25 research outputs found

    Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal

    Get PDF
    Natural hazards are complex phenomena that can occur independently, simultaneously, or in a series as cascading events. For any particular region, numerous single hazard maps may not necessarily provide all information regarding impending hazards to the stakeholders for preparedness and planning. A multi-hazard map furnishes composite illustration of the natural hazards of varying magnitude, frequency, and spatial distribution. Thus, multi-hazard risk assessment is performed to depict the holistic natural hazards scenario of any particular region. To the best of the authors’ knowledge, multi-hazard risk assessments are rarely conducted in Nepal although multiple natural hazards strike the country almost every year. In this study, floods, landslides, earthquakes, and urban fire hazards are used to assess multi-hazard risk in Kathmandu Valley, Nepal, using the Analytical Hierarchy Process (AHP), which is then integrated with the Geographical Information System (GIS). First, flood, landslide, earthquake, and urban fire hazard assessments are performed individually and then superimposed to obtain multi-hazard risk. Multi-hazard risk assessment of Kathmandu Valley is performed by pair-wise comparison of the four natural hazards. The sum of observations concludes that densely populated areas, old settlements, and the central valley have high to very high level of multi-hazard risk

    A Comparison of the Qualitative Analytic Hierarchy Process and the Quantitative Frequency Ratio Techniques in Predicting Forest Fire-Prone Areas in Bhutan Using GIS

    Get PDF
    Forest fire is an environmental disaster that poses immense threat to public safety, infrastructure, and biodiversity. Therefore, it is essential to have a rapid and robust method to produce reliable forest fire maps, especially in a data-poor country or region. In this study, the knowledge-based qualitative Analytic Hierarchy Process (AHP) and the statistical-based quantitative Frequency Ratio (FR) techniques were utilized to model forest fire-prone areas in the Himalayan Kingdom of Bhutan. Seven forest fire conditioning factors were used: land-use land cover, distance from human settlement, distance from road, distance from international border, aspect, elevation, and slope. The fire-prone maps generated by both models were validated using the Area Under Curve assessment method. The FR-based model yielded a fire-prone map with higher accuracy (87%
 success rate; 82% prediction rate) than the AHP-based model (71% success rate; 63% prediction rate).
 However, both the models showed almost similar extent of 'very high' prone areas in Bhutan, which corresponded to coniferous-dominated areas, lower elevations, steeper slopes, and areas close to human settlements, roads, and the southern international border. Moderate Resolution Imaging Spectroradiometer (MODIS) fire points were overlaid on the model generated maps to assess their reliability in predicting forest fires. They were found to be not reliable in Bhutan, as most of them overlapped with fire-prone classes, such as 'moderate', 'low', and 'very low'. The fire-prone map derived from the FR model will assist Bhutan's Department of Forests and Park Services to update its current National Forest Fire Management Strategy

    Land Use Planning for Natural Hazards

    Get PDF
    Natural hazard events are able to significantly affect the natural and artificial environment. In this context, changes in landforms due to natural disasters have the potential to affect and, in some cases, even restrict human interaction with the ecosystem. In order to minimize fatalities and reduce the economic impact that accompanies their occurrence, proper planning is crucial. Land use planning can play an important role in reducing current and future risks related to natural hazards. Land use changes can lead to natural hazards and vice versa: natural hazards affect land uses. Therefore, planners may take into account areas that are susceptible to natural hazards when selecting favorable locations for land use development. Appropriate land use planning can lead to the determination of safe and non-safe areas for urban activities. This Special Issue focuses on land use planning for natural hazards. In this context, various types of natural hazards, such as land degradation and desertification, coastal hazard, floods, and landslides, as well as their interactions with human activities, are presented

    Recent Progress in Urbanisation Dynamics Research

    Get PDF
    This book is dedicated to urbanization, which is observed every day, as well as the methods and techniques of monitoring and analyzing this phenomenon. In the 21st century, urbanization has gained momentum, and the awareness of the significance and influence of this phenomenon on our lives make us take a closer look at it not only with curiosity, but also great attention. There are numerous reasons for this, among which the economy is of special significance, but it also has many results, namely, economic, social, and environmental. First of all, it is a spatial phenomenon, as all of the aspects can be placed in space. We would therefore like to draw special attention to the results of urbanization seen on the Earth's surface and in the surrounding space. The urbanization–land relation seems obvious, but is also interesting and multi-layered. The development of science and technology provides a lot of new tools for observing urbanization, as well as the analyses and inference of the phenomenon in space. This book is devoted to in-depth analysis of past, present and future urbanization processes all over the world. We present the latest trends of research that use experience in the widely understood geography of the area. This book is focused on multidisciplinary phenomenon, i.e., urbanization, with the use of the satellite and photogrammetric observation technologies and GIS analyses

    Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). The book provides a common platform for the publication of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to the Kyoto Landslide Commitment 2020, which is expected to continue up to 2030 and even beyond to globally promote the understanding and reduction of landslide disaster risk, as well as to address the 2030 Agenda Sustainable Development Goals

    Elements at risk

    Get PDF

    Manifestation of an Analytic Hierarchy Process (AHP) Model on Fire Potential Zonation Mapping in Kathmandu Metropolitan City, Nepal

    No full text
    Even though fewer people die as a result of fire than other natural disasters, such as earthquake, flood, landslide, etc., the average loss of property due to fire is high. Kathmandu Metropolitan City is becoming more vulnerable to fire due to haphazard urbanization and increase in population. To control problems due to fire, systematic studies are necessary, including fire potential mapping and risk assessment. This study applies an Analytic Hierarchy Process (AHP) method in Kathmandu Metropolitan City, Nepal for generation of fire potential zonation map. The fire potential zonation map is prepared on the basis of available data of land use, fuel stations, and population density. This map shows that 58.04% of the study area falls under low fire potential zone, 32.92% falls under moderate fire potential zone and 9.04% falls under high fire potential zone. The map is also validated through major past fire incidents. The results show that the predicted fire potential zones are found to be in good agreement with past fire incidents, and, hence, the map can be used for future land-use planning
    corecore