

where σ2 is the variance. W = [Wij]; ij ∈ [1, .., k], forms the weight matrix. In Fig. 2.9 the

results for different values of σ(also called t) and N , number of nearest neighbors, can be seen.

Let y = (y1, y2, .., yk)
T be the desired mapping. A reasonable criterion for choosing a good

map is to minimize the following objective function:

∑
ij

(yi − yj)2Wij, (2.9)

under appropriate constraints. The objective function with our choice of weights Wij incurs a

heavy penalty if neighboring points xi and xj are mapped far apart. Therefore, minimizing it

is an attempt to ensure that if xi and xj are close, then yi and yj are close as well. Minimizing

and manipulating the term in Eq.2.9, a generalized eigenvector problem is obtained as follows:

Lf = λDf, (2.10)

where D is a diagonal weight matrix, constructed by summing up the columns of W , Dii =∑
jWji. Here, Laplacian matrix L is calculated as L = D − W . Finally the eigenvectors

corresponding to the smallest eigenvalues (excluding zero) of the Laplacian matrix gives the

desired mapping. Further justification and details on the Laplacian Eigenmap method can be

seen in [8].
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(a)3D Swiss roll

(b)Laplacian Eigenmap with different t and N

Figure 2.8: Parameters for Laplacian Eigenmap(taken from [8]).
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This method is very simple and efficient since it solves only one sparse eigenvalue problem,

thus is appropriate for large data sets.

In this chapter we presented nonlinear dimensionality reduction techniques(NLDR), Isomap,

LLE and Laplacian Eigenmaps, which are also known as manifold learning techniques. They

aim to find the best global mapping for high-D data, that preserves the local distances, assuming

that high-D data live on a nonlinear manifold. All of these methods have common steps such as,

finding k-nearest neighbors; estimating local properties of manifold by looking at the neighbors

and finding a global embedding that preserves the properties of manifold. In Chapter 3, we make

use of manifold learning concept for our gating problem.
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Chapter 3

Manifold Learning for Image-based Gating

In Section 1.3.2 the previous solutions proposed for gating problem was introduced. In all

the previous methods, even if different approaches were used, the overall objective is to be able

to construct a 1D signal similar to R-waves by using the information(features) that is embedded

in the images in order to do gating.

All of the previous methods require preprocessing or postprocessing in order to extract valu-

able information from the images. In [13] and [20], the dissimilarity matrix is filtered as a

preprocessing step, in [11], a region of interest is extracted before the signal is calculated and

in [10], the signal is calculated in polar domain, which requires conversion from display domain.

Since the IVUS images in polar domain are not available most of the time, as the scan-converted

display IVUS images are typically in use, it can also be counted as a preprocessing step. Similarly

all the methods employ a bandpass filter to the extracted signals for noise reduction.

All of the previous methods focus on certain signals that is based on certain properties of

images such as: average intensity, absolute intensity difference or motion blur signal. However

there may be additional information buried in one image, thus focusing on only one feature

may prevent us from extracting a better signal. Therefore, to make use of all the information

embedded in the images we propose projecting our high-dimensional data, to a low-dimensional

manifold, which can be achieved with manifold learning techniques that was explained in details

in Chapter 2.

Manifold learning is an effective, geometrically motivated, nonlinear dimensionality reduction

technique, which is used to solve a variety of vision problems such as segmentation, registration,

tracking and object recognition. Detailed information can be found in Chapter 2, Section 2.2.

The technique was validated to be successful, particularly if the input has smooth appearance
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variation or smooth deformation[8]. As explained in Chapter 1, Section 1.2, cardiac cycle’s first

effect, slowly varying longitudinal movement of the catheter, results in a smooth appearance

variation. Furthermore, the slight vessel morphology change during the cycle results in a smooth

deformation in the input images. Due to the fact that the cardiac cycle is almost periodic

and the frames that belong to the same cardiac cycle look more similar than those that were

acquired during another cardiac cycle, a neighborhood relationship between IVUS images is

present. Manifold learning methods also utilize the spatial/neighborhood information in the

pullback and that makes the method suitable for our problem.

In this thesis, our goal is to develop an algorithm that is efficient, does not require prepro-

cessing, preserves locality and extracts a better 1D signal to differentiate cardiac cycles. We

propose directly projecting our high dimensional data, to a low-dimensional manifold and thus

treating each image frame as a low-D signal in the low-D manifold; instead of extracting features

from each frame.

One of the questions that may arise is why we choose manifold learning method as our

dimensionality reduction technique. In order to answer that, the most commonly used linear

dimensionality reduction techniques such as Principal Component Analysis(PCA) and Multi-

dimensional scaling(MDS) are efficient and simple, however are not able to detect nonlinear

structures that exist almost in all real datasets. The human cardiac system is nonstationary and

dynamic; hence, linear analyses may not account for all aspects of cardiac performance[25],[26].

In addition, in the lesion areas where the cross-sectional view of the vessel can change faster,

using global distance metrics would fail because the lesion areas would be detected as outliers.

However manifold learning preserves locality, which makes it much less sensitive to noise and

outliers.

Isomap [6], local linear embedding(LLE) [7], and Laplacian eigenmaps [8] are three popular

different techniques for manifold learning. In this work we use Laplacian eigenmaps technique

(see Section 2.2.3 for a mathematical background). Another question that may arise is why we

choose Laplacian Eigenmaps among the three popular manifold learning algorithms.

The general properties of our data can be summarized as follows:

• IVUS pullback is high-dimensional( usually around 500x500x3000).

• There are small variations between the consecutive frames. Hence, the data does not

consist of very densely sampled clusters.
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Figure 3.1: Decision tree for manifold learning techniques(taken from [9]).

• IVUS data is considered to be noisy, due to the lesion areas and ultrasound’s speckled

appearance.

• Data is almost uniformly sampled using a constant speed motor.

Our data is not low-dimensional but its projection is d-dimensional, where d denotes 2 or 3.

Our data is assumed to cluster in a non-convex domain, where non-convex means that the line

segment connecting two points in the domain does not necessarily lie within the domain, but

our data is not densely sampled. Finally due to the fact that our data is noisy and uniformly

sampled, following the decision tree in Fig. 3.1 we are led to Laplacian Eigenmaps method.

Table 3.1 presents a comparison among the NLDR techniques. As it is shown here, the

Laplacian Eigenmap method does not handle non-uniform sampling and clusters. However, this

does not affect our algorithm since our data properties are completely in line with what the

Laplacian Eigenmaps method expects.

In addition, another advantage to use Laplacian Eigenmaps method is its efficiency and

simplicity since it solves only one sparse eigenvalue problem.

In order to illustrate the idea of manifold learning on our problem, a desired mapping for

9 sequential cardiac cycles is given in Fig. 3.2. In Fig. 3.2, the low-D manifold gives a nice

intuition of the clusters that belongs to the same cardiac cycle. Each cluster is shown with a

different color and assumed to represent a different cardiac cycle. Different cardiac cycles seem

to be well-seperated from each other.
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Table 3.1: NLDR Comparison(taken from [9]).

As a reminder for Laplacian Eigenmaps, the neighborhood information of the input is incor-

porated to build a weighted neighborhood graph G =< X,E >, where the nodes correspond to N

points: X = {x1, x2, ..., xN} and edges E correspond to the weights between each pair of nodes.

In our specific application, each vessel cross-section at a certain cardiac phase is represented

as a two-dimensional, 500x500 image, that corresponds to nodes xi of our weighted graph G.

Thus, we can say that each cross-section acquired at some cardiac phase is a point with 250,000-

dimensions. As cross-section images of vessels are taken by pulling the catheter back with a slow

speed; the sequence of images we capture follows a trajectory in the 250,000-dimensional space

which is not linear. These trajectories define a manifold in the 250,000-dimensional space, which

we want to model. After building the graph, a low-D representation of the input that optimally

preserves local neighborhood information, is computed by using the Laplacian of the graph. It

is worth noting that, since the approach is geometrically motivated, the resulting mapping will

be a discrete approximation of a continuous map from the high dimensional space to the low-D

manifold.
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Figure 3.2: An illustration of Manifold idea. Each frame is shown with a dot on the calculated

low-D manifold(here m=2), where A,B,C,D,E are the clusters of frames that belong to different

cardiac cycles.

3.1 Parameters

Laplacian Eigenmaps require three different parameters as was introduced in Section 2.2.3.

These parameters are: neighborhood definition; σ value in the heat kernel equation; and distance

definition between the images. Selection of these parameters for the given problem in this thesis

will be explained in the following subsections.
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3.1.1 Neighborhood

The neighborhood information is used during the weighted graph building step. The rela-

tionship of being close can be defined as an ε neighborhood ||xi − xj|| < ε, where ||.|| denotes

the Euclidean norm. If this option is preferred than the edge weight Wij between two ε neighbor

IVUS images xi and xj are assigned to 1 in order to connect them; otherwise the edge value is

assigned to 0. Another option is using n nearest neighbors, where one can put an edge between

the nodes xi and xj if j is one of the n nearest neighbors of i. When this option is used, the

edges between xi, xi+1, ..., xi+n are assigned to 1 and the the edges between xi, xi+n+1, ... , xk

are assigned to 0.

This step can be seen as a preliminary step for building weighted neighborhood graph. In

this step only the connections between the nodes are determined by putting the values 0 and 1.

The graph that is built in this step can be used directly for a simple-minded approach, however

for advanced results, weighting the edges between 0 and 1 with a heat kernel weight function is

employed.

3.1.2 Heat Kernel Parameter, σ

σ2 is defined as the variance that is used in the heat kernel weight function:

Wij = exp−d(xi,xj)/2σ
2

(3.1)

where d(xi, xj) is the distance between xi and xj and W = [Wij]; ij ∈ [1, .., k], forms the

edge weight matrix. Wij = 0, if the data points xi and xj are not connected according to the

chosen neighborhood relationship. Wij is close to 1, if xi and xj is close enough(similar enough)

according to the value of d(xi, xj) .

In this step, the neighborhood graph that was built in the previous step is weighted only for

the connected nodes.

3.1.3 Similarity Measure

Similarity measure is used to define the distances d(xi, xj) between image pairs, which appears

in Eq. 3.1. Squared Euclidean distances is the most commonly used measure for calculating
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distances. In this work, we propose a novel similarity measure ”Weighted Speckle Distance”

specially designed for ultrasound images to get more meaningful distances.

Sum of Squared Distances(SSD)

Sum of squared distances is defined as

d(X, Y ) = ||X − Y ||2 (3.2)

where X,Y are matrices with same dimension and ||.|| denotes the Euclidean norm.

Weighted Speckle Distance(WSD)

It can be observed that size of speckle in ultrasound images increases as the distance between

the probe and the tissue to be imaged increases. This can be interpreted as the reliability of

information in IVUS images decrease from near field towards the far field, i.e., as we go away from

the catheter. In the presence of this information, we design a new similarity measure, where we

weight the similarities of the pixels according to their distances to the catheter center, which is

also the image center. In other words, the similarity of a pixel that is close to center contributes

more to the total distance between the images. In order to do that, we use a logarithmic sigmoid

function defined as

dw(z) = 1− 1

1 + exp(−z)
(3.3)

In this equation z is the shifted radial distance from the catheter, starting from -
√
m/40 to

+
√
m/40, where m is the maximum distance from the catheter. The resulting function can be

seen in Fig. 3.3.

The filter, DW , is designed by shifting and scaling the transfer function to fit the image size.

In Fig. 3.4 a) the filter in polar domain and in b) the filter in display domain is shown.

The IVUS images are weighted with the filter shown in Fig. 3.4 and finally SSD is used to

calculate the distances as:

d(X, Y ) = ||DW ∗X −DW ∗ Y ||2 (3.4)

where * denotes multiplication.
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Figure 3.3: Transfer function.

a) Sigmoid function as an image in polar domain

b) Sigmoid function as an image in display domain

Figure 3.4: Sigmoid Function as a Filter.
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Projection Dimension

An important issue is the choice of the dimension of the M, denoted by m. We need one

dimension to account for the smooth appearance variation caused by the first vessel morphology

change, and another dimension to account for the smooth deformation caused by the catheter

motion. Thereby, we set m ≥ 2, and we heuristically choose m = 3. In another word we choose

to represent each image frame with a 3D vector which gave satisfactory performance as will be

demonstrated in the experiments.

After the distances and parameters are defined as described above, the weight matrix W is

constructed, and its Laplacian matrix is formed. A generalized SVD analysis on the Laplacian

matrix follows, which produces the 3D projection vectors Vi for each IVUS image xi.

3.2 1D Signal Extraction

At this point in our method, we projected each IVUS image xi to a 3D vector Vi. Recall

that our goal is to obtain a 1D signal similar to an R-wave (not exactly corresponding to systole,

diastole and so on phases), but to be able to extract a signal that differentiates between different

cardiac cycles, and allows us to sample from a similar point in the cycle for all cycles. For this

purpose, we construct a distance signal , d = ||Vi+1−Vi||, where ||.|| denotes the Euclidean norm

and Vi denotes the 3D projection vector of the image xi, where i = {1, 2, ..., N}. In Fig. 3.5, a

sample of the constructed d function for 400 IVUS frames is shown for illustration, where green

boxes indicate the local maxima points in d function.

3.3 Parameter Selection

In order to choose the best parameters, we used different in-vitro datasets with ground truths

and different values for all parameters and analyzed the differences between our results and the

ground truth.

3.3.1 In-Vitro Data

In [10], the authors introduce a mechanical device that consists of a rotating wheel which is

connected to a transversal arm generating horizontal swinging oscillations. The oscillation speed
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Figure 3.5: Normalized Distance Function.

can be controlled by the user by changing the power supply Voltage.

We acknowledge the help of authors of [10] who shared with us their data set, which consisted

of 20 different pullbacks that were generated with the mentioned set-up specifically constructed

for creating validation data for IVUS gating algorithms.

We applied our algorithm on 20 different pullbacks acquired from 3 different post-mortem

arteries with frequencies F = {50, 60, 70, 80} BPM(Beats Per Minute), which are inversely related

to the oscillation periods of the catheter.

In order to interpret our results, we calculated Y (jw) Fourier transform of our signal d(t). In

Fig. 3.6, an example for the amplitude spectrum of Y (jw) is shown. The harmonics of the signal

can easily be noticed as peaks. To validate our method, we statistically analyzed the frequencies

of the first four harmonics of Y (jw) by employing coefficient of variation (CV), defined as:

CV =
σ

µ
(3.5)

where σ is the standard deviation of the first four harmonics and the µ is the ground truth

frequency for the pullback that is being analyzed1. The coefficient of variation is useful because

1We note that in the usual definition of CV, the standard deviation is normalized by the mean of the data

samples. Here, we used the true value rather than the sample mean to analyze the dispersion of the estimated

harmonic frequencies around the true frequency.
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the standard deviation of data must always be understood in the context of the mean of the

data. Here we could use CV, since the oscillation frequencies are always positive, therefore the

mean is always larger than zero. In-vitro data analysis aided us in parameter selection of our

method, as the true oscillation frequency, which emulates heart beats, is known. This analysis

is given next.

Figure 3.6: amplitude spectrum of d(t).

3.3.2 Neighborhood Selection

We tested our method with ε neighborhood and n = {1, 10, 15, 20, 30, 40, 60}. The longer the

heart beat is, the less frames are acquired during one heart beat, since the frames per second,

fps, stays constant. In other words, greater the beats per minute, less neighbors we shall need

for the algorithm.

We calculated CV for each dataset and analyzed each frequency category separately. The

smaller CV indicates less dispersion.

(a) (b) (c)

Figure 3.7: (a)CV Performance for 60 BPM (b)CV Performance for 70 BPM (c) CV Performance

for 80 BPM.
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In Fig. 3.7, the coefficient of variation values for different parameter values are shown. Please

note that zero neighbor represents ε neighborhood. When the beats per minute is 60, the values

n = 10, 15, 20 perform similarly and good, however as n is increased to 30 the performance starts

getting worse. As we have predicted earlier 70 BPM should need less neighbors. As can be seen

from the Fig. 3.7 b), the best performance is when n = 15, and the performance decreases when

n is increased to 20. Similarly with 80 BPM , the critical value is n = 1.

To conclude, the results we get in this experiment support our assumption and also shows

the importance of the neighborhood parameter. Since the average heart rate for human beings is

around 60-70 BPM, we choose n = 15 as our neighborhood parameter in our in-vivo experiments.

3.3.3 σ Selection

In Fig. 3.8, the CV values are shown for σ = {10, 50, 100, 150}. The best performance

occurs when σ = 50 , so we choose heat kernel parameter in the weight function defined in Eq.

3.1, σ = 50. However the differences between the CV values of different σ values are not so

distinguished, thus we can conclude that it is not a very critical parameter for our dataset.

Figure 3.8: Sigma Choice.

3.3.4 Similarity Measure Selection

Our algorithm is tested with SSD (Sum of Square Distances)given in Eq. 3.2 and WSD(Weighted

Speckle Distance) given in Eq. 3.4. In Fig. 3.9, it can be seen that the CV value of WSD is

lower than the CV value of SSD. We comment that WSD measure acts superior to SSD. Also,

in Fig. 3.10, the spectrum results of d(t) of the same pullback using SSD and WSD is shown. It

can be noticed that sharper peaks of the harmonics can be seen in the spectrum of WSD. This
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shows that, WSD helps us to get rid of the noise and focus more on meaningful data, which

correspond to peaks of the harmonics in this case.

Figure 3.9: Similarity Measure Choice.

(a)

(b)

Figure 3.10: Spectrum Comparison a)Amplitude Spectrum of d(t) using SSD b)Amplitude Spec-

trum of d(t) using WSD.
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3.4 Gating

In our method, we used ncycle to represent roughly the number of frames per cardiac cycle.

ncycle is defined as fRate/1.2Hz , where 1.2 Hz is the average heart beat rate of human species[14]

and fRate is the frame rate of the pullback. Similarly mincluster is used to represent the minimum

number of frames in a cardiac cycle. mincluster can be equated to fRate/(1.2Hz + 2σ) , where

σ is the variance of the heart beat rate and ncycle is the average number of frames per cardiac

cycle. Similarly, maxcluster can be equated to fRate/(1.2Hz − 2σ).

The final part, choosing the stable frames, so called gating, is performed on the constructed

1D signal d(t) in Section 3.2. In our gating algorithm, the distance signal is treated like a

composition of small constant size patches of signals.

The frame numbers where global maximum occurs, is found in each patch, then starting

from each maximum point, local maxima points that lie between the interval (currentInd +

mincluster)− (currentInd + maxcluster) are added to the gated frame list and last chosen frame

is updated accordingly. Algorithm continues till no interval can be found. This whole process

presented in pseudo code 3.4. Finally, the gated frames found for each patch are merged.

1: startInd← maxval

2: currentInd← startInd

3: c← 1

4: k ← 0

5: while c do

6: minInd← currentInd+mincluster

7: maxInd← currentInd+maxcluster

8: positions← minInd : maxInd

9: n← maxcluster −mincluster
10: for i = 1 to n do

11: if positions(i) ∈ localMaxPointsSet then

12: currentInd← positions(i)

13: gatedInd(k)← currentInd

14: c← 1

15: k ← k + 1
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16: end loop

17: end if

18: c← 0

19: i← i+ 1

20: end for

end while
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A sample result is shown in Fig. 3.11 for demonstration. Longitudinal IVUS views shown in

Fig. 3.11 demonstrate similar qualitative outcome for our manifold-learning based IVUS gating

method, and the ECG-gated method.

Figure 3.11: First row: Nongated pullback. Second Row; Left: Image-based gated pullback.

Right: Ecg gated pullback.
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Chapter 4

Experimental Results and Discussion

4.1 In-Vivo Data

We applied our automatic image-based gating algorithm on 12 different patients from two

different hospitals and 25 different pullbacks. All the pullbacks were acquired in-vivo in the

coronary arteries of the patients of our clinical partners with 20 MHz IVUS catheter. The frame

rate was 30 Hz and the motorized pullback speed was 0.5 mm/s.

4.2 Validation

In order to validate our method we compared the results of our algorithm with the results of

ECG Gating. As stated in Section 1.1, we claim that image-based gating preserves the lumen

volume, plaque configuration and the length of the artery. For that reason our validation is

based on measuring the preservation of these values.

In this section we mostly compare our results with ground truth data. For that reason, we

used a statistical analysis: Bland-Altman plot, that shows/measures the agreement between two

methods. The construction of the plot is as follows: Given n samples and n+ n = 2n measure-

ments, one from the method to be compared and one from the ground truth(gold standard);

the mean of the two measurements are assigned as x-axis, while the difference between the two

values as the y-coordinate. One can also compute the limits of agreement. In our experiments,

we specified it as bias ±1.96 STD, which corresponds to 95% confidence level. An example

Bland-Altman plot can be seen in Fig. 4.2.

43



4.2.1 Lumen Volume Comparisons

As stated in Section 1.1, the accurate measurements of lumen is crucial for coronary artery

diseases’ diagnostics. For that reason, we compared the lumen areas calculated from our gated

pullbacks and ecg gated pullbacks. The lumen areas were drawn by the expert cardiologists

in our team. To approximate lumen volume, we compared the lumen areas in the longitudinal

views of the vessel from 4 different angles for each pullback. In Fig 4.2.1, an illustration of vessel

longitudinal cuts at different angles is given. Difference(LAD) error in Table 4.1 is calculated as

the ratio of the absolute difference of the areas found by the two methods, with the ecg-gated

pullback area used as the ground truth: LADerror = |LAecg −LAalg|/LAecg , where LAecg is the

lumen area in the ecg gated pullback and LAalg in the image based gated pullback. An LAD

error rate of 0.08 ± 0.04 is obtained. In addition, a Bland-Altmann analysis on the lumen areas

in Fig. 4.2, revealed that more than 95% of the measurements were in agreement between the

two methods.

4.2.2 Phase Analysis

One interesting analysis for an image-based gating algorithm is to examine the cardiac phases

from which the gating frames are selected and investigate if there is consensus for the selected

cardiac phases in all cardiac cycles. We note here that, for an image-based algorithm, as there

is no ECG sensor or device information is present, and solely image features are used for gating,

only a reasonable agreement among cardiac cycles over a common selected phase is expected.

For that purpose, we analyze the phases from which our algorithm picks the stable frames as

follows: the interval between two subsequent frames that are picked by ECG, is divided into ten

bins where each bin represents a different cardiac phase. In Table 4.2, the columns represent

the bins. As an example, let us consider that the cardiac cycle is 100ms, then the column,

10% − 20%, represents the time interval 10ms-20ms. The columns in Table 4.2, represents

the percentile of the gated frames chosen from that specific cardiac phase, which is calculated as

(framesChosenInPhase/totalFramesChosen)x100. In this analysis: if the value for 10%−20%

is 30, it means that the 30% of the frames chosen by our algorithm are chosen between the first

10ms-20ms of the RR cycle.

According to Table 4.2, average of approximately 70% of our stable frames were picked

between 30% and 60% of the cardiac phase.
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ptid pbid LC 10 ◦ LC 55 ◦ LC 100 ◦ LC 150 ◦ MeanError std

1 1 0.24 0.09 0.01 0.02 0.09 0.11

1 2 0.24 0.08 0.02 0.04 0.09 0.10

2 1 0.05 0.04 0.00 0.00 0.02 0.03

2 2 0.08 0.09 0.04 0.04 0.06 0.03

2 3 0.06 0.06 0.09 0.05 0.07 0.02

2 4 0.02 0.05 0.02 0.01 0.02 0.02

2 5 0.09 0.08 0.02 0.02 0.05 0.04

3 1 0.19 0.03 0.02 0.02 0.06 0.08

3 2 0.05 0.03 0.14 0.18 0.10 0.07

4 1 0.19 0.00 0.10 0.13 0.11 0.08

5 1 0.31 0.13 0.15 0.10 0.17 0.09

6 1 0.23 0.01 0.02 0.00 0.07 0.11

6 2 0.16 0.06 0.12 0.10 0.11 0.04

6 3 0.20 0.01 0.06 0.04 0.08 0.08

7 1 0.16 0.05 0.10 0.07 0.10 0.05

7 2 0.05 0.04 0.07 0.13 0.07 0.04

8 1 0.18 0.02 0.02 0.06 0.07 0.08

8 2 0.02 0.05 0.10 0.01 0.04 0.04

9 1 0.37 0.13 0.05 0.22 0.19 0.14

9 2 0.30 0.01 0.16 0.05 0.13 0.13

10 1 0.05 0.00 0.01 0.11 0.04 0.05

10 2 0.05 0.01 0.04 0.10 0.05 0.04

Table 4.1: Lumen Area Differences Error Analysis, where ptid is the patient id, pbid is the pullback

id, angle is the viewing angle for constructing a longitudinal cut and the values under angles

represent the lumen area difference error.

45



(a) (b)

(c) (d)

Figure 4.1: Top:An illustration of longitudinal cuts(LC) at different angles (a) LC from 10 ◦ (b)

LC from 50 ◦ (c) LC from 130 ◦ (d) LC from 150 ◦.

4.2.3 Frame Count Difference

In order to validate our results, we compared the number of gated frames obtained by our

algorithm and by ECG gating algorithm. In Table 4.3, the number of gated frames from the

two methods show agreement. In Fig. 4.3, a plot for the Bland-Altmann analysis based on the

number of gated frames calculated by both methods, however with a bias(underestimation) in

the mean, is given. This analysis showed that more than 95% of the measurements were in

agreement between the two methods. To account for the different vessel lengths among our

dataset, we considered the normalized counts, computed as #gated / #total. A normalized

frame count difference error rate of 0.0789 ± 0.05 is obtained.
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Figure 4.2: Bland-Altmann Analysis of Lumen Areas drawn by the medical experts on ecg gated

pullback and image-based gated pullback: 185± 59.27 pix; 0.12%± 0.03%.

0%− 10% 10%− 20% 20%− 30% 30%− 40% 40%− 50% 50%− 60% 60%− 70% 70%− 80% 80%− 90% 90%− 100%

2,38 1,19 1,9 35,24 30,48 5,9 6,9 5,71 4,52 4,76

1,14 3,45 2,68 38,31 32,49 12,68 2,68 2,04 2,23 2,04

3,53 1,18 1,18 33,24 31,18 6,47 6,76 7,06 5,88 3,53

3,9 3,9 3,9 31,88 29,68 5,58 5,39 4,09 7,79 3,9

6,25 3,75 3,75 41,25 41,25 8,75 8,75 2,5 2,5 6,25

3,85 0 3,85 35,77 28,08 9,23 7,69 7,69 0 3,85

6,41 2,56 2,56 39,49 31,79 6,67 5,26 2,69 1,28 1,28

9,52 3,57 2,38 34,76 24,29 13,1 1,71 4,76 4,76 2,14

8,64 1,23 3,7 33,46 28,52 1,11 4,88 3,64 7,41 7,41

3,85 5,13 17,95 27,95 15,38 11,54 4,1 6,41 7,69 0

1,37 0 5,48 35,55 25,55 6,44 8,7 5,96 4,11 6,85

6,25 5 15 28,75 20 11,25 2,5 5 5 1,25

2,44 0 8,54 38,05 31,95 2,2 2,2 7,32 2,44 4,88

4,82 8,43 13,25 14,46 14,46 14,46 10,84 4,82 4,82 1,2

2,38 4,76 3,57 39,76 29,29 3,1 5,71 4,52 4,76 2,14

0 1,41 2,82 40,35 39,72 4,27 3,27 1,27 3,45 3,45

Table 4.2: Phase Analysis of chosen stable frames, where each row shows the results for a different

pullback.

In addition to our in-vivo experiments, we tested our method on in-vitro datasets with ground

truths that was mentioned in Section 3.3.1. With known total number of frames, frames per
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second and BPM(Beats per minute), we calculated the number of cardiac cycles as:

#cycle = (#total/fps) ∗ (BPM/60) (4.1)

In Table 4.4, number of frames chosen by our algorithm and number of cardiac cycles in pullbacks

show agreement. A normalized frame count difference error rate of 0.0769±0.0385 is obtained.

ptid pbid #total #ecg #alg length[mm]

1 1 2328 84 87 42.00

1 2 2333 82 75 41.80

2 1 2387 90 84 45.00

2 2 2388 82 73 41.00

2 3 2358 82 75 41.00

2 4 1627 58 57 29.00

2 5 1800 64 59 32.00

3 1 801 27 26 13.50

3 2 2385 94 73 47.00

4 1 2387 90 83 45.00

5 1 2382 91 89 45.50

6 1 2378 90 85 45.00

6 2 2361 80 73 40.00

6 3 2362 90 79 45.00

7 1 2364 89 78 44.50

7 2 2368 95 90 47.50

8 1 2350 83 83 41.50

8 2 2334 90 83 45.00

9 1 2267 80 69 40.00

9 2 2052 69 68 34.50

10 1 2358 84 84 42.00

10 2 988 32 27 16.00

11 1 2383 90 80 45.00

12 1 2379 81 72 40.50

12 2 2358 82 78 41.00

Table 4.3: Comparison of the frame counts chosen by ecg gating algorithm and our image based

gating algorithm.ptid is the patient id, pbid is the pullback id, #ecg represents the number of

frames chosen by ecg, #alg shows the frame count selected by our algorithm and length[mm] is

the actual length of the vessel.
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Figure 4.3: Bland-Altmann Analysis of gated frames count calculated by ecg gating and our

image-based gating algorithm: 0.0789± 0.05.

pbid Hertz #total #cycle #alg

1 1.17 1774 68.99 60

1 1.17 1654 64.32 58

1 1 399 13.3 12

1 1.17 1704 66.27 60

1 1.5 794 39.7 35

1 1.17 1717 66.77 59

1 1.17 755 29.36 28

2 1.17 2494 96.99 100

2 1.17 2547 99.05 92

2 1 2543 84.77 90

2 1.17 2545 98.97 94

2 1.33 2555 113.56 106

3 1 1562 52.07 51

3 1 1161 38.7 40

3 1 1126 37.53 43

3 1 1208 40.27 43

3 1 1185 39.5 40

3 1.17 1129 43.91 42

3 1.33 1204 53.51 47

3 1.5 1190 59.5 53

Table 4.4: Comparison of the frame counts found by our algorithm(#alg) and number of

cycles(#cycle). pbid is the pullback id, #total represents the total number of frames.
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4.3 Comparison With Other Methods

Our method is compared with other state-of-the-art methods available in the literature

[13],[10],[11] and PCA[12]. Here, the PCA method will refer to a simpler version of our method

with linear dimensionality reduction, i.e. projecting IVUS image frames into 3D vectors using

PCA. Some of the current methods [11],[10] for image-based gating do not provide a concrete

algorithm for choosing the stable frames but focused more on extracting a 1D Signal. In addi-

tion, all the methods in the literature, go through the signal extraction step. Therefore, we base

our comparisons on the extracted 1D Signal using a signal to noise measure explained in the

following subsection.

4.3.1 Signal to Noise Ratio(SNR) Measure

This measure is first proposed in [10] for in vitro validations. Let us define Y (ξ) as the Fourier

transform of our gating signal y(t); the nominal frequency, fN , as the first harmonic of Y (ξ) and

H(ξ), as the filter that is designed to extract the signal and noise from Y (ξ). This can be done

by filtering out the signals that are not related to fN . In Fig. 4.4, an example for Y (ξ) and H(ξ)

is shown together. H(ξ) is defined as follows:

HfN (ξ) =
M∑
n=1

exp
(
− (ξ − nfN)2

2σ2
M

)
(4.2)

The filtered signal is treated as the ”actual signal” and the rest of the gating signal is treated

as ”noise”. Thus Signal to Noise Ratio(SNR) is defined as follows:

SNRdB = 20log
( ∫

ξ
|Y (ξ)|HfN (ξ)∫

ξ
|Y (ξ)|(1−HfN (ξ))

)
(4.3)

The SNR for methods are shown in Table 4.5. In Fig. 4.5, Box-Whisker plot for SNR

values are shown for 5 different methods. The line (in red) inside the box shows the median

of SNR values, the box above the median shows the second quartile; while the box below the

median shows the third quartile of the SNR values. The black lines show the minimum and

maximum values, and the plus signs(in red), denote the outliers. As can be seen in Fig. 4.5 our

method(SNRalg) has the best median SNR value, followed by SNRpca and SNRmbg; and only
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Figure 4.4: |Y (ξ)| and HfN (ξ) is drawn in solid and dashed lines accordingly, where fN=1.16

Hz(70 BPM) (taken from [10]).

one outlier, while the others have two outliers. The highest upper median(25%) and maximum

value were also produced by our method. The lower median(75%) acquired by the best three

methods (alg , pca and mbg) is very close to each other. The only drawback of our algorithm

is the variation in the last quartile; the minimum value is lower than the other two methods.

However, high median, maximum and high values for the first three quartiles, make our method

the best available method and preferable amongst the others.

4.3.2 Qualitative Results

Qualitative results of different methods for 1000 frames are shown in Fig. 4.6. Our and MAL

results look visually similar, and seem to preserve the lesion areas that can be seen in nongated

pullback longitudinal view. However, in the longitudinal view provided by MBG, dark lesion

areas on the bottom-right of the nongated pullback can not be seen anymore.

In addition to the previous methods in literature, we also present a comparison to a primitive

method, which would consist of picking frames at regularly spaced intervals for gating. This

method, named as the ”constant-interval-frame selection” method, is used to demonstrate the

performance of our algorithm against a most basic selection criterion.

In Fig. 4.7, the results for constant-interval-frame selection method for two different pullbacks

are given. n is chosen as 25,30 and 35, where the frames per second is 30. The gated longitudinal

view results for the first pullback do not look similar to ecg gated longitudinal view for any values

of n. For the second pullback in the second column, the lumen area of the longitudinal cut for
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Figure 4.5: Boxplot representation of the SNR Values shown in Table 4.5, ALG: proposed

algorithm; AIB:Average Intensity Based[11]; AID: Absolute Difference Based[11]; MBG: Motion

Blur Gating[10]; PCA: PCA version of the proposed algorithm[12]; MAL: O’Malley method[13].
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ptid pbid SNRalg SNRibg(AIB) SNRibg(AID) SNRpca SNRmbg SNRmal

1 1 -7.95550 -31.58773 -22.46754 -10.93131 -14.96740 -9.12

1 2 -8.70141 -28.40573 -18.82776 -9.32706 -8.73188 -16.38

2 1 -3.40806 -27.73727 -46.71026 -9.24203 -5.33067 -19.52

2 2 -4.16997 -23.12078 -20.09307 -7.61609 -7.26628 -19.65

2 3 -4.29622 -38.23399 -17.08315 -9.82660 -6.68997 -9.08

2 4 -3.40913 -27.82940 -28.27347 -9.79613 -5.57009 -19.25

2 5 -2.74082 -22.43068 -20.96413 -7.64694 -7.53650 -19.63

3 1 -4.27260 -38.23279 -17.00614 -9.96145 -6.68516 -9.08

3 2 -16.25660 -29.27132 -27.71894 -27.51874 -21.53821 -11.06

4 1 -25.59502 -29.77621 -26.80609 -24.18657 -18.89330 -11.25

5 1 -7.63015 -19.63268 -10.25942 -9.64193 -5.35673 -19.98

6 1 -6.89175 -26.84253 -20.48584 -7.54979 -6.43018 -24.41

6 2 -6.95005 -25.48988 -21.96055 -4.46015 -5.24174 -23.54

6 3 -15.67393 -27.37875 -25.48668 -9.86923 -11.37898 -11.58

7 1 -11.58334 -28.62847 -27.68311 -10.64343 -8.63703 -23.93

7 2 -3.02528 -26.89337 -17.20760 -4.84187 -5.79504 -24.05

8 1 -10.00318 -27.81199 -21.95044 -11.70969 -12.77405 -9.01

8 2 -11.73577 -27.63474 -25.31203 -12.93921 -10.23151 -20.11

9 1 -16.55929 -28.39806 -26.79643 -13.46387 -13.78905 -12.78

9 2 -18.61105 -34.54354 -14.17009 -11.91521 -11.40853 -11.66

10 1 -5.68766 -30.24088 -9.94531 -11.84300 -10.98838 -15.11

10 2 -13.61775 -29.63206 -29.23934 -12.62019 -7.97021 -9.48

11 1 -11.50743 -34.74170 -32.33945 -16.33503 -12.15111 -18.39

11 2 -1.73996 -33.83029 -60.76242 -13.68772 -9.56977 -13.61

12 1 -7.82394 -27.22951 -24.81564 -8.11657 -8.04881 -8.83

12 2 -0.05834 -24.22280 -21.98449 -6.00387 -9.95624 -8.65

Table 4.5: SNR values of our image based gating algorithm(SNRalg); the motion blur

algorithm(SNRmbg)[10]; the methods in [11], SNRibg(AIB) for AIB(Average Intensity Based)

and SNRibg(AID) for AID(Absolute Difference Based); Malley method in[13](SNRmal) and

PCA(SNRpca)[12].

n=25 is similar to those of ecg. However, for different n values the results can dramatically

change, thus for the choice of n, one needs to find the average heart rate of the patient that

is subject to the pullback. In Fig. 4.8, the results of our image-based gating algorithm versus

ecg-gated longitudinal view results are shown for the same pullbacks.
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Figure 4.6: First row;Left Nongated pullback. First row;Right Our gating result.Second Row;

Left: MBG result Right: MAL Results.

4.4 Discussion

In this section, we presented the results of our extensive experiments both on in-vivo and

in-vitro datasets. More than 95% of our approximated lumen volume measurements as well as

frame count differences showed agreement with those of ECG Gating. The error rate of 0.07% can

be explained by manual lumen border detection errors and the cardiac phase difference between

ecg and image-based gating. ECG acquires frames that belong to end-diastolic cardiac phase as

stated in Chapter 1. Since the frames detected as stable by image-based algorithms may belong

to cardiac phases other than end-diastolic the gating results may visually be different, which

may cause errors in comparisons of lumen areas. Some sample results are shown in Fig 4.10

and 4.11 for demonstration. Longitudinal IVUS views shown in Fig 4.10, demonstrate similar

qualitative outcome for our manifold-learning based IVUS gating method, and the ECG-gated

method, which is also verified by the expert cardiologist in the team; and they can be categorized

as moderate difficulty pullbacks. However, the pullback in Fig. 4.11, is particularly challenging
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due to the big lesion areas present in the arteries and our algorithm and ECG gating produce

slightly different results.

The bias in our Bland-Altman analysis of frame count differences may have a few reasons. The

first reason is the phase difference that also causes a difference in lumen volume measurements.

The second reason is the choice of the patch sizes that is used in section 3.4. If a small number

of patch size is chosen, then the number of stable frames may be overestimated; else the number

of stable frames may be underestimated.

The running time of our algorithm was 66.32 sec. without any optimization with a MatlabTM implementationonacomputerwithIntelXeon2, 67Ghzprocessorsand64.0GBRAM,whereatypicaldatasizewas500x500x2387.

55



Figure 4.7: First row;Left Ecg gated pullback#1. Second-Third-Fourth Row; Left: Gating result

of pullback#1 for n=25, n=30 and n=35 respectively. All Rows; Right: Corresponding results

for pullback#2. 56



Figure 4.8: First row; Left Ecg gated pullback#1. First row; Right Ecg gated pullback#2.

Second Row; Left: Image based gating result of pullback#1. Second Row; Right: Image based

gating result of pullback#2.
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Figure 4.9: First row: Nongated pullback. Middle Row; Left: Image-based gated pullback.

Right: Ecg gated pullback. Bottom Row; Left: Manual lumen border of image based gated

pullback. Right: Manual lumen border of ecg gated pullback.
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Figure 4.10: First row: Nongated pullback. Middle Row; Left: Image-based gated pullback.

Right: Ecg gated pullback.
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Figure 4.11: First row: Nongated pullback. Second Row; Left: Image-based gated pullback.

Right: Ecg gated pullback.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a novel image-based gating method for IVUS sequences. Our

method is based on manifold learning, which embeds the similar IVUS frames onto contiguous

positions of a low-dimensional manifold lying on a high dimensional image space. Further, we

classified the frames by using distances between consecutive eigenvectors that represent the IVUS

frames with the help of the frame rate of the pullback and basic heart beat rate knowledge.

In Chapter 1, we introduced the problem definition; the artifacts: morphology change and

catheter motion caused by the heart motion; gave an overview of the previous methods and

ECG Gating; and stated our contributions. In Chapter 2, we gave an overview of the linear and

nonlinear dimensionality reduction techniques that are commonly used in the literature; and

detailed information on Laplacian Eigenmaps method. In Chapter 3, we introduced our image-

based gating method; a novel similarity measure named Weighted Speckle Distance for ultrasound

and presented our in-vitro data experiments for parameter selection; finally we presented the

algorithm steps for 1D signal extraction and gating procedure.

In Chapter 4, we tested our method on 12 different patients and 25 different pullbacks. Due

to the difficulty of validating in-vivo IVUS data, we introduced a novel way of validation based

on lumen area measurements. In the first set of experiments, we validated our method based

on approximated lumen volume measurements and frame count differences by comparing the

number of selected frames and the lumen areas in 4 different longitudinal views, computed by

both methods. Our experiments showed that our method preserves lumen volume 93%± 4 and

our Bland-Altman analysis showed that 95% vessel length is preserved. In the second sets of

experiments, we presented extensive comparison results among the existing image-based IVUS

gating algorithms available in the literature and PCA as a linear version of our method. Our
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experiments showed that our method outperforms all of the methods according to SNR(Signal

to Noise Ratio) measure.

Future directions for this work includes;

• Quantitative analysis of lumen area differences from more angles for a better approximation

of lumen volume;

• Plaque configuration comparison of the gated pullbacks with ungated pullbacks in order

to see the percentage of the important plaques that are preserved after the gating process.

• Applying L1-Minimization of Laplacian Eigenmaps method and comparison with current

method.

• Distance mask can be improved: Catheter artifact line can be incorporated to reduce the

noise coming from ring-down artifacts and ring-like halo effects around the catheter.

• With a preprocessing of segmentation of the vessel inner and outer wall boundaries, the

clusters can be ranked and ordered with respect to the lumen cross section area and the

gated frame can be picked according to its lumen area percentage in the cluster.
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