1,147 research outputs found

    Incorporating System-Level Objectives into Recommender Systems

    Full text link
    One of the most essential parts of any recommender system is personalization-- how acceptable the recommendations are from the user's perspective. However, in many real-world applications, there are other stakeholders whose needs and interests should be taken into account. In this work, we define the problem of multistakeholder recommendation and we focus on finding algorithms for a special case where the recommender system itself is also a stakeholder. In addition, we will explore the idea of incremental incorporation of system-level objectives into recommender systems over time to tackle the existing problems in the optimization techniques which only look for optimizing the individual users' lists.Comment: arXiv admin note: text overlap with arXiv:1901.0755

    Mitigation of Popularity Bias in Recommendation Systems

    Get PDF
    In response to the quantity of information available on the Internet, many online service providers are attempting to customize their services and make content access more simple via recommender systems (RSs) to support users in discovering the products they are most likely interested in. However, these recommendation systems are prone to popularity bias, which is a tendency to promote popular items even if they do not satisfy a user’s preferences and then provide customers with recommendations of poor quality. Such a bias has a negative influence on both users and item providers. It is then essential to mitigate such bias in order to guarantee that less popular but pertinent items show up on the user’s recommendation list. In this work, we conduct an empirical analysis of different mitigation techniques for popularity bias to provide an overview of the present state of the art of popularity bias and raise the fairness issue in RSs

    Popularity Bias in Recommendation: A Multi-stakeholder Perspective

    Get PDF
    Traditionally, especially in academic research in recommender systems, the focus has been solely on the satisfaction of the end-user. While user satisfaction has, indeed, been associated with the success of the business, it is not the only factor. In many recommendation domains, there are other stakeholders whose needs should be taken into account in the recommendation generation and evaluation. In this dissertation, I describe the notion of multi-stakeholder recommendation. In particular, I study one of the most important challenges in recommendation research, popularity bias, from a multi-stakeholder perspective since, as I show later in this dissertation, it impacts different stakeholders in a recommender system. Popularity bias is a well-known phenomenon in recommender systems where popular items are recommended even more frequently than their popularity would warrant, amplifying long-tail effects already present in many recommendation domains. Prior research has examined various approaches for mitigating popularity bias and enhancing the recommendation of long-tail items overall. The effectiveness of these approaches, however, has not been assessed in multi-stakeholder environments. In this dissertation, I study the impact of popularity bias in recommender systems from a multi-stakeholder perspective. In addition, I propose several algorithms each approaching the popularity bias mitigation from a different angle and compare their performances using several metrics with some other state-of-the-art approaches in the literature. I show that, often, the standard evaluation measures of popularity bias mitigation in the literature do not reflect the real picture of an algorithm's performance when it is evaluated from a multi-stakeholder point of view.Comment: PhD Dissertation in Information Science (University of Colorado Boulder

    DPR: An Algorithm Mitigate Bias Accumulation in Recommendation feedback loops

    Full text link
    Recommendation models trained on the user feedback collected from deployed recommendation systems are commonly biased. User feedback is considerably affected by the exposure mechanism, as users only provide feedback on the items exposed to them and passively ignore the unexposed items, thus producing numerous false negative samples. Inevitably, biases caused by such user feedback are inherited by new models and amplified via feedback loops. Moreover, the presence of false negative samples makes negative sampling difficult and introduces spurious information in the user preference modeling process of the model. Recent work has investigated the negative impact of feedback loops and unknown exposure mechanisms on recommendation quality and user experience, essentially treating them as independent factors and ignoring their cross-effects. To address these issues, we deeply analyze the data exposure mechanism from the perspective of data iteration and feedback loops with the Missing Not At Random (\textbf{MNAR}) assumption, theoretically demonstrating the existence of an available stabilization factor in the transformation of the exposure mechanism under the feedback loops. We further propose Dynamic Personalized Ranking (\textbf{DPR}), an unbiased algorithm that uses dynamic re-weighting to mitigate the cross-effects of exposure mechanisms and feedback loops without additional information. Furthermore, we design a plugin named Universal Anti-False Negative (\textbf{UFN}) to mitigate the negative impact of the false negative problem. We demonstrate theoretically that our approach mitigates the negative effects of feedback loops and unknown exposure mechanisms. Experimental results on real-world datasets demonstrate that models using DPR can better handle bias accumulation and the universality of UFN in mainstream loss methods

    Modeling and Counteracting Exposure Bias in Recommender Systems

    Get PDF
    What we discover and see online, and consequently our opinions and decisions, are becoming increasingly affected by automated machine learned predictions. Similarly, the predictive accuracy of learning machines heavily depends on the feedback data that we provide them. This mutual influence can lead to closed-loop interactions that may cause unknown biases which can be exacerbated after several iterations of machine learning predictions and user feedback. Machine-caused biases risk leading to undesirable social effects ranging from polarization to unfairness and filter bubbles. In this paper, we study the bias inherent in widely used recommendation strategies such as matrix factorization. Then we model the exposure that is borne from the interaction between the user and the recommender system and propose new debiasing strategies for these systems. Finally, we try to mitigate the recommendation system bias by engineering solutions for several state of the art recommender system models. Our results show that recommender systems are biased and depend on the prior exposure of the user. We also show that the studied bias iteratively decreases diversity in the output recommendations. Our debiasing method demonstrates the need for alternative recommendation strategies that take into account the exposure process in order to reduce bias. Our research findings show the importance of understanding the nature of and dealing with bias in machine learning models such as recommender systems that interact directly with humans, and are thus causing an increasing influence on human discovery and decision makingComment: 9 figures and one table. The paper has 5 page
    • …
    corecore