46,306 research outputs found

    Growing the use of Virtual Worlds in education : an OpenSim perspective

    Get PDF
    The growth in the range of disciplines that Virtual Worlds support for educational purposes is evidenced by recent applications in the fields of cultural heritage, humanitarian aid, space exploration, virtual laboratories in the physical sciences, archaeology, computer science and coastal geography. This growth is due in part to the flexibility of OpenSim, the open source virtual world platform which by adopting Second Life protocols and norms has created a de facto standard for open virtual worlds that is supported by a growing number of third party open source viewers. Yet while this diversity of use-cases is impressive and Virtual Worlds for open learning are highly popular with lecturers and learners alike immersive education remains an essentially niche activity. This paper identifies functional challenges in terms of Management, Network Infrastructure, the Immersive 3D Web and Programmability that must be addressed to enable the wider adoption of Open Virtual Worlds as a routine learning technology platform. We refer to specific use-cases based on OpenSim and abstract generic requirements which should be met to enable the growth in use of Open Virtual Worlds as a mainstream educational facility. A case study of a deployment to support a formal education curriculum and associated informal learning is used to illustrate key points.Postprin

    Rainfall-runoff and other modelling for ungauged/low-benefit locations: Operational Guidelines

    Get PDF

    Simulations of snow distribution and hydrology in a mountain basin

    Get PDF
    We applied a version of the Regional Hydro‐Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind‐driven sublimation to Loch Vale Watershed (LVWS), an alpine‐subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind‐driven sublimation was necessary to predict moisture losses
    • 

    corecore