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Recommendation and ranking systems are ubiquitous. They are used in a variety of differ-

ent domains where they can influence what news people read, what products they buy, who they

date and marry, and what cultural artifacts they consume. Traditionally, especially in academic

research in recommender systems, the focus has been solely on the satisfaction of the end-user.

While user satisfaction has, indeed, been associated with the success of the business, it is not

the only factor. In many recommendation domains, there are other stakeholders whose needs

and interests should be taken into account in the recommendation generation and evaluation. In

this dissertation I describe the notion of multi-stakeholder recommendation and discuss its main

building blocks, challenges, and connections to prior research. In particular, I study one of the

most important challenges in recommendation research, popularity bias, from a multi-stakeholder

perspective since, as I show later in this dissertation, it impacts different stakeholders in a recom-

mender system. Popularity bias is a well-known phenomenon in recommender systems where

popular items are recommended even more frequently than their popularity would warrant, am-

plifying long-tail effects already present in many recommendation domains. Prior research has

examined various approaches for mitigating popularity bias and enhancing the recommendation

of long-tail items overall. The effectiveness of these approaches, however, has not been assessed

in multi-stakeholder environments. In this dissertation, I study the impact of popularity bias in

recommender systems from a multi-stakeholder perspective. In particular, I investigate how this

bias impacts users and suppliers of the recommendations. That is, how this bias causes the rec-

ommendations to deviate from the users’ preferences towards popular items and how it leads to

unfair exposure for different supplier groups. Finally, I propose several algorithms each approach-



iii

ing the popularity bias mitigation from a different angle and compare their performances using

several metrics with some other state-of-the-art approaches in the literature. I show that, often,

the standard evaluation measures of popularity bias mitigation in the literature do not reflect the

real picture of an algorithm’s performance when it is evaluated from a multi-stakeholder point of

view.
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Chapter 1

Introduction

1.1 Research Goals and Contributions

This research work focuses on popularity bias problem in recommender systems. Generally

speaking, popularity bias refers to the problem where the recommendation algorithm favors a few

popular items while not giving deserved attention to the majority of other items. In particular, the

goal of this thesis is to evaluate the impact of popularity bias in recommendation on different

stakeholders on a given recommender system platform such as users and item suppliers. In addi-

tion, several algorithms for mitigating this bias are proposed. With that being said, the following

are the research goals and contributions of this thesis:

• RG-1: Proposing a comprehensive paradigm called multi-stakeholder recommendation

for evaluation and development of recommender systems. Especially in academia, rec-

ommender systems are typically evaluated based on the satisfaction of one stakeholder:

the end user.

Contributions: In this dissertation, I introduce the notion of multi-stakeholder recom-

mendation where the needs and interests of multiple stakeholders are taken into account

in the recommendation generation and evaluation, in addition to that of users. In many

real-world applications of recommender systems users are not the only stakeholder so the

multi-stakeholder paradigm is crucial in such systems. Take a music streaming service

such as Spotify as an example. On the one hand, there are listeners who use the service
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to find and listen to the music they would enjoy. On the other hand, the creators of those

songs (i.e. the artists) also benefit from the platform by their songs being played for /

by different users and hence gaining utility. The popularity bias in recommendation can

negatively impact both sides of the platform.

• RG-2: Investigating the impact of popularity bias in recommendation on different users.

Popularity bias plays an important role in the unfairness of the recommendations towards

different stakeholders. There has been research on the popularity bias and long-tail recom-

mendation which focuses on the consequences of such bias from the system’s perspective

such as item coverage, aggregate diversity etc or how this bias can negatively impact the

accuracy of the recommendations.

Contributions: In this thesis, I investigate how the popularity bias problem impacts dif-

ferent user groups with a varying degree of interest in item popularity. For instance, how

users with niche tastes are impacted by this bias versus those with a more inclination

towards mainstream products.

• RG-3: Investigating the impact of popularity bias in recommendation on different item

providers (aka suppliers). As mentioned earlier, suppliers of the items on a recommen-

dation platform are also stakeholders whose needs and preferences may need to be ad-

dressed. Typically, in many recommendation domains, the platform may not necessarily

own any of the recommended items itself but rather acts as a bridge that connects the

suppliers of the items to the users. For instance, in music recommendation, each song or

album is produced by an artist; on Airbnb, each listing is provided by a host; on eBay, each

product is provided by a seller. Therefore the dynamics of how recommendations impact

these item suppliers is important.

Contributions: In this thesis, I investigate how popularity bias in recommendation im-

pacts different item suppliers with a varying degree of popularity. For instance, I investi-

gate whether this bias causes over-promotion of items from certain item suppliers while
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under-recommending items from some others.

• RG-4: Proposing algorithms to mitigate popularity bias in recommendation and evaluat-

ing their performance from a multi-stakeholder perspective.

Contributions: Most of the existing work on long-tail in recommendation concentrates

on either the accuracy of the recommendation in the presence of popularity bias and how

to address that or they are mainly focusing on the holistic system-level picture of this

bias and its impact on overall recommendation coverage. In this thesis, I propose several

algorithms for controlling popularity bias and see how each of these perform from the per-

spective of different stakeholders. By ”control” I mean reducing the over-concentration of

the recommendations on few popular items and to give more chance to other items to be

seen by the users. In particular, the algorithm based on calibrating recommendations to

the users’ historical interaction with respect to item popularity shows benefits both to the

users and the suppliers of the recommendations.

1.2 Structure of the Thesis

This dissertation is structured as follows:

• Chapter 2 gives a brief summary of the field of recommender systems. In particular, differ-

ent types of recommendation methods are explained and the general evaluation method-

ologies for evaluating the recommendations are described. Then, I move on to give a short

background of several non-accuracy concepts in recommender systems such as diversity,

novelty, and long-tail recommendation.

• Chapter 3 gives a thorough description of the characteristics of multi-stakeholder rec-

ommendation and particular considerations involved in creating and evaluating multi-

stakeholder recommender systems. The connection between prior work in non-accuracy

measures and the proposed multi-stakeholder paradigm is also studied.
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• Chapter 4 describes the methodology and data used for experiments in this dissertation.

Details regarding the datasets, the methodology for running the experiments and also

the evaluation metrics that are used in other chapters of this dissertation are all fully de-

scribed.

• Chapter 5 describes the popularity bias problem and how it can impact different stake-

holders in recommender systems. Two sources of bias including data and algorithms are

explained using two datasets.

• Chapter 6 gives the details of the proposed algorithms in this dissertation to mitigate the

popularity bias problem. All algorithms are evaluated using different evaluation metrics

described in Chapter 4 and two state-of-the-art baselines for popularity bias mitigation

are also included for comparison.

• Chapter 7 gives a short summary of the findings in this dissertation and proposes several

interesting open questions and possible future work.

Table 1.1 contains the list of main publications that are the result of these dissertations and

are appeared in peer-reviewed journals, conferences, and workshops.

1.3 Definitions and Notations

I summarise here the main definitions and notations that I use throughout this dissertation.

If needed, additional notation will be introduced in chapters where it applies.

A recommendation problem is defined as suggesting items from a collection of items I to

a group of users U . I also show an individual user by u and an individual item by i. I show the

interaction data as a matrix R where it contains the ratings that users have given to particular

items. In certain cases, instead of ratings, we have the information about whether or not a user

has interacted with a certain item (liked, clicked, watched, played etc). The rating a user u has

given to an item i is denoted as rui and the predicted rating for that user and item pair returned
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by the recommendation algorithm is denoted by r̂uj . For any user u, we typically recommend a

list of items denoted by `u. The user for whom we generate the recommendations is often referred

to as the target user. The list of all the recommendation lists given to all users is denoted by L.

Additionally I show the profile (i.e. the interaction history) of user u by ρu which is {i ∈ I, (u, i) ∈

R}. Each item i is provided by a supplier si. S denotes a set of supplier groups where each

supplier group j is shown by Sj . The set of all individual suppliers in a given dataset is shown by

P .



Chapter 2

Background

2.1 Recommender Systems

It is always good to have a choice. However with the massive amount of information, data,

products that are created everyday, it is constantly becoming more difficult to handle this over-

whelming number of choices and make a final decision. Information retrieval systems such as

search engines can help a user seeking information by filtering from a large collection of docu-

ments (or items or products), those that are most relevant to the user’s needs. Users express their

needs in terms the type of information they are looking for as a query, which for example could be

a list of keywords, or some other explicit description of the requirement. In recommender systems,

however, often there is no explicit query. Instead, the system uses its knowledge about the user to

reduce the cognitive load of choice by predicting which items are most relevant to her while still

leaving the final decision making for the user.

Recommender systems are intelligent tools and algorithms that help users find relevant

items according to their preferences [134]. Especially in areas where the number of possible

choices is overwhelming, recommender systems been successfully used in finding the ones that

are most relevant to the user. By offering personalized recommendations, these systems lower

the decision effort for the users, making the item selection process much easier. Recommender

systems can be seen as personal shoppers who preselect the best items based on the knowledge

they have about the customer, such that a she has to only decide which to pick from a small set of

items.
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Figure 2.1: A general schema for recommender systems

The general schema for a given recommender system is shown in Figure 2.1. The algorithm

uses the information about the users and items stored in the rating data to give a list of recom-

mendations ` of size n to a user. We can think of this schema as an abstract view that often can be

modified to serve different purposes as we will see in Chapter 6.

Recommender systems have become popular in the last decades, however the recommen-

dation process is much older than that. Even in our daily life, people often make decisions based

on the suggestions made by others. For example, we may get recommendations from our friends

about movies, music, restaurants or even a job. We trust these recommendations if we know that

the person who gave it has some knowledge of the topic, has similar taste to ours or knows our

taste, or that the past shows we can trust that person’s suggestions; this is known as ”word of

mouth” [24]. What recommender systems do is to mimic the above behaviour on a larger scale, by

utilizing viewpoints of many users that do not have to know each other and have similar tastes.

This is known as the collaborative filtering.

Recommender systems are not solely tools that were developed to help users in the item

selection process. In fact, there are a number of other reasons why different service providers

adapt recommender systems in their services [134]. From the business’ perspective, probably the
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most important is the ability to increase sales through recommendations [146]. Another example

of business-oriented goals is to diversify sales, such that they do not center around a small set of

very popular items. It might be hard to achieve this goal without recommender systems as there is

a risk and cost associated with every item promotion. Promoting less popular items is more risky,

however recommender systems can help to recommend less popular items to the right users. It

is shown that a well-designed recommender system can also improve users’ satisfaction with the

service [117], and their loyalty to the service [146]. A better understanding of what the users really

like can be utilized not only by a recommendation engine, but for other operational or marketing

purposes.

Not only are there different reasons we deploy recommender systems, but also different

scenarios which may depend on the domain that we are working in. Historically, the most com-

monly considered scenario is the recommendation task of movies or music (based on datasets

such as MovieLens [72], Netflix [32], or Yahoo! Music [56]), since these are the type of data that

are publicly available. However recommender systems can be used in more complex settings and

in different domains such as e-commerce [?], job recommendation [122], and even in online dating

platforms [?].

In recommender systems, the users interaction with the system is often referred to as a

transaction. For example, a transaction could be a user listening to a song, or rating a recently

booked accommodation. Commonly, with a transaction we may have an associated feedback, in

this case the act of playing a song, or rating the accommodation, represent, respectively, implicit

and explicit feedback [85]. The main difference between these two is that for the explicit feedback,

user consciously expresses her opinion or preference, where in case of the implicit feedback the

preference is inferred from other actions recorded by the system [120] — if a user plays a song

and skips it after a few seconds, this could represent a dislike rather than a like. In the case of

the implicit feedback, it is the recommender system’s job to figure out the strength of the signals

and what each action could indicate for different users. On the other hand, in the case of explicit

feedback, the type of the feedback may vary. Feedback on contents like movies and books have
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been commonly expressed through numerical ratings (like 1-5 stars, or 1-10 points), written re-

views, or simple like/dislike indicators. In modern systems, often multiple sources of feedback

are available all of which can impact the design of a recommender system.

Another factor affecting the design is the consumption pattern of items, how often we in-

teract with an item, and how long the item is ‘fresh’. Depending on the domain, a transaction

may reoccur, e.g. an item is repurchased by the user [48], and there are other scenarios where

interactions are rather unique, or the reoccurrence is unlikely to happen. For example, in a music

recommendation system it is natural that the same songs and artists are recommended to users

multiple times. However, recommending the same movie to watch a second time may make sense

to some but not to all. Similarly, while it may be desirable to recommend coffee beans every few

weeks, recommending another coffee machine does not sound reasonable. In the news domain,

recommending the same news article to a user is rather useless, but this is not the only problem.

News are very dynamic and often the most recent news are more important to the users than old

news. The lifetime of news stories is typically very short. All these factors have to be taken into

account when designing systems like a news recommendation system [39, 65, 106].

Lastly, an important aspect that has to be considered is the type of recommendations that

the system should produce, and the use cases in which these are used. In some cases, we might

be interested in accurately predicting how the user will rate an item when presented to the user.

On the other hand, we might want to generate a list of best items to the user without focusing on

the accuracy of the predicted ratings per se. These represent the two main types of problems that

have been distinguished in the literature [155]: the rating prediction and the ranking problem.

Historically, the rating prediction was mostly considered and it was the main evaluation metric

used in Netflix Challenge in 2006 [32]. However, more recently the ranking task has been found

to be more relevant to the users and business since, in the end, it is how the users would like the

recommendations in a list that matters not how close our predicted ratings are to the original rat-

ings given by the user. The choice of the recommendation task significantly affects the evaluation

methodology of recommendations.
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For all these different reasons and scenarios, a number of different algorithms have been

proposed that generate recommendations to the users, which I discuss next.

2.1.1 Types of Recommendation Algorithms

Recommender system algorithms can be classified according to a number of criteria. Burke

[38] distinguished six different classes of recommender systems: content-based, collaborative fil-

tering, demographic, utility-based, knowledge-based, and hybrid recommender systems. I focus

my review on the three, most common of them: collaborative filtering, content-based, and hybrid.

Content-based Recommender Systems

In the content-based recommender systems [108, 125], the main task of the system is to ana-

lyze items with which users interacted and build users’ interests profiles which shows the overall

taste of that user in terms of different types of items. This is typically done based on item fea-

tures that are used to describe those items. In the recommendation process, the system matches

the features of the user’s profile against the features of items to find the best items for the user.

For example, if a user has shown an interest in drama movies, this will be indicated in his or her

interests profile, and the system will recommend movies that are also related to drama movies.

In Lops et al. [108], a number of advantages and disadvantages of content-based recom-

mendation have been identified, especially if compared with the collaborative filtering approach

(which I will discuss next). Content-based systems depend solely on the item features and items

that the current user interacted with—we do not need any information about other users. In cases

of new users without an established interest profiles, users may not receive useful recommen-

dations. This does not happen when a new item is introduced, as long as the item is properly

described in terms of its associated features, and there are other items sharing those features. The

process of describing items requires domain knowledge, and may be tedious and costly. How-

ever, there are real-life examples where that has been done (like the Music Genome Project 1 ) and

is leveraged for generating the recommendations. Assuming the set of features associated with

1 https://www.pandora.com/about/mgp
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different items are well-defined, it is easier to explain recommendations to the users, which posi-

tively impacts the users’ experience with the system. On the other hand, by design, this approach

favours items that are highly similar to those that the user has already seen, making the recom-

mendations of low novelty (and diversity as well), or of little surprise and engagement to the user,

which we consider as an undesirable situation we would like to avoid.

Collaborative Filtering Recommender Systems

Collaborative filtering methods, by contrast, make recommendations to the current user

based on the similarity of rating behavior between the user and other users, on the assumption

that if two users have similar taste, they may be interested in what the other user likes [68]. The

similarity in taste is based on the similarity in users’ feedback on different items, e.g. how similarly

the users have rated different items. While, depending on the type of interaction data (explicit vs

implicit) different approaches may be needed, collaborative filtering methods are often known to

be domain-independent, which is their advantage compared with content-based methods where

they have high dependency on the contents of the items. Also, in many cases collaborative filtering

approaches have been more effective.

Most of the collaborative filtering approaches fall into two main categories: model-based

and memory-based. Model-based recommender systems are similar to parametric models [130]

in machine learning. In a model-based algorithm, a recommendation model, depending on a num-

ber of parameters is proposed. These parameters are then learned using the user-item interactions

in a given dataset. Thereafter, recommendations can be made, without further recourse to the data.

However, unlike typical classification methods in machine learning, the model-based recommen-

dation approaches are personalized meaning the result for each prediction varies depending on

the user for whom we make prediction. In a memory-based algorithm, unlike model-based tech-

niques, the dataset is explicitly queried for each new recommendation.

Memory-based methods (also called neighborhood-based) have been originally tasked with

the rating prediction for items that are unseen to users. This is typically done in two ways, known

as user-based [75, 96, 119] or item-based recommendations [52, 144].
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User-based methods predict the interest of the current user for a given item using the in-

teraction of other users, called neighbors, who also were interested in that item. Typically we

do not consider all users interested in the item, but the k most similar neighbors to the current

user. The similarity of different users is calculated using some metrics such as cosine similarity,

adjusted cosine similarity, or Pearson correlation. We can then, with the use of the similarity func-

tion, calculate the score reflecting the predicted relevance of an unseen item for a given user. In

the simplest form, the score can be expressed as a sum over feedback of the k closest neighbors to

the target user on the target item, weighted by the similarity of those neighbors to the target user:

r̂ui = Z
∑

v∈Nk(u)

sim(u, v)rvi (2.1)

where u is the target user, sim(u, v) is the similarity between users u and v, and Nk(u) denotes the

neighborhood of user u of size k, and Z is a normalization constant. This normalization constant

can be used to customize the equation to fit different recommendation tasks. Originally, constant

Z = 1∑
v∈Nk(u) |sim(u,v)| has been used for the rating prediction task [10] — it is required to scale the

rating prediction to the correct range of values, same as the original ratings — however it has been

pointed that for the ranking task the constant of Z = 1 is generally more effective [18, 45, 51].

Several variations of neighborhood-based methods have been considered. Here we pre-

sented a neighborhood of a fixed size but another option is to select neighbors by thresholding the

similarity value [31]. In other words, considering a user to be a neighbor for another user only if

the similarity between them is above a certain threshold. An interesting approach has been pro-

posed by Said et al. [140], where instead of taking the k closest neighbors, the k furthest neighbors

are chosen instead. This is done based on the assumption that items disliked by users that are

dissimilar to the target user may be of interest to that user. This approach also improves diver-

sity of the recommendations. Some probabilistic versions of the method have been also proposed.

Adamopoulos and Tuzhilin [8] proposed a probabilistic neighborhood selection in the context of

over-specialisation and concentration bias, where Cañamares and Castells [45] provided a formal

probabilistic formulation and analysed the problem of popularity bias in recommendations.
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In the item-based methods [145], instead of similarity between users, the similarity between

items is used to generate the recommendations. The basic intuition is that items similar to those

that the user already liked, are good choices to be recommended to the user. In the simplest form,

the predicted score can be calculated as a sum over item similarities between the target item and

previously interacted items weighted by user’s preference, given the target item belongs to the k

closes neighbors of each item in the user’s profile:

r̂ui = Z
∑
j∈ρu

1Nk(j)(i)sim(i, j)ruj (2.2)

where u is the target and the indicator function 1Nk(j)(i) filters out items if they do not belong to

the neighborhood Nk(j), sim(i, j) is the similarity between items i and j, ρu is the collection of

items that user u interacted with (i.e. the profile of user u), ruj denotes the preference of user u for

item j. Similarly as with the user-based methods, a number of extensions have been proposed —

many of them were actually proposed for both techniques as they are similar in principle.

One of the advantages of the neighborhood-based methods [119] is that they happen to

be simple, requiring little parameterization. They are also intuitive in the way they work which

makes it easier to justify the recommendations to users. From the computational point of view,

since they require no training, they can efficiently generate recommendations. They may require

pre-computation of the neighborhoods, however this is generally much cheaper than training a

model. On the other hand, neighborhood-based methods are known to suffer from limited item

coverage. In other words, they often concentrate on few popular items. They are also sensitive to

sparseness of data (datasets generally contain only a fraction of all possible user-item interactions)

and may not perform well on sparse datasets.

In the model-based methods, generally there are two phases that can be distinguished: a

learning phase and a prediction phase. In the learning phase a model is learned from the inter-

action data, and in the prediction phase the model is utilized to generate recommendations. This

approach is similar to many machine learning methods, such as linear models, (deep) neural net-
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works, clustering, latent factor models and others. In the field of recommender systems, latent

factor models have attracted the most attention among model-based methods, especially to per-

form dimensionality reduction of a ratings matrix. These models aim to uncover latent features

that would explain user preferences hidden in observed ratings. Examples include Probabilistic

Latent Semantic Analysis (PLSA) [76], Latent Dirichlet Allocation [34], or matrix factorization [99].

In the context of collaborative filtering, the most commonly used model-based method is

matrix factorization. Its goal is to learn two low-rank matrices, P ∈R|U |×k and Q ∈R|I|×k, which

represent, respectively, all users and items in k-dimensional latent space. Typically, k is much

smaller than the number of users or items, and it is a model parameter that needs to be tuned.

P and Q matrices are learned through the optimization of an objective function L(P,Q). There

are different optimization techniques that can be used, such as alternating least squares [126,161],

stochastic gradient descent [78,131,151], or maximum margin matrix factorization [132,170]. After

learning P and Q, recommendations can be made based on the score

r̂ui = pTu qi (2.3)

where pu is the row vector of P for the user u, and qi is the row vector of Q corresponding

to the item i. T indicates the transpose of a given matrix.

Hybrid Recommender Systems

In the hybrid methods [10, 37], we combine two or more recommendation algorithms to

generate recommendations that overcome limitations of the individual methods. This is similar

to fusion strategies in information retrieval which are usually adopted to improve performance

of individual retrieval methods [171], or in machine learning where ensemble methods have been

used to combine several machine learning models [54] for improving the performance. In Burke

[38], seven classes of hybrid methods have been proposed: weighted, switching, mixed, feature

combination, cascade, feature augmentation, and meta-level.

First three techniques — weighted, switching, and mixed — assume that several recom-

mendation algorithms simultaneously generate recommendations and a hybridization strategy
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is applied to combine these recommendations. The simplest strategy is the mixed strategy, in

which recommendations from all recommender systems are presented, either in a single list or in

multiple recommendation lists. In the weighted strategy, each recommender system returns rec-

ommendations along with scores for each recommendation. These recommendations from each

system are weighted by the weight assigned to that system. Such weighting systems generally

favors items that are considered relevant by many systems (the maajority vote), and recommen-

dations coming from trustful systems — typically a high weight is assigned to systems that have

proven to be successful in producing useful recommendations in the past. In the switching strat-

egy, instead of combining recommendations, at a given time, one algorithm is selected based on

some conditions to provide recommendations. Both weighted and switching strategies require

some meta-information on how to select/combine systems. For example, these can be selected

arbitrarily, or learned in similar fashion as stacking in machine learning [54], or using a reinforce-

ment learning technique [159].

The feature combination methods can be seen as a data engineering approach (and not nec-

essarily and algorithm) where multiple different data sources are combined together, and the en-

hanced final dataset is used to train a single recommendation algorithm. In other words, the

hybridization is done on data and not on the algorithms.

The last group of strategies—cascade, meta-level— require staged processing, and feature

augmentation, where results of the first stage is used by the second stage recommender system.

The methods differ in what is produced in the first stage, and how it is used in the next stage. For

example, in cascade method, recommendations produced by a recommender system are refined

by the second stage system. In meta-level recommender system, model learned by one technique

is used as input to another. Finally, in the feature augmentation strategy, output coming from one

technique is added to the feature sets used by the next stage algorithm.
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2.2 Evaluation Methodologies

So far I have discussed a number of different recommendation algorithms. The question

is how to assess the quality of the recommendations generated by any of these algorithms. In

order to select one that performs the best for a given scenario or which parameters to use for

each algorithm, typically a set of experiments is run where performance of the algorithms are

compared. Following Shani and Gunawardana [149], three main types of evaluation are typically

considered — offline experiments, user studies, and online experiments.

2.2.1 Offline Evaluation

Offline evaluation is the most common approach used in the literature to evaluate the effec-

tiveness of recommender systems. It is performed by using a pre-collected dataset of users and

items rated/chosen by them. The idea behind offline evaluation is based on the assumption that

user characteristics at the time the data was collected will be similar to when a system trained on

that data is used. The main advantage of this type of evaluation is its efficiency in testing many

algorithms at a low cost. However this type of evaluation cannot answer many questions related

to the quality of the recommendations and the success of the recommender system in general.

Datasets used in offline evaluation should match as closely as possible the data in the online

system. In other words, a great amount of care must be taken in order to make sure no additional

biases are introduced, as bias correction is often difficult. These biased may be introduced in the

filtering and splitting process that some recommender systems require — favouring algorithms

that work better with e.g. denser data — but also at the data collection stage. For example, in

the case of explicit feedback, people tend to rate items that they like which means that data is not

missed at random.

In order to evaluate the system, offline evaluation requires a way to simulate users inter-

acting with the system. A common approach — popular in machine learning — is to set aside a

subset of the recorded interactions and treat it as the ground truth. This splits the dataset into the
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training set—made of ‘known’ interactions — and the test set — made of ‘hidden’ interactions.

There are different possibilities for performing the split. One simple approach is to randomly split

all the recorded past interactions. This, however, assumes that the time aspect of the system is

unimportant and users preferences does not change over time. Other techniques include a time-

aware split of the dataset, or time-aware split performed separately for each user, or to select a

fixed number of known items per user, or a fixed number of hidden items per user. As there are

many options, it is necessary to understand which technique matches the target recommendation

scenario better.

2.2.2 Online Evaluation

In online evaluation, users are interacting with a live recommender system and react to

the recommendations generated by that system. In many real-world recommender systems, on-

line testing mechanisms are implemented through which experiments are run and algorithms are

compared. A common approach is to select a subgroup of users and redirect them to the recom-

mendation algorithm that is being tested and record its performance. It is important to select a

subgroup randomly so there is no bias involved, and fair comparisons can be made. Although,

in some scenarios users should be systematically chosen if the algorithm is particularly needs to

be tested on a certain group of users. Also, conditions of the experiments should be controlled —

this means if one aspect of the system is under experimentation, then other components ideally

should be fixed.

Performing an online evaluation of a new recommender system comes with risk. For exam-

ple the algorithm may not work as expected and may cause harm to user experience and hence

harming the business. Therefore, in practice, before conducting an online experiment, an offline

evaluation is performed and if the results are stable and reasonable, online testing can be per-

formed next.
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2.2.3 User Studies

If access to a live system with real users is not possible or too risky, user studies can be

conducted as a mean to gather real feedback from users of the system. Generally a number of

test subjects (i.e. users) is asked to interact with the system, or a simulation of such interaction

is shown and subjects are asked to judge their recommendations. User studies can go even be-

yond evaluating users’ interaction with a recommender system. For example, they can be used

to survey users to directly gather more insights on the system and learn users’ opinion on certain

aspects of the system that could not be collected during offline or online evaluation. Running user

studies is however expensive as it requires finding subjects that would be willing to spare their

time and to participate in the study. Also the process of selecting subjects is complex as to perform

a fair user study we should have a representative sample of the population of users in the system.

In addition, in user studies users often have no fear of the costs of their choice. In reality, when

a user buys an item, rents an apartment, or even watches a recommended movie, s/he should

accept some kind of cost either financial or simply the time s/he spends on using that item. This

is usually not the case in user studies. Finally, we should be aware of different biases, coming from

different sources. For example, users might act differently than normally if they know that they

are being surveyed or observed; others might be more interested in or aware of the topic of the

survey, which may have an impact on the results. All these aspects (and many more) can directly

affect the results.

2.3 Evaluation Metrics

Besides the type of experiment used to perform the evaluation, another important aspect

is the type of the problem that the recommender system is used for. It affects the choice of al-

gorithms, form of output recommendations, and methods used to evaluate the performance. In

Steck [155], two types of problems have been identified: the rating prediction task, and the ranking
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task. In the realy days of research on recommender systems, rating prediction was more common.

However, later on researchers realized that ranking is more closely related to real recommendation

scenarios ( [51]).

2.3.1 Rating Prediction

In rating prediction, the goal of the system is to accurately predict how a user u would

rate an item i in the test set. Also it is worth noting that explicit ratings are required in order to

perform rating prediction. With respect to evaluation, rating prediction task is commonly evalu-

ated through one of the error metrics such as the Mean-Absolute Error (MAE), or the Root-Mean-

Square Error (RMSE):

MAE =
1

|τ |
∑

(u,i)∈τ

|rui − r̂ui| (2.4)

RMSE =

√√√√ 1

|τ |
∑

(u,i)∈τ

(rui − r̂ui)2 (2.5)

where τ represents the test set, rui the original rating that user u has given to item i, and r̂ui is

the predicted rating. Values closer to 0 are considered better, however obtaining low error values

does not necessary indicate that users will be satisfied with the results of recommendations. This

is due to the fact that ratings are not missing at random which is commonly assumed by systems.

Missing at random in the context of recommender systems means the probability of a rating to

be missing does not depend on its value. If data are missing at random, using only the observed

data for statistical analysis yields ’correct’ results (e.g., unbiased maximum-likelihood parameter

estimates, and predictions) [105, 139]. In contrast, if the data are missing not at random (MNAR),

the missing data mechanism cannot be ignored in general, and has to be modeled precisely as

to obtain correct results [105, 139]. In other words, if the missing data mechanism is ignored,

the resulting recommendation accuracy may be degraded significantly. Also, in many systems,

explicit ratings are not available.
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Figure 2.2: Contingency Table

2.3.2 Ranking

In the ranking task, instead of predicting how a user would rate an item, the recommender

system is asked to select items that it thinks are relevant to the user and recommend them to the

user. Commonly the selection of top-N relevant recommendations is considered. Formally the

task can be expressed as follows: given a set of items, the system is tasked to create a ranked list `u

for each user u. The ranking is determined by scores r̂ui calculated by a recommendation system.

Then scores are sorted in a descending order, and the top-N items are kept.

Figure 2.2 shows a typical contingency table for a recommendation task. Given a list of

recommendation ` given to the user, each element in the contingency table are interpreted as

follows:

• True Positive (TP): When a recommended item is consumed by the user.

• False Positive (FP): When a recommended item is not consumed by the user.

• True Negative (TN): When an item is not recommended to the user and it is not in user’s

profile either.

• False Negative (FN): When an item is not recommended to the user but it is in the user’s

profile.
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Common metrics used to evaluate the ranking task are precision, recall, and Normalised

Discount Cumulative Gain (NDCG) [84] of recommendations, which can be defined as:

Precision =
TP

TP + FP
(2.6)

Which can be calculated as:

Precision(`u) =

∑
i∈`u 1(i ∈ ρu)
|`u|

(2.7)

where 1(.) is an indicator function which returns 1 if its argument is true and 0 otherwise. Simi-

larly,

Recall =
TP

TP + FN
(2.8)

Which can be calculated as:

Recall(`u) =

∑
i∈`u 1(i ∈ ρu)
|ρu|

(2.9)

If the order of the correct recommendations matters in the list (in contrast to precision and

recall where the order is not evaluated), then we can use NDCG which is defined as follows:

NDCG(`u) =
1

iDCG

∑
i∈`u

21(i∈ρu) − 1

log2(Ki + 1)
(2.10)

where ki is the position of the item i in the list and iDCG is the normalisation factor set as the

maximum possible value of NDCG for an ideal ranking and it can be measured as:

iDCG(`u) =

min(|`u|,|ρu|)∑
k=1

1

log2(k + 1)
(2.11)

Typically the mean of these values over all test users is reported as the overall system per-

formance.

Although a ranked list of recommendations can be generated via predicting a score for each

item and pick the ones with the highest scores, it has been found that better ranking performance

can be obtained with algorithms that address the ranking task directly. Such methods are known

as learning-to-rank techniques [91], which originated from the machine learning and informa-

tion retrieval fields, as an alternative to other tasks such as regression and classification that have
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been commonly used to create rankings. Learning-to-rank methods can be split into three main

categories, depending on the way the ranking model is learned. These are: pointwise [97], pair-

wise [79, 161], and listwise [152]. The pointwise ranking models are simple models where item

ranks are independent of other items and the item’s feedback—like ratings—indicates the posi-

tion in the ranked list—e.g. items rated as 5 should be higher in the list than items rated as 4. In

contrast, pairwise and listwise methods consider relationships between items to learn the ranking

model. In the pairwise ranking, pairs of items are compared, and the relationship between them

defines their position. For example, if most of the times, itemA has higher utility than itemB, then

item A should be recommended higher in the list. Finally, the listwise ranking model tries to learn

relationships between the entire set of items for which a user expressed her or his preferences.

2.3.3 Non-user Evaluation

User-oriented evaluation of recommender systems is the main type that is commonly con-

sidered. While it is important to measure user satisfaction, it is not the only perspective on a

system evaluation. For example, businesses do not only deploy recommender systems to improve

users’ satisfaction, but also to optimise sales, e.g. by promoting less popular items, or items on

which the business profits more. These are all important system performance metrics that should

also be considered while evaluating a recommender system.

One of the common metrics for measuring how the recommender system performs with

respect to covering different items from the catalog is Aggregate Diversity (aka catalog coverage)

[14]. Aggregate diversity measures the ratio of unique items out of all the available items that the

recommender system was able to recommend to different users. This is an important metric as

many recommendation algorithms often are biased towards popular items [47] and therefore they

have low coverage. Businesses want to make sure the recommendation algorithm can recommend

different items to their desired audience. Aggregate diversity of a recommender system is defined

as follows:
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Agg-Div =

∣∣⋃
u∈U `u

∣∣
|I|

(2.12)

Aggregate diversity counts a recommended item even if it is only recommended once.

Therefore it is possible for an algorithm to have a high aggregate diversity while some of the

items are recommended only few times. Another metric that gives a better sense of the distri-

butional properties of the recommendations is Gini Index which measures how evenly the rec-

ommendations are distributed across different items. In an ideal situation where every items are

recommended equally, the Gini index is zero. In contrast, an algorithm with extreme inequality of

recommendation frequency for different items will have a Gini index of 1. More formally, the Gini

index is defined as follows:

Gini(L) = 1− 1

|I| − 1

|I|∑
j=1

(2j − |I| − 1)p(ij |L) (2.13)

where p(i|L) is the ratio of occurrence of item i is L.

In addition to the metrics I described in this section, several additional metrics for evaluating

other aspects of recommendation related to multi-stakeholder paradigm will be presented and

fully discussed in Chapter 4.

2.4 Challenges in Recommendation

While many proposed recommendation solutions have been proven to be successful on the

task of recommending items to users, there are still many open issues that worsen the experience

to some users, or limits the usefulness of such systems. I am going to depict and discuss a few of

them now.

In any machine learning system it is generally true that the more data we have, the more

accurate models we can learn. The same applies to recommender systems —if we have more user-

item interactions, the more we know about what users like and who likes certain items, the more

accurate recommendations we can make. However when we have a new user joining the platform,
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or a new item is added, we know very little about them which makes the recommendation task

much harder or technically impossible and of higher risk. This type of a problem is commonly

known as the cold start problem [95]. Generally, content-based models are less prone to suffer

from the cold start problem since the only information needed is some content information about

the new item or some features about the new user. However, collaborative filtering methods

cannot generate personalized recommendations for a completely new user or recommend a new

item to the users in a personalized way since no previous interaction data exist for those type of

users or items. Nevertheless, they can still generate recommendations that are non-personalized

such as randomly recommending items or recommending the most popular items.

In addition, certain types of recommender systems — mostly content-based methods, are

known to be affected by the filter bubble, or over-specialisation, where recommendations are sim-

ilar to what the user already knows and this causes the user to be stuck in a bubble. While this

might be seen as a good indicator of the ability of the recommender system to identify user in-

terests and provide personalized recommendations, such recommendations may not be engaging

and would not help the user discover new content. Similarly, recommending lists of similar items,

even if relevant, may not provide the value that the users are looking for, and more diverse rec-

ommendations are rather expected [177, 180].

Finally, many online systems have been known to suffer from the so-called the long-tail

effect, or the popularity bias [23]. Most of the interactions that are recorded by a system happen

to refer to a relatively small set of items, commonly known as the short-head, and the rest is

called the long-tail. Due to such bias in the interactions towards the head, many collaborative

filtering techniques are prone to also recommend these popular items, making them even more

popular [178]. This situation is not desirable from both user and business perspectives—popular

items are likely to be already known by the users but also of little utility as they are less surprising

or engaging; where for businesses, recommendations focusing on most popular items lead to poor

utilization of the whole catalogue of items.
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2.4.1 Diversity, Novelty and Long-tail

Traditionally, the focus of recommender systems has been put on recommending as many

relevant items as possible and maximising the overall accuracy of a system. While high accuracy

is desirable, Herlocker et al. [74] stated that high accuracy on its own may not be enough to pro-

vide useful and engaging recommendations, and that other properties should be simultaneously

considered. In work of Kaminskas and Bridge [88] and McNee et al. [110], number of properties

have been identified, such as novelty, coverage, and diversity.

Starting from novelty, looking at the Merriam Webster dictionary, it is defined as ‘the quality

or state of being new, different, and interesting’2 . In the context of recommendations, novelty

typically refers to two aspects — an item being unknown to the user, and an item being different

from what the user has seen before [88]. The former of the above two reflects the global, system

utility of recommendations, and the latter user-level novelty. Simply put, the global aspect mainly

describes whether a recommended item is known to the user or not. Typically, popular items are

already known to the users and therefore recommending them would result in low novelty.

Diversity refers to the fact that the items in a given recommendation list is better to be dif-

ferent from each other so the user has enough choice [88,163]. For instance, in a movie recommen-

dation, a list containing Scream1, Scream2 and Scream3 is not a good recommendation even if the

user is interested in horror movies since there is not enough choice in the list for the user and it

would have been better if the list contained a diverse set of horror movies.

The main property that I focus on in this dissertation is the novelty of the recommendations.

Popular items have low novelty to the users while less popular, long-tail items are considered to

be more novel as the users are less likely to know about them. In Chapter 5 I will describe the

long-tail and popularity bias in detail.

2 http://www.merriam-webster.com/dictionary/novelty



Chapter 3

Multi-stakeholder Recommendation

3.1 Introduction

Recommender systems provide personalized information access, supporting e-commerce, social

media, news, and other applications where the volume of content would otherwise be overwhelm-

ing. They have become indispensable features of the Internet age, found in systems of many kinds.

One of the defining characteristics of recommender systems is personalization. In research con-

texts, recommender systems are typically evaluated on their ability to provide items that satisfy

the needs and interests of the end user. Such focus is entirely appropriate. Users would not make

use of recommender systems if they believed such systems were not providing items that matched

their interests. Still, it is also clear that, in many recommendation domains, the user for whom rec-

ommendations are generated is not the only stakeholder in the recommendation outcome. Other

users, the providers of products, and even the system’s own objectives may need to be considered

when these perspectives differ from those of end users.

In many practical settings, such as e-commerce, recommendation is viewed as a form of

marketing and, as such, the economic considerations of the retailer will also enter into the recom-

mendation function [101,124]. A business may wish to highlight products that are more profitable

or that are currently on sale, for example. More recently, system-level objectives such as fairness

and balance have been considered by researchers, and these social-welfare-oriented goals may

at times run counter to individual preferences. Sole focus on the end user hampers researchers’

ability to incorporate such objectives into recommendation algorithms and system designs.
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I believe that, far from being special “edge cases”, these examples illustrate a more general

point about recommendation, namely, that recommender systems often serve multiple goals and

that the purely user-centered approach found in most academic research does not allow all such

goals to enter into their design and evaluation. What is needed is an inclusive approach that

expands outward from the user to include the perspectives and utilities of multiple stakeholders.

It is relevant to note a shift that occurred in microeconomics in the early part of the 21st

century with the development of the theory of multi-sided platforms [61, 135]. Prior to that time,

the traditional business model focused on a firm’s ability to produce products and deliver them

to customers at a price that could ensure profitability. By contrast, multi-sided platforms create

value by bringing buyers and sellers together, reducing search and transaction costs. Many online

systems are exactly such multi-sided platforms [62].

As noted above, when it comes to the study of personalized information access in the form

of recommender systems, academic research has, with few exceptions, examined only a single side

of these interactions. The stage was set historically by the first recommender systems implemen-

tations, which either operated on objects with no associated price (newsgroup posts [96]) or were

external to any commerce associated with their recommendations (such as non-commercial mu-

sic, movie, and restaurant recommenders [35,40,150]). These systems brought users and products

together, but they were not themselves party to any transactions. While academic research has

largely concentrated on the user, commercial systems have regularly taken a broader view of rec-

ommendation objectives [116,136]. There is, therefore, a gap between the complexity of real-world

applications of recommender systems and those on which academic research has focused.

The integration of the perspectives of multiple parties into the design of recommender sys-

tems is the goal underlying the sub-field of multi-stakeholder recommendation [1, 3, 42, 116] which

I first introduced in [42] and I describe in detail in this dissertation. This chapter is intended to

describe the current state of the art in multi-stakeholder recommendation research and to outline

research questions that should be addressed to support the demands of recommendation applica-

tions in environments where the perspectives of multiple parties are important.
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3.2 Recommendation Stakeholders and Multi-stakeholder Paradigm

The concept of a stakeholder appears in business management literature as a way to discuss

the complexities of corporate governance. According to [69], the term ‘stakeholder’ appears to

have been invented in the early ’60s as a deliberate play on the word ‘stockholder’ to signify

that there are other parties having a ‘stake’ in the decision-making of the modern, publicly-held

corporation in addition to those holding equity positions.

In his classic work, Strategic Management: A Stakeholder Perspective, Freeman extends older

definitions that emphasize a “stake” as a kind of investment, and instead defines stakeholders as

“any groups or individuals that can affect, or are affected by, the firm’s objectives” [64], pg. 25. I

adopt this definition for our aims, focusing specifically on recommender systems.

Definition 3.2.1 A recommendation stakeholder is any group or individual that can affect, or is af-

fected by, the delivery of recommendations to users.

As recommender systems are elements of an organization’s operations, they will necessarily

inherit the large and wide-ranging set of stakeholders considered in the management literature.

However, only some of these stakeholders will be particularly salient in the generation of rec-

ommendations. In this dissertation, I will consider three key groups of stakeholders who are

particularly close to the recommendation interaction:

Consumers (aka users): The consumers are the end-users who receive / consume recommenda-

tions. They are the individuals whose choice or search problems bring them to the plat-

form, and who expect recommendations to satisfy those needs.

Providers (aka suppliers): The (item) suppliers are those entities that supply or otherwise stand

behind the recommended objects.

System: The final category is the organization itself, which has created a platform and associated

recommender system in order to match consumers with suppliers. The platform may be a

retailer, e-commerce site, broker, or other venue where consumers seek recommendations.
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Of course, none of these are stakeholder groups are unitary entities — not even the sys-

tem, which stands in for various internal groups within an organization who may have differ-

ent, possibly competing demands on a recommender system. Differentiation among stakeholder

groups may be necessary, depending on the application. This taxonomy does, however, highlight

an important consequence of a multi-stakeholder perspective, namely the foregrounding of the

multi-sided nature of recommendation, which has been slow to emerge in the research literature.

Figure 3.1 contrasts the traditional view of recommendations versus the multi-stakeholder

one. Traditionally, the system is assumed to generate a set of recommendations to the users and

its performance is measured from the users’ perspective with an average value across all users. In

other words the differences between users and groups of users are often omitted from the evalua-

tion. However, even if we only focus on users as the sole stakeholders, they are not a single entity

but rather different individuals with certain characteristics who might belong to different groups

often protected by law (e.g. gender, race etc. ). In addition, the multi-stakeholder schema consid-

ers the suppliers of the items as another important party in the recommendation process whose

needs and satisfaction should be taken into account. The recommender system might even give

insights to the suppliers based on how the users interact with their items and the feedback they

receive from the users. On top of that, some side stakeholders may also impose certain constraints

and limitations on the recommendations. For example, on a music recommendation system, the

society or law regulations may also be a considered as stakeholders to enforce certain human val-

ues in the recommendations such as recommending local versus international music in a fair way

or making sure female artists are fairly represented in the recommendations given to different

users. Of course, the term fair could be interpreted in many different ways [115] but often there

are certain law regulations that businesses need to follow [70].

The multi-stakeholder perspective on recommendation can manifest itself in various aspects

of recommender systems research and development. We may adopt a multi-stakeholder view of

evaluation: asking the question of how different groups of stakeholders are impacted by the rec-

ommendations a system computes. A developer may employ the multi-stakeholder perspective in
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(a) Traditional View of Recommendation

(b) Multi-stakeholder View of Recommendation

Figure 3.1: Traditional schema for recommendation versus multi-stakeholder schema.
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designing and optimizing an algorithm, incorporating the objectives of multiple parties and bal-

ancing among them. Finally, the creation of the recommender itself may be a multi-stakeholder

endeavor, in which different stakeholders participate in developing a design.

3.2.1 Multi-stakeholder Evaluation

In research settings, recommender systems traditionally are evaluated from the users’ per-

spective. Metrics such as precision, recall, NDCG, diversity, novelty, etc. all capture different as-

pects of recommendation quality as experienced by the end user. In on-line testing, click-through

rate, dwell time, and other interaction metrics capture similar types of outcomes. These metrics

are typically averaged over all users to produce a single outcome. This methodology in entirely

reasonable and logical as, in the end, users are one of the most important stakeholders of any

recommender system. We will take it as a given that any recommender system evaluation will

include an outcome of this type, the user summary evaluation.

A multi-stakeholder perspective on evaluation, however, brings to light additional aspects

of system performance that may be quite important. As mentioned above, multi-sided platforms

such as eBay, Etsy, or AirBnB, have a key business requirement of attracting and satisfying the

needs of providers as well as users. A system of this type will need to evaluate its performance

from the provider perspective.

As mentioned above, even when only a single group of stakeholders is under consideration,

a methodology that relies on a single point estimate of system performance under some metric

may miss differences among stakeholder groups, even among users, who are typically the target

of evaluation. Stakeholder theory recognizes that subgroups within the stakeholder categories

may experience a range of different impacts from a firm’s decisions [64]. In recommendation,

recent work has shown that, depending on the algorithm, male and female users may experience

different outcomes in movie recommendations [59]. Therefore, a multi-stakeholder evaluation is

one that includes different stakeholder groups in its assessment, in addition to the user summary

evaluation.
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Definition 3.2.2 A multi-stakeholder evaluation is one in which the quality of recommendations is

assessed across multiple groups of stakeholders, in addition to a point estimate over the full user

population.

A multi-stakeholder evaluation may entail the use of different kinds of metrics and different

evaluation methodologies than typically encountered in recommender systems research. For ex-

ample, typical cross-validation methodologies that distribute user profiles between test and train-

ing sets may not yield reliable results when assessing outcome for other stakeholders, especially

providers. We will take up the issue of provider-side metrics in Section 3.4.5.1.

3.2.2 Multi-stakeholder Algorithms

In implementing a given recommender system, a developer may choose to use the metrics

associated with multi-stakeholder evaluation in algorithm design, implementation, and optimiza-

tion. In general, this will entail balancing the objectives of different stakeholders, as it is unlikely

that the optimal solution for one will be the best for all. Some solutions may combine all such

objectives into a single optimization, a challenging approach given the methodological complexi-

ties noted above; others use a multi-stage approach incorporating different stakeholder concerns

throughout a pipeline. Both approaches are discussed in the examples in Chapter 6.

Multi-stakeholder algorithms are particularly differentiated from typical recommendation

approaches when the stakeholder concerns lie on different sides of the recommendation platform.

For example, it is not difficult to change the loss function associated with a factorization algorithm

to prefer balanced outcomes over multiple subgroups of users, rather than a simple overall mean.

However, system or provider objectives may be orthogonal to user concerns and form a separate

optimization problem that cannot be simply combined with the users’. I therefore define a multi-

stakeholder recommendation algorithm with special attention to this subclass.

Definition 3.2.3 A multi-stakeholder recommendation algorithm takes into account the preferences of

multiple parties when generating recommendations, especially when these parties are on different
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sides of the recommendation interaction.

3.2.3 Multi-stakeholder Design

Beyond implementing metrics and tuning algorithms, any fielded recommender system will

also go through phases of design in which the system’s role within a particular platform and its

specific requirements are formulated. System designers may choose to engage in a design process

such as participatory design [93] in which external stakeholders are incorporated into decision

making. Although these techniques are well-established in the HCI community, they have not

seen much discussion in recommender systems research. Anecdotal information suggests that

commercial platforms with multiple stakeholders do engage in stakeholder consultation with item

providers in particular [148].

Definition 3.2.4 A multi-stakeholder design process is one in which different recommendation stake-

holder groups are identified and consulted in the process of system design.

3.2.4 The Landscape of Multi-stakeholder Recommendation

The above list of the key recommendation stakeholders provides an outline for understand-

ing and surveying the different types of multi-stakeholder recommendation. We can conceptu-

alize a recommender system as designed to maximize some combined utility associated with the

different stakeholders, and consider how different types of applications yield different stakeholder

concerns.

3.2.4.1 Consumer-side issues

If we concentrate only on the individuals consuming recommendations, multi-stakeholder

issues arise when there are tradeoffs or disparities between groups of users in the provision of rec-

ommendations. For example, [59] explored the performance of recommender system algorithms

on users belonging to different demographic groups (gender, age) and observed that some algo-
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rithms perform better for certain groups than others. Other researchers have found that users with

niche or unusual tastes can be poorly served by particular recommendation algorithms, lapses that

are not detectable from point estimates of accuracy measures [5, 7, 67].

In some settings, such differences in system performance for different users may be consid-

ered examples of unfair treatment. For example, in Chapter 6 we will see that the recommendation

algorithms perform different for users with different levels of tendency towards popular items. In

particular, we will see that the recommendations for users who have lesser tendency towards

popular items have a higher deviation from what they expected to receive from the recommender

system.

3.2.4.2 Supplier-side issues

As noted above, multi-sided platforms need to satisfy both the consumers of recommen-

dations and the suppliers of items that are being recommended. The health of such a platform

depends both on a user community and a catalog of items of interest. Suppliers whose items are

not recommended may experience poor engagement from users and lose interest in participating

in a given platform. Platforms that facilitate peer-to-peer interactions, such as the online craft

marketplace Etsy, may be particularly sensitive to the need to attract and retain sellers.

Depending on the application, suppliers may have particular audiences in mind as appro-

priate targets for their items. A well-known example is computational advertising in which adver-

tisers seek particular target markets and ad platforms try to personalize ad presentation to match

user interests [175]. In this application, market forces, expressed through auction mechanisms,

serve to mediate between supplier interests. In other cases, such as online dating, preferences

may be expressed on both sides of the interaction but it is up to the recommender system to per-

form appropriate allocation.
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3.2.4.3 System/platform issues

In many real-world contexts, the system may gain some utility when recommending items,

and is therefore a stakeholder in its own right. Presumably, an organization creates and operates

a recommender system in order to fulfill some business function and generally that is to enhance

user experience, lower search costs, increase convenience, etc. This would suggest a consumer

stakeholder point of view is sufficient.

However, there are cases in which additional system considerations are relevant, as noted

above, and internal stakeholders have an impact on how a recommender system is designed.

For example, in an e-commerce platform, the profit of each recommended item may be a factor

in ordering and presenting recommendation results. This marketing function of recommender

systems was apparent from the start in commercial applications, but rarely included as an element

of research systems.

Alternatively, the system may seek to tailor outcomes specifically to achieve particular ob-

jectives that are separate from either provider or consumer concerns. For example, an educational

site may view the recommendation of learning activities as a curricular decision and seek to have

its recommendations fit a model of student growth and development. Its utility may, therefore, be

more complex than a simple aggregation of those of the other stakeholders.

3.2.4.4 Other stakeholders

Complex online ecosystems may involve a number of stakeholders directly impacted by

recommendation delivery beyond item suppliers and recommendation consumers. For example,

an online food delivery service, such as UberEats, depends on delivery drivers to transport meals

from restaurants to diners. Drivers are affected by recommendations delivered to users as the

efficiency of routing and the distribution of order load will be a function of which restaurants

receive such orders.



37

3.3 Related Research

Multi-stakeholder recommendation brings together research in a number of areas within the rec-

ommender systems community and beyond: (1) in economics, the areas of multi-sided platforms

and fair division; (2) the growing interest in multiple objectives for recommender systems, includ-

ing such concerns as fairness, diversity, and novelty; and, (3) the application of personalization to

matching problems.

3.3.1 Economic foundations

The study of the multi-sided business model was crystallized in the work of [135] on what they

termed “two-sided markets.” Economists now recognize that such contexts are often multi-sided,

rather than two-sided, and that “multi-sidedness” is a property of particular business platforms,

rather than a market as a whole [62].

Many of today’s recommender systems are embedded in multi-sided platforms and hence

require a multi-sided approach. The business models of multi-sided platforms are quite diverse,

which means it is difficult to generalize about multi-stakeholder recommendation as well. A key

element of the success of a multi-sided platform is the ability to attract and retain participants from

all sides of the business, and therefore developers of such platforms must model and evaluate the

utility of the system for all such stakeholders.

The theory of just division of resources has a long intellectual tradition going back to Aris-

totle’s well-known dictum that “Equals should be treated equally.” Economists have invested

significant effort into understanding and operationalizing this concept and other related ideas.

See [114] for a survey. In recommendation and personalization, we find ourselves on the other

side of Aristotle’s formulation: all users are assumed unequal and unequal treatment is the goal,

but we expect this treatment to be consistent with diverse individual preferences. Some aspects

of this problem have been studied under the subject of social choice theory [27]. However, there

is not a straightforward adaptation of these classical economic ideas to recommendation applica-
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tions as the preferences of users may interact only indirectly and in subtle ways. For example, if a

music player recommends a hit song to user A, this will not in any way impact its desirability or

availability to user B. On the other hand, if a job recommender system recommends an appealing

job to user A, it may well have an impact on the utility of the same recommendation to user B who

could potentially face an increased competitive environment if she seeks the same position.

3.3.2 Multi-objective recommendation

Multi-stakeholder recommendation is an extension of recent efforts to expand the consider-

ations involved in recommender system design and evaluation beyond simple measurements of

accuracy. There is a large body of recent work on incorporating diversity, novelty, long tail promo-

tion and other considerations as additional objectives for recommendation generation and evalu-

ation. See, for example, [2,4,81,153,163,181]. There is also a growing body of work on combining

multiple objectives using constraint optimization techniques, including linear programming. See,

for example, [15, 16, 80, 87, 137, 160]. These techniques provide a way to limit the expected loss on

one metric (typically accuracy) while optimizing for another, such as diversity. The complexity of

these approaches increases exponentially as more constraints are considered, making them a poor

fit for the general multi-stakeholder case. Also, for the most part, multi-objective recommendation

research concentrates on maximizing multiple objectives for a single stakeholder, the end user.

Another area of recommendation that explicitly takes a multi-objective perspective is the

area of health and lifestyle recommendation. Multiple objectives arise in this area because users’

short-term preferences and their long-term well-being may be in conflict [104, 128]. In such sys-

tems, it is important not to recommend items that are too distant from the user’s preferences –

even if they would maximize health. The goal to be persuasive requires that the user’s immediate

context and preferences be honored.

Fairness is an example of a system consideration that lies outside the strict optimization of

an individual user’s personalized results. Therefore, recent research efforts on fairness in recom-

mendation are also relevant to this work [41,89,90,102,111,174]. The multi-stakeholder framework
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provides a natural “home” for such system-level considerations, which are otherwise difficult to

integrate into recommendation. See [1] for a more in-depth discussion.

3.3.3 Personalization for matching

The concept of multiple stakeholders in recommender systems is suggested in a number of prior

research works that combine personalization and matching. The earliest work on two-sided

matching problems [138] assumes two sets of individuals, each of which has a preference ordering

over possible matches with the other set. The task to make a stable assignment has been shown

to have an O(n2) solution. This formulation has some similarities to reciprocal recommendation.

However, it assumes that all assignments are made at the same time, and that all matchings are

exclusive. These conditions are rarely met in recommendation contexts, although extensions to

this problem formulation have been developed that relax some of these assumptions in online

advertising contexts [30].

Researchers on reciprocal recommendation have looked at bi-lateral considerations to en-

sure that a recommendation is acceptable to both parties in the transaction. A classical example

is on-line dating in which both parties must be interested in order for a match to be success-

ful [127, 172]. Other reciprocal recommendation domains include job seeking [137], peer-to-peer

“sharing economy” recommendation (such as AirBnB, Uber and others), on-line advertising [77],

and scientific collaboration [107, 162]. See [1] for a detailed discussion.

The field of computational advertising has given considerable attention to balancing person-

alization with multi-stakeholder concerns. Auctions, a well-established technique for balancing

the concerns of multiple agents in a competitive environment, are widely used both for search

and display advertising [112, 175]. However, the real-time nature of these applications and the

huge potential user base makes recommender-style personalization computationally intractable

in most cases.
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3.4 Evaluation

At this point in the development of multi-stakeholder recommendation research, there is a

diversity of methodological approaches and little agreement on basic questions of evaluation. In

part, this is a reflection of the diversity of problems that fall under the multi-stakeholder umbrella.

Multi-stakeholder evaluation and algorithm development do not always use the same methodolo-

gies.

A key difficulty is the limited availability of real-world data with multi-stakeholder charac-

teristics. The reason is these type of data are highly business-critical and often including private

information such as margins associated with each supplier and the commissions negotiated by

the platform. Close collaboration is required to obtain such sensitive proprietary data. Some re-

searchers have built such collaborations for multi-stakeholder research, but progress in the field

requires replicable experiments that proprietary data does not support. Areas of multi-stakeholder

research that involve public, rather than private, benefit may offer advantages in terms of the

availability of data: see, for example, the data sets available from the crowd-funded educational

charity site DonorsChoose.org1 .

3.4.1 Simulation

In the absence of real-world data with associated valuations, researchers have typically

turned to simulations. Simulated or inferred supplier data is useful for transforming publicly-

available recommendation data sets in standard user, item, rating format into ones that can be

used for multi-stakeholder experimentation. The experiments in [158] provide an example of this

methodology: each item in the MovieLens 1M data set was assigned to a random supplier, and

the distribution of utilities calculated. To capture different market conditions, the experimenters

use two different probability distributions: normal and power-law. There is no accepted standard

for producing such simulations and what are reasonable assumptions regarding the distribution

1 https://data.donorschoose.org/explore-our-impact/
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of provider utilities or the formulation of system utilities, except in special cases.

Researchers have also used objective aspects of data sets to infer proxy attributes for multi-

stakeholder evaluation. In [42], the first organization listed in the production credits for each

movie was treated as the provider – a significant over-simplification of what is a very complex sys-

tem of revenue distribution in the movie industry. In other work, global metrics such as network

centrality [19] have been used to represent system utility for the purposes of multi-stakeholder

evaluation. [43] demonstrated an alternate approach to generate synthetic attribute data based on

behavioral characteristics that can be used to evaluate system-level fairness properties.

More sophisticated treatments of profitability and recommendation are to be found in the

management and e-commerce literature, some using public data as seen in [9, 49, 121], but these

techniques and associated data sets have not yet achieved wide usage in the recommender system

community.

3.4.2 Models of utility

A multi-stakeholder framework inherently involves the comparison of outcomes across dif-

ferent groups of individuals that receive different kinds of benefits from the system. In economic

terms, this entails utility calculation and comparison. As with data, different researchers have

made different assumptions about what types of utilities accrue from a recommender system and

how they are to be measured. A standard assumption is that the output of a recommendation al-

gorithm can be treated as an approximation of user utility. Yet, research has confirmed that users

prefer diverse recommendation lists [129], a factor in tension with accuracy-based estimates of

user utility.

These are, of course, more concentrated on the short-term definitions of utility and things

that can be measured from the users feedback in a single run of recommendation generation. More

research is therefore required to understand the potential positive and negative long-term effects

of profit-aware recommendation and other strategies that are not strictly user-focused. Future

models could also consider the price sensitivity and willingness-to-pay of individual consumers
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in the recommendation process.

3.4.3 Off-line experiment design

A standard off-line experimental design which I described in Chapter 2 makes a bit less

sense in a multi-stakeholder context, and this is where the essential asymmetry of the stakeholders

comes into play. Suppliers are, in a key sense, passive – they have to wait until users arrive

at the system in order to have an opportunity to be recommended. The randomized cross-fold

methodology measures what the system can do for each user, given a portion of their profile

data, the potential benefit to be realized if the user visits and a recommendation list is generated.

Evaluating the supplier side under the same conditions, while a commonly-used methodology,

lacks a similar justification.

A more realistic methodology from the suppliers’ point of view is a temporal one, that

takes into account the history of the system up to a certain time point and examines how sup-

plier utilities are realized in subsequent time periods. See [44] for a comprehensive discussion of

time-aware recommender systems evaluation. However, time-aware methods have their own dif-

ficulties, forcing the system to cope with cold-start issues possibly outside of the scope of a given

project’s aims. Therefore, for certain models of utility where the dynamics of suppliers (such as

price, profit margin etc) may be of less important, offline evaluation can be still valuable. For ex-

ample, our evaluation of the popularity bias in recommendation from the perspectives of different

stakeholders is done in an offline setting as we will see in Chapter 4 and 5.

3.4.4 User studies

User studies are another instrument available to researchers that has not been extensively

applied to multi-stakeholder recommender systems. As usual for such studies, the development

of reliable experimental designs is challenging as the participants’ decision situation typically re-

mains artificial. Furthermore, as in the study by Azaria et al. [28], familiarity biases might exist –

in their study participants were willing to pay more for movies that they already knew – which
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have been observed for other types of user studies in the recommender systems domain [82]. Ul-

timately, more field tests – even though they are typically tied to a specific domain and specific

business model – are needed that give us more insights into the effects of multi-stakeholder rec-

ommendations in the real world.

3.4.5 Metrics

The building block of multi-stakeholder evaluation is the measurement of the utility each

of the stakeholders gets within a recommendation platform. Common evaluation metrics such

as RMSE, precision, NDCG, diversity, etc. are all different ways to evaluate the performance of a

recommender system from the user’s perspective. As noted above, these measures are implicitly

a form of system utility measure as well: system designers optimize for such measures under the

assumptions that (1) higher accuracy metrics correspond to higher user satisfaction and (2) higher

user satisfaction contributes to higher system utility through customer retention, trust in the rec-

ommendation provided, etc. However, the formulation of multi-stakeholder recommendation

makes it possible to characterize and evaluate system utility explicitly.

Typically, evaluation metrics are averaged over all users to generate a point score indicat-

ing the central tendency over all users. However, it is also the case that in a multi-stakeholder

environment additional aspects of the utility distribution may be of interest. For example, in an

e-commerce context, suppliers who receive low utility may leave the eco-system, suggesting that

the distribution of supplier utility may be important as well as the mean. One suggested practice

would be to report results for significant user groups within their populations as I will discuss in

Chapter 4 and 6.

3.4.5.1 Supplier metrics

When evaluating the utility of a recommender system for a particular supplier, we may take

several different stances. One views the recommender as a way to garner user attention. In this

case, the relevance of an item to a user may be a secondary consideration. Another perspective
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views the recommender as a source of potential leads. In this view, recommending an item to

uninterested users is of little benefit to the supplier. In the first situation, simply counting (with or

without a rank-based discount) the number of times a supplier’s products appears in recommen-

dation lists would be sufficient. In the second situation, the metric should count only those recom-

mendations that were considered “hits”, those that appear positively rated in the corresponding

test data.

Another supplier consideration may be the reach of its recommended products across the

user population. A metric could count the number of unique users to whom the supplier’s items

are recommended. Multi-stakeholder applications may differ in their ability to target specific

audiences for their items. In a targeted system, it would make sense to consider reach relative

to the target population. For example, in an online dating application where the user can specify

desired properties in a match, an evaluation metric might be the fraction out of the target audience

receiving the recommendation.

Finally, where the consideration is the accuracy of system’s predictions, we can create a

supplier-specific summary statistic of a measure like RMSE. [60] uses this method to examine

differences in error when recommending books by male and female authors. Since the statistic by

itself is not that useful for a single provider, a better metric would indicate the provider’s position

relative to other providers in the overall distribution

3.4.5.2 System metrics

System utility may, in many cases, be a simple aggregation of the utilities of other parties.

For example, in a simple commission-oriented arrangement, the profit to the system might be

some weighted aggregate of the Hits metric, taking item price and commission rate into account.

However, other cases arise where the system has its own targeted utility framework.

An important such context is algorithmic fairness [60,173]. In general, we should not expect

that suppliers will care if the system is fair to others as long as it provides them with good out-

comes. Any fairness considerations and related metrics will therefore be ones defined by system
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considerations.

As we will see in Chapter 5, popularity bias in recommendation is a multi-stakeholder prob-

lem that impacts different sides of the recommendation platform including the users and the sup-

pliers. It also might create challenges for the system itself if, for example, the system designer cares

about giving certain amount of exposure to different items with different levels of popularity. In

next chapter, I discuss our methodology for measuring the popularity bias from the perspective

of different stakeholders: users, suppliers, and the system.



Chapter 4

Data and Methodology

In this chapter we describe the details of the datasets we used for the experiments in this

dissertation and several evaluation metrics that we introduce for measuring the multi-stakeholder

aspect of the popularity bias.

4.1 Datasets

In Chapter 3, we highlighted the main stakeholders of a given recommender system: users,

suppliers and the system itself. To incorporate our analysis for the suppliers, we needed datasets

where the item suppliers could be identified. We found two publicly available datasets for our

experiments: the first one is a sample of the Last.fm (LFM-1b) dataset [147] used in [55]. The

dataset contains user interactions with songs (and the corresponding albums). We used the same

methodology in [55] to turn the interaction data into rating data using the frequency of the inter-

actions with each item (more interactions with an item will result in higher rating). In addition,

we used albums as the items to reduce the size and sparsity of the item dimension, therefore the

recommendation task is to recommend albums to users. We considered the artists associated with

each album as the supplier. We removed users with less than 20 ratings so only consider users for

which we have enough data. The resulting dataset contains 274,707 ratings by 2,697 users to 6,006

albums. Total number of artists is 1,998.

The second dataset is the MovieLens 1M dataset [72] 1 . This dataset does not have the
1 Our experiments showed similar results on MovieLens 20M, and so we continue to use MovieLens 1M for effi-

ciency reasons.
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Table 4.1: Number of users |U |, number of items |I|, number of ratings |R|, and number of suppli-
ers |P| in two datasets MovieLens and Last.fm

|U | |I| |R| |P|
MovieLens 6,040 3,043 995,487 831
Last.fm 2,697 6,006 274,707 1,998

information about the suppliers. We considered the director of each movie as the supplier of

that movie and we extracted that information from the IMDB API. Total number of ratings in the

MovieLens 1M data is 1,000,209 given by 6,040 users to 3,706 movies. Overall, we were able to

extract the director information for 3,043 movies reducing the ratings to 995,487. The total number

of directors is 831.

For convenience, the characteristics of both datasets is shown in Table 4.1.

4.2 Recommendation Algorithms

As we mentioned in Chapter 2, there are different types of recommendation algorithms

each of which have their own cons and pros. Some are neighborhood-based and some are based

on matrix factorization methods. We also mentioned content-based models where the content in-

formation of the items (or users) is used to generate the recommendations. In this dissertation,

our main focus is on collaborative filtering models where no content information is used in the al-

gorithm. Both neighborhood-based and factorization-based models are considered collaborative

filtering techniques since they use the rating (or interaction data) information given by the users to

the items. We have used several well-known recommendation algorithms in the following chap-

ters that cover both neighborhood-based models and also factorization-based approaches (either

rating prediction-based or ranking-based).

• Alternative Least Square Ranking (RankALS) [161]: This method is a pair-wise learning-

to-rank technique that directly optimizes the order of the items in the recommendation

lists without the need for calculating the predicted ratings for all items and sorting them.

The idea is, if one item is ranked higher than another item in rating data, this order should



48

be kept in the recommended list. The algorithm tries to minimize the pairwise ranking

discrepancies between every pair of items in rating data.

• Biased Matrix Factorization (Biased-MF) [99]: This is another factorization-based tech-

nique but, unlike RankALS, it does not optimize for ranking but rather seeks to minimize

the distance between the predicted rating and the original rating for any given ¡user,item¿

pair. Therefore, the optimization is done in the rating prediction step and once the pre-

dicted ratings for ¡user,item¿ pairs are calculated, they are sorted and the top n items will

be returned as the recommendations.

• User-based Collaborative Filtering (User-CF) [17]: This algorithm is a neighborhood-

based technique meaning the rating prediction is directly using the similarities between

users. For any given user, the algorithm finds top most similar users and uses their rating

information for items that the target user has not rated. In order to find the similarity

between users, distance metrics such as Pearson Correlation or Cosine similarity are used.

• Item-based Collaborative Filtering (Item-CF) [144]: Similar to User-CF, this algorithm is

also neighborhood-based but, unlike User-CF that leverages similarity between users, it

uses the similarity between items that the user has rated before and other items. Again,

the similarity calculation is done using distance metrics such as Pearson Correlation or

Cosine similarity. The algorithm then recommends most similar items.

4.3 Stakeholder Grouping

Throughout this dissertation, for better illustration of certain patterns and behavior of dif-

ferent algorithms, I use grouping (either items, users, or suppliers) so I can discuss how each

algorithm performs for items, users, or suppliers in different groups. Many researchers have used

demographic information such as age, gender, race etc to define groups of users and to measure

demographic parity between those groups [21, 59, 60]. However, these works assume there is no

intrinsic differences among individuals in different groups which is not supported by prior work
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where significant differences have been found [29, 57]. In this dissertation, our grouping strategy

is consistent with the problem I am addressing. The problem I am concentrating on is popularity

bias and its impact of different stakeholders and hence a natural way of grouping would have the

popularity component in its consideration.

For all stakeholder types (items, users, and suppliers), the grouping is based on the popular-

ity of the individuals or their interest in popular items in each stakeholder type. In other words,

items are grouped based on their popularity, users are grouped based on their interest towards

popular items, and suppliers are grouped according to the average popularity of their items. Be-

fore going any further, it is important to define what exactly I mean by popularity.

Definition 4.3.1 Item Popularity: The popularity of an item is defined as the ratio of users who

have interacted (or rated) that particular item. More formally:

Pop(i) =

∑
u∈U 1(i ∈ ρu)
|U |

(4.1)

where ρu is the list of rated (or interacted with) items by user u.

Therefore, the more users rate or interact with a certain item, the higher its popularity will be. In

a sense, popularity of an item measures the amount of attention the items receives.

Here is how the grouping is done for each stakeholder type:

• Item Grouping: Generally speaking, in recommendation domains there are a small num-

ber of very popular items and many other items have either medium popularity or are

extremely non-popular. These few popular items are referred to as the short-head in the lit-

erature which take up roughly 20% of the ratings according to the Pareto Principle [141].

The rest of the items in a long-tail distribution are usually divided into two other parts [47]

as I also do in this dissertation: Tail items (T ) are the larger number of less popular items

which collectively take up roughly 20% of the ratings2 , and Mid items (M ) include a larger

number of items in between that receive around 60% of the ratings, collectively.
2 Tail items may also be new items that have yet to find their audience and will eventually become popular. In this

way, popularity bias is related to the well-known item cold-start problem in recommendation.
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(a) MovieLens

(b) Last.fm

Figure 4.1: Profile size of users in different user groups. Numbers within the parentheses show
the average profile size of the users in each group
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(a) MovieLens

(b) Last.fm

Figure 4.2: Number of songs / movies for artists / directors in each supplier group. The first
number in the parentheses shows the size of each group and the second number shows the average
number of songs / movies for the suppliers in each group.
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• User Grouping: Users have different interest in popular items. Some are mainly focused

on popular and blockbuster products and some are more inclined towards less popular,

or niche, items. There are also some who fall in between and they have a more diverse

taste in terms of the popularity of the items they tend to consume. In this dissertation, I

sort the users from the highest interest towards popular items to the lowest based on the

ratio of different item groups (H , M , and T ) in their profiles. Users are lexicographically

sorted according to the ratio of H , M , and T items in their profiles with priority given

to H followed by M and T . Sorted users are divided into three equal-sized bins G =

{G1, G2, G3} from most popularity-focused (G1) to least (G3).

Figure 4.1 shows the distribution of profile size of the users within each group for both

MovieLens and Last.fm datasets. We can see that, on MovieLens, groups that have higher

interests towards popular movies have smaller average profile size compared to the groups

with lesser interest in popular movies. In fact, the average profile size for the users in G3

(group with the least interest in popular movies) is almost five time larger than the highly-

popularity-focused group (G1). Interestingly, this trend on Last.fm seems to be the exact

opposite where the average profile size of the user groups who have higher focus on pop-

ular songs is larger. This is indeed an interesting distinction between the movie and music

domain.

• Supplier Grouping: Suppliers also have different levels of popularity. In movies, some

directors are making more popular movies and therefore they have a higher popularity

according to our definition of popularity which is the average popularity of the items for

that supplier. Similar to items, supplier popularity has also an extreme long-tail shape

and therefore I need to group them in a way that the resulting groups vary in terms of

popularity. Therefore, I, again, use the Pareto Principle for the suppliers to determine the

appropriate cut-off points to create the groups. I have defined three supplier groups based

on their popularity S = {S1, S2, S3}: S1 represents few popular suppliers whose items take
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up 20% of the ratings, S2 are larger number of suppliers with medium popularity whose

items take up around 60% of the ratings, and S3 are the less popular suppliers whose items

get 20% of the ratings.

Figure 4.2 shows the distribution of the number of items owned by the suppliers in each

supplier group and also the number of suppliers in each group. In both datasets, the sup-

plier groups with higher popularity own larger number of items compared to the groups

whose suppliers do not have high popularity.

4.4 Evaluation Metrics

A multi-stakeholder evaluation entails multiple metrics representing the perspective of dif-

ferent stakeholders on system performance. In this dissertation, in order to evaluate different

recommendation algorithms with respect to their performance in terms of handling popularity

bias, I use several well-established metrics in the literature. I also introduce several other metrics

that are able to better differentiate the performance of different algorithms when they are assessed

from the perspective of multiple stakeholders. In particular, I propose metrics that are sensitive

to the performance across different groups of stakeholders: suppliers in different popularity cate-

gories, items in different popularity categories, and users with different levels of interests in item

popularity.

4.4.0.1 Overall

To capture overall long-tail performance, a variety of metrics have been used in prior re-

search. I compute the following metrics:

• Aggregate Diversity: The ratio of unique recommended items across all users which I

defined in Chapter 2.

• Long-tail Coverage (LC): The concept of long-tail coverage is used in many prior works

in popularity bias [4,12] and it measures the ratio of long-tail items (in our case it is M ∪T
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Figure 4.3: List of two Recommendations given to three users. Dark circles are popular items and
light ones are long-tail items. There are ten items overall in the catalog 6 of which are long-tail and
the other 4 are popular. Agg-Div= 4

10 = 0.4, APL = 1
2 = 0.5 and LC = 1

6 = 0.166.

since I have divided the long-tail into two separate groups) that appear in the recommen-

dation lists of different users. Effectively, this is Agg-Div applied only to theM ∪T portion

of the catalog.

LC =

∣∣⋃
u∈U (`u ∩ (M ∪ T ))

∣∣
|M ∪ T |

(4.2)

I be the set of all items in the catalog and U is the set of all users.

• Gini Index: Measures the inequality across the frequency distribution of the recommended

items which was also defined in Chapter 2.

Another metric for measuring long-tail performance of a given algorithm which I introduce

in this dissertation is Average Percentage of Long-tail Items (APL) which I define as follows:

APL =
1

|U |
∑
u∈U

|{i, i ∈ (`u ∩ (M ∪ T ))}|
|`u|

(4.3)

This metric tells us what percentage of items in users’ recommendation lists belongs to the

long-tail of the item distribution (M ∪ T ). This is purely a user-centric metric as it does not look

at the overall percentage of long-tail items but rather only in a user-level. With that said, it is

possible for an algorithm to have high APL meaning every user has received a high percentage

of long-tail items but, overall, it may not have covered many items from the long-tail when it is

looked at across all users. Therefore, LC and APL, together, can give a better picture of how an
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algorithm is performing in terms of long-tail promotion. Look at Figure 4.3 for example. There

are ten items in the catalog I1...I10. Popular items are shown by dark circles and less popular

(long-tail) one shows by light circles. There are six long-tail items and four popular items in the

catalog. Three users in this figure have each received two items as the recommendations. We can

see that, overall, four unique items are recommended across all users so the aggregate-diversity

will be 0.4. Each user has received 1 long-tail item out of a list with size 2 so the APL will be

1
2 = 0.5. However, as we can see, all users have received the same long-tail item (I4) so, overall,

only one long-tail item is recommended and LC will be 1
6 = 0.166. The APL of 0.5 indicates

50% of the recommendations given to the users are long-tail items. This might create the sense

that the recommendation algorithm has done a good job in terms of covering long-tail items.

However, looking at LC we can see that out of 6 long-tail items only 1 has been recommended

to different users. So, depending on the purpose of the recommender system, each of the APL

and LC metrics could show a different side of the recommendation performance and, therefore,

both can be measured to capture a better picture of the recommendation performance in terms of

long-tail.

4.4.0.2 Supplier Groups

Similar to [111], I operationalize the concept of fairness for the suppliers (i.e. artists and

directors in Last.fm and MovieLens datasets, respectively) using their popularity. In [111], the

authors grouped the artists in Spotify data into 10 equal-sized bins. As I noted in Section 4.3, I

group the suppliers into three different bins based on their position in the popularity spectrum

S = {S1, S2, S3} with the S1 being the most popular suppliers followed by S2 and S3 that have

lower popularity.

Following [111], I use Equality of Attention Supplier Fairness (ESF), which operationalizes the

idea that a supplier’s chance of being recommended should be independent of the popularity

bin to which they belong. The ESF of a list of recommendations (L) given to all users from the

suppliers’ perspective is defined as:
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ESF =

|S|∑
i=1

√∑
j∈L

1(A(j) ∈ Si) (4.4)

where Si is the list of suppliers belonging to the popularity bin i, and A(j) is a mapping function

that returns the supplier of item j. |S| is the number of supplier groups which in this dissertation

it is 3.

ESF rewards sets that are diverse in terms of the different supplier bins represented, thus

providing a fairer representation of different supplier bins. Given the nature of the function, there

is more benefit to selecting suppliers from a bin not yet having one of its suppliers already chosen.

When a supplier from a particular bin is represented in the recommendations, other suppliers from

the same bin will be penalized due to the concavity of the square root function (e.g.
√
1+
√
1 >
√
2).

The ESF measure does not, however, consider the inherent popularity of suppliers in differ-

ent bins. I introduce an alternative metric that does so: Supplier Popularity Deviation (SPD).

For any supplier group s, SPD(s) = q(s)− p(s) where q(s) is the ratio of recommendations

that come from items of supplier group s (i.e. q(s) =
∑
u∈U

∑
j∈`u 1(A(j)∈s)
n×|U | ), and p(s) is the ratio of

ratings that come from items of supplier group s (i.e. p(s) =
∑
u∈U

∑
j∈ρu 1(A(j)∈s)∑
u∈U |ρu|

). The average

SPD across different groups of suppliers can be calculated as:

SPD =

∑|S|
i=1 |SPD(Si)|
|S|

(4.5)

Lower values for SPD indicate a better match between the distribution of items from differ-

ent suppliers in rating data and in the recommendations. The inverse 1− SPD can be considered

a type of proportional fairness metric since it measures how the items from different supplier

groups are exposed to different users proportional to their popularity in rating data.

4.4.0.3 Item Groups

We can use the same formalization as SPD to define a metric Item Popularity Deviation (IPD)

that looks at groups of items across the popularity distribution. For any item group c, IPD(c) =
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q(c) − p(c) where q(c) is the ratio of recommendations that come from item group c (i.e. q(c) =∑
u∈U

∑
j∈`u 1(j∈c)

n×|U | ). p(c) is the ratio of ratings that come from item group c (i.e. p(c) =∑
u∈U

∑
j∈ρu 1(j∈c)∑

u∈U |ρu|
). The average IPD across different groups of items can be measured as:

IPD =

∑
c∈C |IPD(c)|
|C|

, (4.6)

4.4.0.4 User Groups

Finally, based on our finding above that users with different interests in popular items may

receive results with different degrees of calibration, we can examine the popularity calibration of

recommendation results across groups of users with different popularity propensity. This metric is

User Popularity Deviation (UPD). For any user group g, UPD(g) =
∑
u∈g J(P (ρu),Q(`u))

|g| . The average

UPD across different groups of users is:

UPD =

∑
g∈G UPD(g)
|G|

(4.7)

UPD can be also seen as the average popularity miscalibration of the recommendations from the

perspective of users in different groups.

For all three metrics IPD, SPD and UPD, lower values are desirable.

Table 4.2 summarizes the evaluation metrics I described in this chapter. I will use these in

the following chapters.
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Table 4.2: The summary of the evaluation metrics used in this dissertation, their abbreviations
and their purpose.

Metric Name Abbreviation Purpose

Aggregate Diversity Agg-Div
The ratio of unique
recommended items compared to all
the available items.

Average Percentage of Long-tail Items APL
The average percentage of
long-tail items in individual
recommendation lists.

Long-tail Coverage LC
The percentage of long-tail
items that are covered by
the recommender system.

Gini Index Gini
Measures how evenly
the recommendations are distributed
across all items.

Equality of Attention Supplier Fairness ESF

Measures the fairness
of exposure for different supplier
groups based on the equality of
appearance for different supplier groups.

Supplier Popularity Deviation SPD

Measures the deviation of
exposure for items from different
supplier groups compared to their
original popularity in data.

Users Popularity Deviation UPD

Measures the average amount
of deviation the algorithms impose on
users in different groups
compared to what their
original interest in popularity was.

Items Popularity Deviation IPD

Measures the deviation of
exposure for items from different
item groups compared to their original
popularity in data.



Chapter 5

Popularity Bias in Recommendation

Skew in wealth distribution is well-known: less than 1% of the human population has more

wealth than more than 40% of the world combined 1 ; in recommender systems a similar problem

exists: a small number of popular items appear frequently in user profiles and a much larger

number of niche items appear rarely. In many consumer taste domains, where recommender

systems are commonly deployed, there is a highly-skewed distribution of user interest in items.

A music catalog might contain artists whose songs have been played millions of times (Beyoncé,

Ed Sheeran) and others whose songs have a much smaller audience (Iranian musician Kayhan

Kalhor, for example). Recommender systems often recommend popular items at a much higher

frequency than even their high popularity would call for, amplifying the bias already present in

the data.

Recommending serendipitous items from the long-tail (items with low popularity) are gen-

erally considered to be valuable to the users [22, 149], as these are items that users are less likely

to know about. Brynjolfsson and his colleagues showed that 30-40% of Amazon book sales are

represented by titles that would not normally be found in brick-and-mortar stores at the time of

their writing [36]. Access to long-tail items is a strong driver for e-commerce growth: the con-

sumer surplus created by providing access to these less-known book titles is estimated at more

than seven to ten times the value consumers receive from access to lower prices online.

Long-tail items are also important for generating a fuller understanding of users’ prefer-

1 https://inequality.org/facts/global-inequality/
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ences. Systems that use active learning to explore each user’s profile will typically need to present

more long-tail items because these are the ones that the user is less likely to have rated, and where

user’s preferences are more likely to be diverse [118, 133].

Finally, long-tail recommendation can also be understood as a social good. A market that

suffers from popularity bias will lack opportunities to discover more obscure products and will

be, by definition, dominated by a few large brands or well-known artists [47]. Such a market will

be more homogeneous and offer fewer opportunities for innovation and creativity.

As Anderson discusses in his book [22], in an era without the constraints of physical shelf

space and other bottlenecks of distribution, narrowly targeted products and services can be as eco-

nomically attractive as mainstream fare. When you can dramatically lower the costs of connecting

supply and demand, it changes not just the numbers, but the entire nature of the market. This

is not just a quantitative change, but a qualitative one, too. Bringing niches within reach reveals

latent demand for noncommercial content. Then, as demand shifts towards the niches, the eco-

nomics of providing them improve further, and so on, creating a positive feedback loop that will

transform entire industries – and the culture. ”We are turning from a mass market into a niche

nation, defined now not by our geography but by our interests” Anderson says in his book.

The constraints of physical shelf space was particularly a barrier to the idea of long-tail and

niche market in the past [33] as it was not economically effective for the businesses to store a large

number of products some of which had a limited number of customers interested in them. In the

era of digitalization, however, the physical storage of the goods is no longer a necessity and hence

there is more opportunity for the niche market. For instance, movie and music platforms such

as Netflix, Hulu, Spotify, and Pandora are connecting millions of consumers to a large number of

movies and songs completely on a digital platform. In such a large marketplace, the popular items

are still more attractive and getting more attention but the niche products also can reach a specific

range of audience. That being said, the recommendations generated on such platforms are often

still biased towards hits and popular items and a mechanism for alleviating this bias is needed to

give a fair exposure to different items from different popularity levels in the popularity spectrum.
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(a) MovieLens (b) Last.fm

Figure 5.1: The Long-tail Distribution of Rating data

The popularity bias in recommender systems can originate from different sources: the un-

derlying data for user interactions and the inherent bias of the recommendation algorithms.

5.1 Bias in Data

Rating data in many recommendation domains is generally skewed towards more popular

items–there are a few popular items which take up the majority of rating interactions while the

majority of the items receive small attention from the users. For example, few songs and movies

are internationally popular, few people on social media have millions of followers, a small percent-

age of research papers have thousands of citations, and few tourism destinations attract millions

of people.

Figure 5.1 shows the percentage of users rated different items in MovieLens and Last.fm

datasets: the popularity of each item. Items are ranked from the most popular to the least with

the most popular item being on the far left. The curve has a long-tail shape [23, 47] indicating few

popular items are taking up the majority of the ratings while many other items on the far right of

the curve have not received much attention. This type of distribution can be found in many other

domains such as e-commerce where a few products are best-sellers, online dating where a few

profiles attract the majority of the attention, and social networking sites where a few users have

millions of followers.
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The bias in rating data could be due to two different reasons:

• External Bias: Some items and products are inherently more popular than others even

outside of the recommender systems in the real world. For instance, even before music

streaming services emerged, there were always a small number of artists that were na-

tionally or internationally popular such as Shakira, Jennifer Lopez, or Enrique Iglesias. As a

result of this external bias (or tendency) towards popular artists, users also often listen to

those artists more on streaming services no matter if they are recommended to them or

not, and hence they get more user interactions. Another external motive for some items

being more popular could be due to social influence [94, 100], word of mouth [63], and

other external factors that impact the popularity of an item and the users’ intention to buy

those products.

• Feedback Loop: As we will see later in this chapter, recommendation algorithms have a

higher tendency towards recommending popular items. That means, the popular items

have a higher chance to be recommended to the users and hence garnering a larger num-

ber of interactions from the users. Therefore, when these interactions are logged and

stored in the system as the new data, the popularity of those items increases since they

get more and more interactions over time [86, 109].

5.2 Algorithmic Bias

Due to this imbalance property of the rating data, often algorithms inherit this bias and, in

many cases, intensify it by over-recommending the popular items and, therefore, giving them a

higher opportunity of being rated by more users [83, 123, 154]: the rich get richer and the poor get

poorer.

Figure 5.2 shows the percentage of users who have rated an item on the x-axis and the

percentage of users who received that item in their recommendation lists using four different

recommendation algorithms RankALS [161], Biased Matrix Factorization (Biased-MF) [99],User-based



63

Collaborative Filtering (User-CF) [17], and Item-based Collaborative Filtering (Item-CF) [144]. In other

words, the plot aims to show the correlation between the popularity of an item in the rating data

versus how often it is recommended to different users using different algorithms. It is clear that

in all four algorithms, many items are either never recommended or just rarely recommended.

Among the four algorithms, Item-CF and User-CF show the strongest evidence that popular

items are recommended much more frequently than the others. In fact, they are recommended to a

much greater degree than even what they initial popularity warrants. For instance, the popularity

of some items have been amplified from roughly 0.4 to 0.7 indicating a 75% increase. Both Item-CF

and User-CF are over-promoting popular items (items on the right size of the x-axis) while signif-

icantly hurting other items by not recommending proportionate to what their popularity in data

warrants. In fact, the vast majority of the items on the left are never recommended indicating an

extreme bias of the algorithms towards popular items and against less popular ones. On RankALS

the positive correlation between popularity in rating data and how frequently an item is recom-

mended can still be observed but it is nowhere as extreme as User-CF and Item-CF. Biased-MF does

not show a positive correlation between popularity in data and in recommendations although

some items are still over-recommended (have much higher popularity in recommendations ver-

sus what they had in rating data). However, this over-recommendation is not concentrated on

only popular items and some items from lower popularity values are also over-recommended.

Figure 5.3 shows the same information on Last.fm data. The magnitude of the popularity

bias of different recommendation algorithms seems to be lower on Last.fm dataset. The reason

is the original rating data in Last.fm is less biased towards popular items as we can see in y-axis

of Figure 5.1 where the most popular item in MovieLens has a popularity close to 0.45 where in

Last.fm this value is less than 0.14.

5.3 Multi-stakeholder Impact of Popularity Bias

As I discussed in Chapter 3, recommender systems are multi-stakeholder environments

where, in addition to the users, some other stakeholders such as the supplier of the items also
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Figure 5.2: Item popularity versus recommendation popularity (MovieLens)
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Figure 5.3: Item popularity versus recommendation popularity (Last.fm)
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benefit from the recommendation of their items and gaining a larger audience. On top of that, the

recommender system designer might also have certain goals such as recommending a particular

group of items more frequently in certain times depending on their business goals such as sales

promotions, items that need to be sold before a certain time etc.

Algorithmic popularity bias can negatively impact different parts of a recommender system

platform. In this section I intend to demonstrate how this bias can impact different groups of

items, users, and the suppliers of the items.

5.3.1 Impact on Item Groups

Figure 5.4 contrasts item popularity and recommendation popularity for four well-known

recommendation algorithms RankALS, Biased Matrix Factorization (Biased-MF),User-based Collabora-

tive Filtering (User-CF), and Item-based Collaborative Filtering (Item-CF). The black curve shows the

cumulative frequency of ratings for different items at a given rank in the MovieLens 1M [73] data

set. The x-axis indicates the rank of each item when sorted from most popular to least popular.

The y-axis indicates the cumulative prevalence of that item in the data. As we can see, a few

highly ranked items dominate the entire rating history. For instance, only 111 items (less than %3

of the items) take up more than %20 of the ratings. A similar type of distribution can be seen in

many other domains. These few popular items are referred to as short-head (H) in the literature,

followed by the middle-tail (M ), which are items that are not blockbusters but have significant

popularity, and tail items (T ), which are more obscure and appeal to niche groups of users [47].2

The blue curves in each figure show popularity bias at work across the four algorithms.

In Item-CF, no item beyond rank 111 is recommended. The head of the distribution constituting

less than 3% of the items are actually taking up 100% of the recommendations – a “lion’s share”

indeed. In User-CF this number is 99%. The other algorithms are only slightly improved in this

regard, where the head items take up more than 64% and 74% of the recommendations in RankALS

2 Tail items may also be new items that have yet to find their audience and will eventually become popular. In this
way, popularity bias is related to the well-known item cold-start problem in recommendation.
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and Biased-MF, respectively.

5.3.2 Impact on User Groups

We can also take a consumer- / user-centered view of popularity bias. Not every user is

equally interested in popular items. In cinema, for instance, some might be interested in movies

from Yasujiro Ozu, Abbas Kiarostami, or John Cassavetes, and others may enjoy more mainstream

directors such as James Cameron or Steven Spielberg. Figure 5.5 shows the ratio of rated items

for three item categories H , M , and T in the profiles of different users in the MovieLens 1M and

Last.fm datasets. Users are sorted from the highest interest towards popular items to the least and

divided into three equal-sized bins G1..3 from most popularity-focused to least, as I described in

Chapter 4. The y-axis shows the proportion of each user’s profile devoted to different popularity

categories. The narrow blue band shows the proportion of each users profile that consists of

popular items, and its smooth decrease reflects the way the users are ranked. Note, however, that

all groups have rated many items from the middle (green) and tail (red) parts of the distribution,

and this makes sense: there are only a small number of really popular movies and even the most

blockbuster-focused viewer will eventually run out of them.

Figure 5.6 shows the same information as Figure 5.5 but all ratios are calculated as an aver-

age value across users in each user group. The differences between different user groups in this

figure are more visible. For example, looking at the head ratio (blue color), we can clearly see that

users in group G1 has the highest ratio of head items followed by G2 and G3.

The plots in Figure 5.7 are parallel to Figure 5.5, with the users ordered by their popularity

interest, but now the y-axis shows the proportion of recommended items using different algo-

rithms from the different item popularity categories. The difference with the original user profiles

in rating data especially in the case of Item−CF and User−CF is stark. Where the users’ profiles

are rich in diverse popularity categories, the generated recommendations are nowhere close that

to what the user has shown interest at. In fact, in Item−CF almost 100% of the recommendations

are from the head category, even for the users with the most niche-oriented profiles. Tail items do
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not appear at all. I demonstrated here that popularity bias in the algorithm is not just a problem

from a global, system, perspective. It is also a problem from the user perspective: users are not

getting recommendations that reflect the diversity of their profiles and the users with the most

niche tastes (G3) are the most poorly served.

Similar to Figure 5.6, Figure 5.8 shows the ratio of different item groups in the profiles of

users in different user groups as an average value. Here, we can clearly see the differences between

algorithms in term of how the have performed for different user groups. Item-CF clearly consists

of only head items for all user groups.

5.3.3 Impact on Supplier Groups

As noted above, multi-stakeholder analysis in recommendation also includes providers or

as termed here suppliers, “those entities that supply or otherwise stand behind the recommended

objects” [1]. We can think of many different kinds of contributors standing behind a particular

movie. As I mentioned in Chapter 4, I consider the director of each movie and the artist for each

song as the suppliers in MovieLens and Last.fm respectively.

Figure 5.9 is similar to Figure 5.4 but shows the rank of different directors by popularity

and the corresponding recommendation results from the Item-CF algorithm. A similar pattern

of popularity bias is evident. The recommendations have amplified the popularity of the popu-

lar suppliers (the ones on the extreme left) while suppressing the less popular ones dramatically.

Strikingly, movies from just 3 directors (less than 0.4% of the suppliers here) take up 50% of rec-

ommendations produced, while the tail of the distribution is seeing essentially zero.

What this analysis demonstrates is that popularity bias is a multi-stakeholder phenomenon,

that entities on different sides of the recommender system are impacted by it (sometimes quite

severely) and that any evaluation of it must capture the perspective of different stakeholders.

In next chapter, I will propose several recommendation algorithms for mitigating the popu-

larity bias and evaluate their performance using the multi-stakeholder paradigm to see how they

perform from the perspective of different stakeholders.
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(a) MovieLens

(b) Last.fm

Figure 5.4: Popularity bias amplification (Item Groups)



70

(a) MovieLens

(b) Last.fm

Figure 5.5: Users’ Propensity towards item popularity
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(a) MovieLens

(b) Last.fm

Figure 5.6: User Groups’ Propensity towards item popularity
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(a) MovieLens

(b) Last.fm

Figure 5.7: Users’ centric view of popularity bias
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(a) MovieLens

(b) Last.fm

Figure 5.8: Users’ centric view of popularity bias (Groups)
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(a) MovieLens

(b) Last.fm

Figure 5.9: Suppliers’ centric view of popularity bias



Chapter 6

Tackling Popularity Bias

As I mentioned in Chapter 2 and 3, traditionally recommendation algorithms have been

developed in a way that could maximize the accuracy of the delivered recommendations to the

users. However, this over-emphasis on being accurate could hurt other important factors of a

successful recommendation such as diversity, serendipity and novelty [46, 66, 164] and impacts

across system stakeholders [1].

One of the problems that is beyond being accurate is the popularity bias phenomena I dis-

cussed in Chapter 5. We saw that this bias can negatively impact different stakeholders in a given

recommender system and hence the algorithms for mitigating such bias need to be evaluated from

the perspective of different stakeholders.

The solutions for tackling popularity bias in the literature can be categorized into two groups.

A third option, preprocessing, is generally not useful for popularity bias mitigation because un-

dersampling the popular items greatly increases the sparsity of the data.

• Model-based: In this group of solutions, the rating prediction step is modified, so that the

popularity of items are taken into account in the rating prediction [157, 166].

• Re-ranking: Most of the solutions for tackling popularity bias fall into this category [12,

13]. A re-ranking algorithm takes an output recommendation list extracts a re-ordered list

with improved long-tail properties.
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Figure 6.1: The Schema for the model-based popularity mitigation

6.1 Model-based solutions

The general schema for the model-based approach to tackle popularity bias is shown in

Figure 6.1. This is similar to Figure 2.1 in Chapter 2 with one distinction: an extra component

which I call Item Popularity Consideration is incorporated in the recommendation algorithm before

the final recommendation list is generated to the user.

This consideration of item popularity can be incorporated in different ways such as in the

rating prediction step whether it is in neighborhood-based models [53] or in matrix factorization

techniques based on rating prediction [99] or in the calculation of the ranking order of preferred

items from the user’s perspective in learning-to-rank approaches [91, 155]. Note that the calcula-

tion of the ranking order of preferred items in learning-to-rank models is still within the recom-

mendation algorithm.

Controlling popularity bias can be incorporated into this step before the recommendation

list is generated to the user. For example, Vargas et al. in [166] propose a creative way to reduce

the popularity bias and to increase the sales diversity by reversing the role of items and users.

Generally, as discussed in Chapter 2, the goal of the recommender system is to recommend a list of

items to the users. However, due to popularity bias, some items are not recommended to anyone

or are not recommended enough. By reversing the role of items and users, the goal would be, for

each item, find a set of users who might be interested in that item. This way, less popular items are
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no longer ignored and they will reach to a set of users which leads to reducing the bias on popular

items. In another work, Adamopoulos and Tuzhilin in [8] propose a modification to the standard

neighborhood-based recommender systems to handle the over-specialization and concentration

bias of the recommendations. The most important step in the neighborhood-based algorithms

is the selection of the most similar users to the target user in order to use their rating pattern

to find interesting and relevant items to be recommended to the target user. However, selecting

the most similar users often lead to dictating the preferences of some users (those that appear in

many neighborhood lists of other users) on other users. Therefore, authors in this paper use a

probabilistic approach to select the neighbors for each user instead of selecting the most similar

neighbors. Authors assign an initial weight to each candidate neighbor according to its distance

from the target user and then the candidates are sampled, without replacement, proportionally to

their assigned weights. By having a more diverse set of neighbors, as opposed to top most similar

ones, the recommendations will be less prone to concentrate only on popular items.

Incorporating the popularity bias control in the rating prediction step in factorization mod-

els often is done by modifying the objective function used to minimize the rating prediction error.

For instance, Kamishima et al. in [90] introduced the notion of neutrality in recommendation

algorithms with respect to a certain feature or characteristic. In particular, the authors explore

this concept in correcting the popularity bias in recommendations. Their method is a variant of

the probabilistic matrix factorization model that adopts a constraint term for enhancing neutral-

ity. The neutrality of a user towards item popularity (or any other aspect) is calculated using

users’ profiles based on how tolerant they are with respect to popular items. In another work, [50]

Coba et al. propose a regularization-based technique for counteracting popularity bias in a matrix

factorization-based technique by adding an extra constraint to the general matrix factorization

objective function that minimizes the distance between the popularity of a given item and the

average popularity of the items in the users’ profile. Therefore we can say this method is a per-

sonalized approach for mitigating popularity bias.

The model-based techniques can be also used for improving the diversity of the recommen-
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dations. For instance, Wasilewski and Hurley in [167] proposed a modification of a ranking-based

recommendation algorithm (RankALS) by adding a regularization term to its objective function

that minimizes the similarity (or increases the diversity) of the items within each list. Generally

speaking, many other types of recommendation properties such as novelty, diversity and even

fairness can be incorporated into the underlying recommendation algorithm as a model-based

technique [102, 169, 179].

6.1.1 Proposed Model-based Technique Using Regularization

In this section, I present a flexible framework for a model-based popularity mitigation built

on the top of a learning-to-rank algorithm. When applied to long-tail items, this approach enables

the system designer to tune the application to achieve a particular trade-off between ranking ac-

curacy and the inclusion of long-tail items. However, the framework is sufficiently general that it

can be used to control recommendation bias for or against any group of items.

Learning to Rank

I focus on matrix factorization approaches to recommendation in which the training phase

involves learning a low rank k× |U | latent user matrix P and a low-rank k× |I| latent item matrix

Q, such that the estimated rating r̂ui can be expressed as r̂ui = pTu qi where pTu is the uth row of

P , qTi is the ith row of Q, and k is the chosen dimension of the latent space. P and Q are learned

through the minimization of an accuracy-based objective [98].

In this method, I focus on the learning-to-rank problem and I add a regularization term to

its objective function that adjusts the scoring and gives a higher chance to less popular items to be

included in the recommendation lists. Generally, the objective function of any factorization-based

technique is based on minimizing a loss function that measures the error of a recommendation

algorithm. In rating prediction models, this error is the squared difference between the original

rating a user has given to an item and the predicted rating returned by the algorithm ((rui− r̂uj)2).

In a learning-to-rank method, however, the error is the difference between the original rating and

predicted rating between a pair of items. In other words, in learning-to-rank, what matters is the
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correct order of any pair of items in the user’s profile and in the recommendations (((r̂ui − r̂uj)−

(rui−ruj))2). That is, if item i is above item j in a user’s profile based the rating the user has given

to these two items, in the recommendations this order should be also the same.

For this work, I use the objective function proposed in [79] for a learning-to-rank recommen-

dation system and further developed in [161]:1

∑
u∈U

∑
i∈I

cui
∑
j∈I

sj [(r̂ui − r̂uj)− (rui − ruj)]2 + β(‖Q‖2 + ‖P‖2) (6.1)

The role of cui is to select user-item pairs corresponding to positive feedback from all possi-

ble pairs. I consider the implicit feedback case in which cui = 0 if rui = 0, and 1 otherwise. sj is an

importance weighting for item j. In this work, because I am trying to reduce the influence of pop-

ular items, I use uniform importance weighting sj = 1, for all j. β is the standard regularisation

parameter of norm-based regularization to avoid over-fitting.

Fairness-aware Regularization

Regularization is one of the main techniques to control the behavior of an objective func-

tion. Generally speaking, it is mainly used to avoid overfitting in machine learning models [20]

by adding an additional penalty term in the error function. This additional term controls the ex-

cessively fluctuating function such that the coefficients don’t take extreme values. For example,

the terms β(‖Q‖2 + ‖P‖2) in equation 6.1 is a form of regularization that controls the magnitude

of the entries in P and P to discourage the complexity of the model and avoid overfitting.

In my work, I use regularization as a tool to add extra constraint to the original objective

function such that, in addition to ranking accuracy, the fairness of representation between popular

and less popular items is taken into account in the optimization process. This work was inspired

by the work of Wasilewski and Hurley [167] in which regularization is used to enhance recom-

mendation diversity in a learning-to-rank setting, specifically using the RankALS algorithm [161].

The authors calculate a pair-wise dissimilarity matrix D for all pairs of items, demonstrate that

1 A number of such objectives have been proposed in the literature and the regularization method I propose here
could be incorporated with any such pair-wise objective.
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intra-list diversity (ILD) can be represented in terms of this matrix, and then experiment with

different ways that increased ILD can be made into an optimization objective.

Following a similar approach, I explore the use of regularization to control the popularity

bias of a recommender system. I start with an optimization objective of the form:

min
P,Q

acc(P,Q) + λreg(P,Q) (6.2)

where acc(.) is the accuracy objective similar to Equation 6.1, reg(.) is our regularization term, and

λ is a coefficient for controlling the effect of regularizer.

Our goal therefore is to identify a regularization component of the objective that will be min-

imized when the distribution of recommendations is fair in terms of popular versus less popular

(long-tail) items. I define a fair recommendation list as one that achieves a 50/50 balance between

long-tail (M ∪ T ) and short-head (H) items which is referred to as equality of attention (or oppor-

tunity) in the literature [71].

Wasileski and Hurley start from a dissimilarity matrix D, which contains all pair-wise dis-

similarities between items. The regularizer is computed from D in such a way that it pushes the

optimization solution towards recommendation lists that balance ranking accuracy with intra-list

diversity (ILD).

In my case, I do not aim for diversifying the recommendation lists in terms of content (movie

genre, music genre etc) but rather based on different item groups according to their popularity.

This framework is a binary method meaning it needs two groups of items so it can balances the

recommendations between them. I define the first group as popular items (short-head) H . For the

second group which represents long-tail items, I combine the M and T groups defined in Chapter

4 and consider them as long-tail items γ (γ = M ∪ T ). I also define a co-membership matrix D,

over these sets such that, for any pair of items i and j, d(i, j) = 1 if i and j are in the same set and

0 otherwise.

Our equivalent for intra-list distance is a measure of the lack of fairness for the two sets of
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items in a given recommendation list to user u, `u. I define intra-list binary unfairness (ILBU) as

the average value of d(i, j) across all pairs of items i, j.

ILBU(`u) =
1

n(n− 1)

∑
i,j∈`u

d(i, j) (6.3)

where n is the number of items in the recommendation list. The fairest list is one that contains

equal number of items from each set, which can be easily seen: if we start with a list containing

only H items and replace an item from H with one from γ, the highest number of non-zero pairs

occur when there is an equal number of items from H and γ. If every item in the set are from

the same group (either H or γ), ILBU will be high since all d(i,j) pairs are 1 which means higher

unfairness.

Note that I do not in my definition of fairness require that each item have an equal chance

of being recommended. There are many fewer short-head items and we are, essentially, allocating

half of the recommendation list to them.2 The 50/50 heuristic is a starting point for exploring the

effectiveness of our regularization-based technique.

As the ILBU value has the same form as the ILD measure used in [167], I can take advantage

of their experience in deriving various regularization terms from it. I chose the LapDQ regularizer,

which performed well in Wasilewski and Hurley’s experiments. LapDQ is based on the Laplacian

LD of theDmatrix and has the form tr(QTLDQ), where tr is the trace of the matrix. This version of

the regularizer only influences the item factors and therefore the p step of the RankALS algorithm,

which computes and modifies the user factors, is unchanged.

The details of the derivation of the regularizer is not the focus of this dissertation and read-

ers are referred to [167] for further information. One way to understand the function of LapDQ

is to note that our D matrix is block-structured, and has the same structure as the adjacency ma-

trix for a graph consisting of two separate components of fully interconnected items. For such a

graph, the partition is represented by the eigenvector of the Laplacian corresponding to the largest

2 Note that it would be possible to adjust the balance between long-tail and short-head items by creating a smaller
penalty for larger numbers of short-head items. These possibilities I leave for future work.
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eigenvalue. In our case, we already know what this partition is – it is the division of the nodes into

short-head and long-tail items. The trace of QTLDQ is the product of each latent factor with the

Laplacian of the membership matrix. If the item factors most resemble the partitioning eigenvec-

tor – that is, they contain elements from both partitions in opposite signs, then this vector product,

and therefore the matrix trace, is minimized. The regularizer therefore pushes each item factor in

Q to span both partitions as evenly as possible.

Evaluation

A multi-stakeholder evaluation entails multiple metrics representing the perspective of dif-

ferent stakeholders on system performance. I examine the behavior of this proposed algorithm

relative to different metrics of long-tail performance that I described in Chapter 4. Conventional

metrics are those that look at a system’s overall recommendation of long-tail items. I show these

results, but in addition, I also use metrics that are sensitive to the performance across different

groups of stakeholders as I discussed in Chapter 4: suppliers in different popularity categories,

items in different popularity categories, and users with different levels of interests in item popu-

larity.

Figure 6.2(a) shows the behavior of our model-based method when we vary the weight

of the regularization: the λ parameter. As we can see, the algorithm loses some accuracy (both

precision and NDCG) when we increase the λ and give more weight to the fairness criteria. The

Gini slightly improves meaning the recommendations are more uniformly distributed compared

to the base algorithm with no fairness component.

Other metrics related to long-tail performance and fairness, as can be seen in Figure 6.2(b)

have all improved for the largest value of λ but for some metrics such as LC, ESF , and SPD

the behavior of the algorithm is not completely monotonic. For instance, up until λ = 0.4, the

LC actually slightly decreases and then it starts to increase for larger values of λ. However this

anomaly is only seen on the MovieLens data. The trend for ESF on MovieLens data seems to be

unpredictable. However, looking at the scale for the vertical axis, we can see that the changes are

not statistically significant(p-value > 0.05). IPD and UPD, on the other hand, show a monotonic
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(a) Precision, NDCG, Gini, APL, Aggregate Diversity, and Long-tail cov-
erage for our model-based approach on MovieLens data

(b) Equality of attention Supplier Fairness (ESF), Item Popularity Devia-
tion (IPD), User Popularity Deviation (UPD) and Supplier Popularity De-
viation (SPD) of our model-based technique on MovieLens data

Figure 6.2: Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Deviation
(UPD) and Supplier Popularity Deviation (SPD) of our model-based technique on MovieLens data
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(a) Precision, NDCG,Gini, APL, Aggregate Diversity and Long-tail cov-
erage for our model-based approach on Last.fm data

(b) Equality of attention Supplier Fairness (ESF), Item Popularity Devi-
ation (IPD), User Popularity Deviation (UPD) and Supplier Popularity
Deviation (SPD) of our model-based technique on Last.fm data

Figure 6.3: Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Deviation
(UPD) and Supplier Popularity Deviation (SPD) of our model-based technique on Last.fm data
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improvement over different values of λ. SPD improves up until λ = 0.4 and then it starts to go

up again for larger values of λ. APL on the other hand, which measures a more localized view

of long-tail diversity in the individual lists and more in line with what I am optimizing for is

improving when we increase the λ. I believe the reason for the behavior of LC can be explained

by the nature of our objective function. our ILBU metric only looks at the individual lists in terms

or the ratio of short-head versus long-tail items. Therefore, it is possible for an algorithm to make

the individual lists more diverse in terms of item popularity (higherAPL) but overall, the number

of unique long-tail items in the recommendations across all users might decrease (low LC) as we

also saw in our illustrative example in Figure 4.3 in Chapter 4.

Figure 6.3 shows the results on Last.fm data. On this dataset, unlike MovieLens, the metrics

show a more monotonic behavior and we can see, generally, when we increase the λ, the algorithm

loses accuracy (both Precision and NDCG) while other metrics all are improving.

What we see in these results is similar to the findings of [167], namely that a regularization

term incorporating list-wise properties of interest can be incorporated successfully into a learning-

to-rank framework. In Wasilewski and Hurley’s work, this was a similarity-based term that en-

abled them to enhance list-wise diversity; in our case, it is a group-membership-based term that

enables us to enhance list-wise coverage of long-tail items.

Note in particular that because this loss function is local to individual recommendation lists,

it does not aim to increase catalog coverage in long-tail directly. However, our results show that,

for these datasets, the optimization of our local objective also increases overall coverage of less

popular items which makes sense since when we increase the long-tail coverage of individual

lists, the overall long-tail coverage may also increase.

6.2 Re-ranking Approach

The second class of approaches for mitigating popularity bias is based on the re-ranking

of an original list generated by a given recommendation algorithm. The idea is, for each item

in the original list, both the relevance of the item to the user and its popularity are taken into
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Figure 6.4: The schema for the re-ranking popularity bias mitigation
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account so items with high relevance and also lower popularity could be pushed up to the top of

the list [11]. Figure 6.4 shows the general schema for this class of algorithms. As we can see, the

recommendation component is not modified but, instead, the recommender system generates a

larger list of recommendations `′ of size m and the re-ranking algorithm creates a shorter list ` of

size n (m >> n) that has better long-tail properties.

The advantage of the re-ranking techniques over the model-based ones is that they are not

dependent on a particular recommendation algorithm. Unlike the model-based techniques, where

popularity mitigation is done within the recommendation algorithm itself, the re-ranking methods

do not modify the underlying recommendation algorithm but rather acts as a post-processing

technique that could be applied on top of any existing recommendation algorithm.

There are many existing works for mitigating popularity bias that are based on the re-

ranking approach. Miyamoto et al. [113] proposed a post-processing re-ranking technique for

reducing frequently recommended items. The algorithm, at first, predicts the ratings a user would

give to a list of items. Then, it keeps those items whose predicted ratings is above a certain thresh-

old and, for each of those items, the algorithm calculates how many times the item was recom-

mended to other users. After that, the items are sorted based on this score and the items with the

lowest score are put in the final recommendation list and the score for those items increases by one.

This process repeats for every user. In another work [13] propose a graph-based approach based

on the maximum flow theory for improving the aggregate diversity of the recommendations. In

this work, the max-flow value will be equal to the largest possible number of recommendations

than can be made from among the available (highly predicted) items, where no user can be rec-

ommended more than n items, and no item can be counted more than once, which is precisely

the definition of the aggregate diversity. In a similar work which is also based on maximum flow

theory [25], Antikacioglu et al. use minimum-cost network flow method to efficiently find recom-

mendation sub-graphs that optimize diversity. Authors in this work define a target distribution

of item exposure (i.e. the number of times each item should appear in the recommendations) as

a constraint for their objective function. The goal is therefore to minimize the discrepancy of the
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recommendation frequency for each item and the target distribution. In addition, Jannach et al.

in [83] propose a personalized re-ranking technique that adjusts the relevance scores of the items

so it can boost the predicted rating for less popular items to push them to the top of the list. The

adjustment of relevance is done by taking into account the propensity of the users towards pop-

ular items and also the popularity of the recommended list and tries to minimize the norm-2 of

this distance. In this dissertation, I also propose two re-ranking based techniques for controlling

popularity bias that have the tolerance of the users towards item popularity incorporated in the

algorithm.

6.2.1 Re-ranking Technique 1: Fair Long-tail Promotion:

I present a general and flexible approach for controlling the balance of item exposure in

different portions of the item catalog as a post-processing phase for standard recommendation

algorithms. Our work is inspired by [142] where authors introduced a novel probabilistic frame-

work called xQuAD for Web search result diversification which aims to generate search results

that explicitly account for various aspects associated with an under-specified query. One motivat-

ing example for the usefulness of such diversification in search results is the ambiguity of certain

queries. For instance, if a user types the word Apple in the search bar, s/he could be searcher for

the fruit, or maybe the company. So, we can say, in this example, that the word apple has two

aspects: 1) being a fruit and 2) being a company. Therefore, in order to make sure we are not

limiting the choices for the user, the returned result is better to contain web pages related to both

of those aspects. By doing so, we give the user the choice in selecting which of the search results

s/he intended to find. The algorithm, re-ranks an initial list of search results so it contains a fair

proportion of web pages related to each of these two different aspects. It is worth noting that a

search query could be related to more than two aspects.

I adapt the xQuAD approach to the popularity bias problem. Here, the concept of diversi-

fication is slightly different as I no longer use aspects associated with each item. In my approach,

each item is either popular and not. Therefore, I am dealing with a binary categorization and
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the goal of the re-ranking technique, is to return a list of recommendations that contains a bal-

anced ratio of items belonging to either popular or less popular item categories. By doing that, we

are helping the less popular items to have a better representation in the recommendation lists as,

initially, they are under-represented.

Given the nature of our proposed approach, it enables the system designer to tune the sys-

tem to achieve the desired trade-off between accuracy and better coverage of long-tail, less popu-

lar items.

xQuAD

Result diversification has been studied in the context of information retrieval, especially

for web search engines, which have a similar goal to find a ranking of documents that together

provide a complete coverage of the aspects underlying a query [143]. EXplicit Query Aspect Di-

versification (xQuAD) [142] explicitly accounts for the various aspects associated with an under-

specified query. Items are selected iteratively by estimating how well a given document satisfies

an uncovered aspect.

In adapting this approach, I seek to recognize the difference among users in their interest

in long-tail items. Uniformly-increasing diversity of items with different popularity levels in the

recommendation lists may work poorly for some users. I propose a variant that adds a personal-

ized bonus to the items that belong to the under-represented group (i.e. the long-tail items). The

personalization factor is determined based on each user’s historical interest in long-tail items.

Methodology

I build on the xQuAD model to control popularity bias in recommendation algorithms. As

described in section 6.2, I assume that for a given user u, a ranked recommendation list `′ with

size m has already been generated by a base recommendation algorithm. The task of the modified

xQuAD method is, therefore, to produce a new re-ranked list ` of size n that manages popularity

bias while still being accurate.
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The new list is built iteratively according to the following criterion:

P (i|u) + λP (i, u|i /∈ `) (6.4)

where P (i|u) is the likelihood of user u ∈ U being interested in item i ∈ I , independent of the items

on the list so far as, predicted by the base recommender. The second term P (i, u|i /∈ `) denotes the

likelihood of user u being interested in an item i as an item not in the currently generated list `.

Intuitively, the first term incorporates ranking accuracy while the second term promotes

diversity between two different categories of items (i.e. short head and long tail). The parameter

λ controls how strongly controlling popularity bias is weighted in general. The single item that

scores most highly under the equation 6.4 is added to the output list ` and the process is repeated

until ` has achieved the desired length.

To achieve more diverse recommendation containing items from both short-head and long-

tail items, the marginal likelihood P (i, u|i /∈ `) over both item categories long-tail (γ =M ∪T ) and

short head (H) is computed by:

P (i, u|i /∈ `) =
∑

c∈{H,γ}

P (i, u|c /∈ `)P (c|u) (6.5)

Following the approach of [142], I assume that the remaining items are independent of the

current contents of ` and that the items are independent of each other given the short-head and

long-tail categories. Under these assumptions, we can compute P (i, u|c /∈ `) in Eq.6.5 as

P (i, u|c /∈ `) = P (i|c)P (c /∈ `) = P (i|c)
∏
j∈`

(1− P (j|c ∈ `)) (6.6)

By substituting equation 6.6 into equation 6.5, we can obtain

score = (1− λ)P (i|u) + λ
∑

c∈{H,γ}

P (c|u)P (i|c)
∏
j∈`

(1− P (j|c ∈ `)) (6.7)

where P (i|c) is equal to 1 if i ∈ c and 0 otherwise.

I measure P (j|c ∈ `) as the ratio of items (j ∈ `) that covers category c.
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The likelihood P (c|u) is the measure of user preference over different item categories. In

other words, it measures how much each user is interested in short head items versus long tail

items. I calculate this likelihood by the ratio of items in the user profile which belong to category

c.

In order to select the next item to add to `, I compute a re-ranking score for each item in `′\`

according to Eq. 6.7. For an item i′ ∈ c, if ` does not cover c, then an additional positive term will

be added to the estimated user preference P (i′|u). Therefore, the chance that it will be selected is

larger, balancing accuracy and popularity bias.

Evaluation

As with other re-ranking techniques, our proposed re-ranking method also needs a base

algorithm to generate the initial list of recommendations for post-processing. Since our model-

based algorithm I proposed in section 6.1.1 works on the RankALS algorithm, for comparison

purposes, I chose this algorithm as the base and I call it Base.

Similar to [92] I set the size of the recommendations generated by the Base algorithm to 100

(m = 100), and the size of the final recommendation list is 10 (n = 10).

Figure 6.5(a) shows the behavior of our fairness-aware re-ranking method for different val-

ues of λ which controls the weight of the fairness(i.e. long-tail enhancement) compared to accu-

racy. Similar, to model-based method we saw in previous section, we can see that the re-ranking

algorithm also loses accuracy (precision and NDCG) when we increase the λ. The Gini improves

when we increase the λ parameter indicating the algorithm achieves a more uniformly distributed

recommendations across all users.

The long-tail enhancement and fairness metrics, however, are all improving as we can be

seen in Figure 6.5(a) and 6.5(b). Although, almost for all metrics, we see a stepwise behavior

meaning the curve goes up / down, stays constant at some points, and then goes up / down

again. Looking at the scale of the y-axis, we can see this re-ranking approach performs better than

the model-based technique when it comes to long-tail enhancement and fairness. I will compare

the performance of all three algorithms proposed in this dissertation later in section 6.2.2.
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(a) Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail cov-
erage for our fairness-aware re-ranking approach on MovieLens data

(b) Equality of attention Supplier Fairness (ESF), Item Popularity Devia-
tion (IPD), User Popularity Deviation (UPD) and Supplier Popularity De-
viation (SPD) of our fairness-aware re-ranking approach on MovieLens
data

Figure 6.5: Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Deviation
(UPD) and Supplier Popularity Deviation (SPD) of our fairness-aware re-ranking on MovieLens
data
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(a) Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail cov-
erage for our fairness-aware re-ranking approach on Last.fm data

(b) Equality of attention Supplier Fairness (ESF), Item Popularity Devi-
ation (IPD), User Popularity Deviation (UPD) and Supplier Popularity
Deviation (SPD) of our fairness-aware re-ranking approach on Last.fm
data

Figure 6.6: Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Deviation
(UPD) and Supplier Popularity Deviation (SPD) of our fairness-aware re-ranking on Last.fm data
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Figure 6.7: Popularity calibration example

6.2.2 Re-ranking Technique 2: Calibrated Popularity

The second re-ranking method I propose in this dissertation is Calibrated Popularity.

One of the problems of algorithmic popularity bias is the tendency of over-recommending

popular items even to those users who do not have much interest in popular items. However as

we saw in Chapter 5 there are many users who are interested in less popular items and hence

exclusively recommending popular items to these users would hurt their experience in interact-

ing with the recommender system. Therefore, I propose an algorithmic approach based on the

novel notion of popularity calibration that provides a comprehensive solution to the problem of

popularity bias by addressing the needs of multiple stakeholders. A recommendation list is cali-

brated based on popularity when the range of items it covers matches the user’s profile in terms

of item popularity. For example, if a user has 20% H items, 40% M items and 40% T items in her

profile, we call the recommendations to be calibrated when the ratio of each item category in the

recommended list is consistent with the aforementioned ratios. I show that my approach, while

yielding more calibration recommendations for users, also results in fairer recommendations from

the suppliers’ perspective.
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6.2.2.1 Motivating Example

Figure 6.7 shows a user whose name is Ross3 . Out of all the items in a movie recom-

mender’s catalog, Ross has interacted with (or liked) four items I2, I4, I5, and I7. Suppose dark

circles are popular items (H) and white ones are less popular items (eitherM or T ). That means his

profile consists of an equal ratio of popular versus non-popular items (50% each), and I assume

that the contents of his profile represents the scope of his interest in movies. In addition, each

item is provided by one of the suppliers A or B. A (red color) who is a popular supplier (based

on the average popularity of their items) owns I2, I3, I5, I6, I7, I8, I9 and I10. B who is a less

popular supplier owns I1 and I4. Note that a popular supplier could also own some less popular

items (A owns I8). Since Ross is equally interested in popular and less popular items based on his

profile, a well-calibrated recommender should seek to deliver the same ratio in his recommenda-

tions, reflecting the diversity of interests that he has shared with the system. Assuming the size

of the recommendation set is 2 (for illustration purposes), he should get one popular and one less

popular recommendation. A recommendation algorithm influenced by popularity bias would be

more likely to generate a recommendation list containing only popular items: “Non-Calibrated”

in the figure. With this set of recommendations, the supplierB is completely out of the picture and

has received zero exposure even though Ross’s profile does show interest in less popular movies.

The calibrated recommendations, on the right side, shows preferred situation where the user has

received recommendations that match his interests across the item popularity spectrum, while at

the same time both suppliers have received exposure. This shows that the popularity calibration

for the users would also benefit the suppliers.

6.2.2.2 Calibrated Popularity

Our proposed technique, Calibrated Popularity (CP), is a re-ranking method. I build on the

work of Steck [156] in using re-ranking to provide results that better match the distributional

properties of user profiles. In Steck’s case, the distribution of interest was the distribution of
3 Ross is the name of the first author’s favorite character in Friends.
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Figure 6.8: An illustration of the statistical distance between the distribution of item popularity in
the user’s profile and in the recommendations.

genres across recommended movies. In our case, it is the distribution of the item popularity I seek

to control4 .

Figure 6.8 shows the distribution of three item groups H , M , and T in a given user’s profile.

The distribution of the popularity item groups for two recommendation lists L1 and L2 are also

shown. We can see that the ratios of different item groups in L1 better match that of user’s. The

ratios of H , M , and T in L2, on the other hand, has no similarity with the those ratios in the user’s

profile. Therefore, we can say that the distribution of item popularity groups in L1 has smaller

distance to that of user’s profile and, by definition, is more calibrated.

CP algorithm operates on an initial recommendation list `′ of sizem generated by a base rec-

ommender to produce a final recommendation list ` of size n (m >> n). Similar to [156], I measure

distributional differences in the categories (groups) to which items belong C = {c1,c2,...,ck}. For

our purposes, these are the three H , M and T item groups described above (i.e. C = {H,M, T}).

To do this comparison, I need to compute a discrete probability distribution P for each user

u, reflecting the popularity of the items found in their profile ρu over each item group c ∈ C. I

also need a corresponding distribution Q over any given recommendation list `, indicating what

item popularity groups are found among the listed items. For measuring the interest of each user

towards each item popularity group, I use Vargas et al.’s [165] measure of category propensity.

4 Note that unlike the genre labels in [156] where it is possible for a movie to have multiple genres, each item only
belongs to one item group.
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Specifically, I calculate the propensity of each user u towards each item group c ∈ C in her profile

ρu (p(c|u)) and the ratio of such item group in her recommendation list `u (q(c|u)) as follows:

p(c|u) =
∑

i∈ρu r(u, i)1(i ∈ c)∑
cj∈C

∑
i∈ρu r(u, i)1(i ∈ cj)

, q(c|u) =
∑

i∈`u 1(i ∈ c)∑
cj∈C

∑
i∈`u 1(i ∈ cj)

(6.8)

1(.) is the indicator function returning zero when its argument is False and 1 otherwise.

In order to determine if a recommendation list is calibrated to a given user, I need to mea-

sure the distance between the two probability distributions P and Q. There are a number of

metrics for measuring the statistical distance between two distributions [103]. Steck [156] used

Kullbeck-Liebler (KL) Divergence. In this paper, I am using Jensen–Shannon divergence, which is

a modification of KL Divergence that has two useful properties which KL divergence lacks: 1) it

is symmetric: J(P,Q) = J(Q,P ) and 2) it has always a finite value even when there is a zero in Q.

For our application, it is particularly important that the function be well-behaved at the zero point

since it is possible for items from certain item groups to be missing from the recommendation list.

Given the KL as the KL divergence function, the Jensen–Shannon divergence (J) between

two probability distributions P and Q is defined as follows:

J(P,Q) =
1

2
KL(P,M) +

1

2
KL(Q,M), M =

1

2
(P +Q) (6.9)

Similar to [156, 168], I use a weighted sum of relevance and calibration for creating our re-

ranked recommendations. In order to determine the optimal set `∗ from the m recommended

items, I use the weighted combination of relevance and miscalibration as follows:

`∗ = argmax
`,|`|=n

(1− λ) ·Rel(`)− λJ(P,Q(`)) (6.10)

where λ is the weight controlling the relevance versus the popularity calibration and Rel(`) is

the sum of the predicted scores for items in `. Since smaller values for J are desirable, I used its

negative for our score calculation.

As noted in [156], finding the optimal set `∗ is an NP-hard problem. However, similar to

the first re-ranking method I proposed earlier, a simple greedy optimization approach is compu-

tationally effective. The greedy process starts with an empty set and iteratively adds one item
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from the larger list to the under-construction list until it reaches the desired length. At each step

j, both Rel(`) and J(P,Q(`)) are calculated using the union of the items that are already in the

under-construction list and the item i that is a candidate to be added to the list (i.e. `@j ∪ i) and

the item that gives the highest score will be added to the list. This greedy solution achieves a

(1− 1/e) optimality to the best possible `∗ list with e being Euler’s number.

6.2.2.3 Evaluation

Similar to the two other algorithms I discussed in previous sections, I evaluate the per-

formance of our Calibrated Popularity algorithms with respect to different metrics explained in

Chapter 4.

Figure 6.9(a) shows the results for the calibrated popularity algorithm on precision, NDCG,

Gini, average percentage of long-tail items in recommendation lists, aggregate diversity, and long-

tail coverage. Similar to previous techniques, there is a loss in precision when we increase the

weight for the calibration component (λ). Gini, aggregate diversity and long-tail coverage (both

list-wise (APL) and overall (LC)) are all improving when we increase the values for λ parameter

meaning more unique items are recommended, recommendation are more uniformly distributed

and also more long-tail items are appeared in the recommendations. It is interesting that aggregate

diversity and long-tail coverage significantly improve up until a certain value for λ (λ = 0.2) and

then it loses this sharp momentum for larger values of λ. The reason is, the calibrated popularity

algorithm does not directly aim for increasing aggregate diversity or long-tail coverage but rather

tries to give more exposure to different items in different item popularity groups. In other words,

after a certain point, it does not add any new item to its list of covered items but tries to give these

already covered items more exposure as can be seen from the monotonic improvement for Gini

and also IPD in Figure 6.9(b) which measures how much the exposure for different items varies

from their popularity in the original rating data.

The long-tail enhancement and fairness metrics are all improved as we can see from Figure

6.9(b). Similarly, Figure 6.10(a) and 6.10(b) show the same trends for the calibrated popularity on
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different metrics on Last.fm dataset.

Figures 6.11 and 6.12 compares the three algorithms I proposed in this dissertation all within

the same plot. RG is the model-based technique based on regularization,XQ is the fairness-aware

re-ranking technique based on xQuAD, and CP is the popularity calibration approach I proposed

in this section.

First of all, the superiority of both re-ranking algorithms (XQ and CP ) over the model-

based technique (RG) is quite obvious in many of the metrics. Overall, the precision for all three

algorithms, as mentioned earlier, is decreasing over different values for λ. The precision for XQ,

overall, has experienced a lower drop compared to other two indicating it keeps its accuracy better.

Also, for smaller values of λ, the precision of RG is higher than that of CP but for larger values it

experiences a larger loss.

Looking at Gini for three algorithms we can see that the Gini of RG looks almost like a

straight line when it is contrasted with the other two re-ranking techniques. That means, RG does

not improve the uniformity of the recommendation distribution compared to CP or XQ. CP is

clearly outperforming XQ here.

When it comes to aggregate diversity and long-tail coverage, XQ outperforms the other

two. ESF which also has a strong connection to aggregate diversity is higher for XQ compared

to CP and RG when we increase λ. However, all the metrics for measuring the proportionality of

popularity (IPD, UPD, and SPD) indicate that CP outperforms the other two by a large margin.

Another interesting pattern we can see in the results for MovieLens dataset, is that RG performs

worse than XQ on UPD but it outperforms XQ on SPD. In other words, XQ better keeps the ra-

tio of different item popularity groups in the users’ profile when generating the recommendations

but the popularity of different suppliers is not as well-kept as in RG.

I also want to compare all the three proposed methods I proposed in this dissertation with

some of the state-of-the-art techniques for mitigating popularity bias. I used two recent state-of-

the-art re-ranking techniques for mitigating popularity bias in the literature. These two methods

are as follows:



100

(a) Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail cov-
erage for our Popularity Calibration Re-ranking approach on MovieLens
data

(b) Equality of attention Supplier Fairness (ESF), Item Popularity Devi-
ation (IPD), User Popularity Deviation (UPD) and Supplier Popularity
Deviation (SPD) of our Popularity Calibration Re-ranking approach on
MovieLens data

Figure 6.9: Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Devia-
tion (UPD) and Supplier Popularity Deviation (SPD) of our Popularity Calibration Re-ranking
approach on MovieLens data
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(a) Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail cov-
erage for our Popularity Calibration Re-ranking approach on Last.fm data

(b) Equality of attention Supplier Fairness (ESF), Item Popularity Devi-
ation (IPD), User Popularity Deviation (UPD) and Supplier Popularity
Deviation (SPD) of our Popularity Calibration Re-ranking approach on
Last.fm data

Figure 6.10: Precision, NDCG, Gini, APL, Aggregate Diversity and Long-tail coverage, Equal-
ity of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Devi-
ation (UPD) and Supplier Popularity Deviation (SPD) of our Popularity Calibration Re-ranking
approach on Last.fm data
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(a)

(b)

Figure 6.11: Precision, Gini, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Deviation
(UPD) and Supplier Popularity Deviation (SPD) for all three popularity mitigating approaches on
MovieLens data
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(a)

(b)

Figure 6.12: Precision, Gini, Gini, APL, Aggregate Diversity and Long-tail coverage, Equality
of attention Supplier Fairness (ESF), Item Popularity Deviation (IPD), User Popularity Deviation
(UPD) and Supplier Popularity Deviation (SPD) for all three popularity mitigating approaches on
Last.fm data
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• Discrepancy Minimization (DM) [26]: In this method, the goal is to improve the total

number of unique recommended items, also referred to as aggregate diversity (see Equa-

tion 2.12 in Chapter 2) of recommendations using minimum-cost network flow method to

efficiently find recommendation sub-graphs that optimize diversity. Authors in this work

define a target distribution of item exposure (i.e. the number of times each item should

appear in the recommendations) as a constraint for their objective function. The goal is

therefore to minimize the discrepancy of the recommendation frequency for each item and

the target distribution.

• FA*IR (FS) [176]: This method was originally used for improving group fairness in job

recommendation and was adapted here to improve the fairness of recommendations in

terms of head (H) versus long-tail (M ∪ T ) items in recommendations. The algorithm

creates queues of protected and unprotected items and merges them using normalized

scoring such that protected items get more exposure. I define protected and unprotected

groups as long-tail and head items, respectively. I performed grid search over the two

hyperparameters, proportion of protected candidates in the top n items 5 and significance

level6 , using values of {0.25, 0.5, 0.75, 0.95} and {0.05, 0.1, 0.15}, respectively.

The two re-ranking baselines (DM and FS) and the proposed techniques in this disserta-

tion (RG, XQ and CP ) have hyperparameters that control the trade-off between relevance and

a second criterion: long-tail regulariation in RG, diversification in XQ, fairness in FS, aggregate

diversity in DM , and popularity calibration in CP . To establish a point of comparison across the

algorithms, I varied these trade-off hyperparameters for each algorithm, and chose, for each, a

hyperparameter that yields a recommendation precision that is within a small margin (Difference

in precision is less than 0.01 for MovieLens and less than 0.001 for Last.fm) compared to that off

other algorithms since getting exactly an equal precision is not possible for certain algorithms.

First I look at the overall performance of these algorithms. The overall results for different
5 Based on suggestion from the released code, the range should be in [0.02, 0.98]
6 Based on suggestion from the released code, the range should be in [0.01, 0.15]
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Table 6.1: Results of different algorithms on two datasets. The setting that yields the same preci-
sion for all three reranking methods XQ, DM and CP is chosen and the results is reported. Bold
values are statistically significant compared to the second best value in each column with signifi-
cance level of 0.05 (α=0.05)

Agg-Div↑ LC↑ Gini↓ ESF↑ IPD↓ UPD↓ SPD↓

Base 0.194 0.164 0.885 2.956 0.295 0.368 0.143
RG 0.196 0.167 0.872 2.960 0.265 0.341 0.127
XQ 0.384 0.3610 0.839 3.055 0.273 0.308 0.127
DM 0.519 0.501 0.623 3.057 0.213 0.302 0.109
FS 0.198 0.168 0.863 2.965 0.170 0.268 0.109
CP 0.281 0.253 0.831 3.056 0.092 0.152 0.090

algorithms on both MovieLens and Last.fm datasets can be seen in Table 6.1 and 6.2. The arrow

next to the metric name indicates the direction of preference for a better outcome.

On MovieLens, with respect to aggregate diversity (Agg-Div), long-tail coverage (LC), and

Gini, On MovieLens, the DM algorithm has the best performance on these metrics. CP outper-

forms XQ on aggregate diversity and long-tail coverage but they have similar performance with

respect to Gini. Even though RG and FS have both improved these metrics over the Base algo-

rithm they still stand behind the other algorithms. Not only is greater coverage for DM achieved

for the whole catalog, but a better distribution as shown by its low Gini index. The results for

Last.fm dataset in Table 6.2 shows that CP outperforms the other algorithms with respect to all

metrics followed by FS and XQ. RG still performs the worst among all.

A more detailed picture of the way that item popularity is transformed in recommendation

frequency is available in Figure 6.13(a) and 6.13(b). These scatter plots have rating frequency and

popularity segments (i.e. item groups) on the x-axis with the Tail items (T ) having low rating

frequency on the left, moving to the popular Head items (H) on the right. Also, y-axis shows

the frequency of the recommendations for each item (i.e. exposure rate). Looking first at part (a)

showing the MovieLens results, we see that, in the Base algorithm, the T items are rarely recom-

mended, as previously noted. The XQ, and CP boost the T and M items significantly, while a

more limited effect is seen for DM , RG and FS. The division of the items into groups has an
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(a) MovieLens

(b) Last.fm

Figure 6.13: Exposure rate vs popularity across different re-ranking algorithms (MovieLens)
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Table 6.2: Results of different algorithms on two datasets. The setting that yields the same preci-
sion for all three reranking methods XQ, DM and CP is chosen and the results is reported. Bold
values are statistically significant compared to the second best value in each column with signifi-
cance level of 0.05 (α=0.05)

Agg-Div↑ LC↑ Gini↓ ESF↑ IPD↓ UPD↓ SPD↓

Base 0.137 0.0970 0.922 4.253 0.354 0.466 0.21
RG 0.145 0.105 0.915 4.324 0.318 0.435 0.184
XQ 0.169 0.129 0.908 4.429 0.331 0.424 0.185
DM 0.175 0.134 0.905 4.274 0.339 0.453 0.2
FS 0.176 0.142 0.891 4.440 0.186 0.328 0.129
CP 0.203 0.172 0.879 4.501 0.171 0.246 0.106

obvious effect as the promotion of lower-popularity items is concentrated at the top end of the T

and M items, which could be expected as these are the items in this set with the most number of

ratings. Note also that CP and FS algorithms reduce the number of items with the maximum

rating frequency (contained in more than 12.5% of recommendation lists).

In Figure 6.13(b), we see the results for Last.fm. We can clearly see that the popularity bias

of the Base recommender is lower compared to that of for MovieLens in its neglect of the lower

parts of the popularity distribution here and that gives all of the re-rankers more to work with.

CP and XQ boost the frequency of the recommendations for T items somewhat and reduce the

extremes of recommendation frequency. Also, in addition to CP , FS improves the exposure for

the items in the M category. Overall, the CP algorithm has performed the best with respect to

giving items from different item groups the exposure that they deserve.

There is another interesting pattern that helps explain the performance of theDM algorithm

on the Agg-Div, LC, and Gini metrics on Movielens dataset. On this dataset, the DM algorithm

promotes some of the T and M items as can be seen in the small step increase in the plot in these

regions. Thus, it increases aggregate and long-tail coverage since in both of these two metrics, the

recommendation frequency does not matter meaning recommending an item even once would be

counted the same as recommending it to many users. By giving very small but consistent exposure

to this range of items, it improves the Gini index as well.
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Figure 6.14 shows a similar plot to Figure 5.7 in Chapter 5 but for the re-ranking algorithms.

The black curve shows the cumulative frequency of ratings for different items at a given rank in

MovieLens and Last.fm datasets. The x-axis indicates the rank of each item when sorted from

most popular to least popular. The blue curves in each figure show the cumulative frequency of

the recommendations for each item at a given rank. Three item groups H , M , and T are depicted

on the top of each plot. The point that the blue curve intersects with each of the dotted vertical lines

shows the cumulative percentage of the recommendations that come from items up that point. For

example, on MovieLens, in the Base algorithm, approximately 60% of the recommendation come

from items in the H which is significantly higher that what they originally had in rating data (H

items take up 20% of the ratings). The lower this number is for the re-ranking algorithms, the

better they have controlled this bias. RG does not seem to perform well as this intersection is

still at around 60%. XQ has slightly lowered this bias to around 50%. CP seems to have the

best performance across all re-ranking algorithms and it has lowered the frequency of H items

to around 30% which is very close to their original popularity. CP has also given the highest

exposure to the T items. The same pattern repeats for the Last.fm data where CP performs well

on different item groups compared to other algorithms.

Without a multi-stakeholder analysis, we might conclude from the overall metrics shown

in Table 6.1 that DM is a superior approach for remediating popularity bias, on MovieLens data.

However, evaluating the recommendations from the perspective of the different stakeholders re-

veal a different story. Because CP aims to improve popularity calibration, we might expect that

UPD, which more or less measures the inverse of average calibration, would be improved and this

is indeed a strong effect across both datasets. CP is applying its long-tail enhancement where it

matters for users and therefore is able to have a big impact on calibration. Thus, we might say that

UPD is measuring useful long-tail diversity in recommendation results. Interestingly, this emphasis

on users also has a beneficial effect on the metrics related to other recommendation stakeholders

as shown in the superior performance on IPD, and SPD. All algorithms have a comparable ESF .

Additional detail on the comparative performance for different stakeholders and sub-groups
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(a) MovieLens

(b) Last.fm

Figure 6.14: Cumulative frequency of the ratings for different items at a given rank and their
frequency of appearance in the recommendations
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can be seen in Figure 6.15. These results compare the popularity deviation metrics (IPD, UPD,

SPD) for different sub-groups.

6.2.2.4 Item Groups

First, we can see that all algorithms have positive IPD values for items in H meaning they

all over-recommend popular items. This is not surprising since the Base algorithm exhibits a

stronger bias towards these items and although the re-ranking techniques have reduced this over-

concentration they still have not removed it completely. The CP algorithm comes the closest to

doing so. Also, on Movielens, in all algorithms except for CP , items from the M group have

negative deviation meaning they are under-represented in the recommendations. But again, CP

performs significantly better in the M group giving these items a slight boost, as we also saw in

Figure 6.13.

The result for the T items show that CP and XQ have lower deviation for this item group

on MovieLens compared to other algorithms, but all algorithms including CP have performed

poorly. On Last.fm, CP and XQ performs better than other algorithms on this item group. So

overall, no algorithm has outperformed CP in any of these item groups.

6.2.2.5 User Groups

Looking at the charts for user groups, again, we see the superiority ofCP . Firstly, on Movie-

Lens, G1, the group with the highest interest towards popular items, has the lowest UPD (i.e. low-

est miscalibration) using all algorithms and G3 has the highest miscalibration. That shows users

with high interest towards popular items are served much better as expected. Regardless, all user

groups have experienced the lowest miscalibration using CP . FS also performs well here with

lower UPD compared to RG, DM , and XQ. What is interesting about CP and FS with regard to

UPD is that they both have comparable UPD for G1 but the UPD of CP is significantly lower for

G2 and G3 indicating CP also performs well for users with lesser interest in popular items as it

calibrates its recommendations better to different users’ profiles. The same for DM and FS where
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(a) MovieLens

(b) Last.fm

Figure 6.15: Popularity deviation metrics for different stakeholder groups
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FS works better for users in G1 (lower UPD) while DM is superior for G3. These are distinctions

that we would not have observed without a multi-stakeholder approach to evaluation.

Another view of the performance of different algorithm for different user groups is shown

in Figure 6.16 which is a similar plot to what we saw in Figure 5.5 in Chapter 5. Users are ranked

based on their interests towards popular items from left to right and the three user groups are

shown in each plot. We can see that different recommendation algorithms produced different

density of recommended items from different item groups. Some still have recommended many

popular items even to the users who have lesser interest items in these items and some have done

a better job in giving items from different popularity bins to different users according to their

interest. RG still does not look good from the users’ perspective as it almost has the shape as the

original RankALS. DM seems to the most aggressive one in recommending T items. CP shows

a better overall performance as the ratio of different recommended item groups seem to better

match the original ratio of these items in the users’ profiles.

The difference of performance for different algorithms in terms of recommending the right

ratio of different item groups for users in different user groups can be seen in Figure 6.17. The ratio

of tail items recommended to all three user groups usingRG and FS is essentially zero. DM , XQ,

and CP have all recommended tail items but the proportion of different item categories recom-

mended using CP is closer to the historical users’ interaction with these different item categories

as we saw in Figure 5.6 in Chapter 5.

6.2.2.6 Supplier Groups

Finally, the chart for supplier groups similarly confirms the superiority of CP for S1 and S2

in this multi-stakeholder analysis. On both datasets, CP has the lowest SPD for the S1 (group with

high popularity). On Movielens, this metric for S2 has a positive value meaning CP has actually

given a boost to suppliers from this group in terms of exposure.

One other interesting finding that can be seen in this chart for MovieLens dataset is the rela-

tionship between item popularity and supplier popularity. One might expect that when an algo-
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(a) MovieLens

(b) Last.fm

Figure 6.16: The ratio of different item groups in the recommendations of different users using the
popularity bias mitigation techniques
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(a) MovieLens

(b) Last.fm

Figure 6.17: The ratio of different item groups in the recommendations of different user groups
using the popularity bias mitigation techniques
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rithm performs better than another on items with lower popularity (e.g. T ) it should also perform

better on the suppliers with lowest popularity as these two seem to be correlated. However, as we

can see on MovieLens dataset, CP and DM have comparable performance on T items (both have

roughly equal IPD ) but DM outperforms CP on S3 (lower SPD). The reason is, we observed

not every item from a popular / non-popular supplier is necessarily popular / non-popular and

therefore it is possible for an algorithm to perform differently on item groups and supplier groups

as it is the case on MovieLens dataset for CP and DM .

Figure 6.18 shows the cumulative Frequency of the recommendations from different sup-

plier groups versus their popularity in rating data using different popularity bias mitigation tech-

niques. All algorithms (even RG to some extent) have reduced the over-concentration of the rec-

ommendations on the items from popular supplier groups. Especially, CP and FS seem to have

narrowed down the gap between the blue and black curve which shows their superior perfor-

mance in giving proportionate exposure to different suppliers with a varying degree of popularity.

Overall, we learned that, among all the popularity bias mitigation approaches we studied

in this chapter, CP can be considered the superior approach since it performs better than the

others from the perspective of different stakeholders. This is an interesting finding which means

matching the recommendations with the users’ range of interests in terms of item popularity not

only does it calibrate the recommendations to the users’ profiles, it also gives a fairer exposure to

items from different popularity groups and also suppliers with different levels of popularity.
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(a) MovieLens

(b) Last.fm

Figure 6.18: Cumulative Frequency of recommendations from different supplier groups versus
their popularity in rating data



Chapter 7

Conclusion and future work

7.1 Summary of Contributions

7.1.1 Multi-stakeholder recommendation

In Chapter 3 I described a new paradigm for recommender systems’ design, implementa-

tion, and evaluation. I defined what the characteristics of multi-stakeholder recommendations

are and I discussed its connection to some of the existing work in the literature such as group

recommendation, people recommendation and matching, fairness-aware recommendation and

value-aware recommendation.

Generally speaking, multi-stakeholder recommendation refers to new practice of taking into

account the needs and interests of several stakeholders in the recommendation process. The rea-

son this is an important consideration is that, in many real-world recommendation platforms a

simple focus on the users may not address all the complexities of the recommender systems. For

instance, in an online dating application, both parties (e.g. men vs women) should be satisfied

with a given recommendations. In addition, the platform owner may also have other objectives

that is beyond the preferences of users such as fairness concerns, premium users vs free subscrip-

tions. As another example, we can think of a music recommendation system as a multi-sided

platform where on one side we have the listeners and on the side we have the artists. It is clear

that only focusing on the listeners may not be ideal for the overall long-term health of the busi-

ness as it may lead to the unsatisfaction of the artists and, hence, losing the artists on the platform



118

altering the balance of the marketplace.

I stated that typically three main stakeholders can be observed in many recommendation

platform: 1) Users or consumers, 2) Suppliers of the recommendations and 3) the system owner.

The ideal situation would be to have a recommender system where every stakeholder is satisfied

with the outcome of the recommendations. However, this might not always happen in reality.

Depending on the situation, time, and other considerations, the system owner may decide to tune

the recommender system so it improves the outcome for a particular stakeholder or group of

stakeholders.

7.1.2 Multi-stakeholder Impact of Popularity Bias

In Chapter 5, I have taken a multi-stakeholder view of the problem of popularity bias. I

showed that the popularity bias is not just an overall system-level problem which alters the bal-

ance of the distribution of the recommendations towards popular items but rather one that im-

pacts the entire eco-system including the users and the suppliers of the recommendations.

Regarding the users, I showed that large segments of the user population in a typical rec-

ommender system have a strong interest in items outside of the “short head” of the distribution.

Consistent with prior work, I showed that because these long-tail items are recommended less

frequently, these groups of users are not well-served and their recommendations are heavily con-

centrated on popular items despite their interest towards less popular ones.

I also showed that the popularity bias has a ripple-out effect on the other recommendation

stakeholders. For example, the less popular suppliers are extremely being impacted by this bias

and are not recommended to the users at which they have shown interest at. For example a less

popular artist such as a local artist may have significant number of people interested in her/his

music but because the recommendations are dominated by the songs from popular artists, the

algorithmic popularity bias does not let her/his songs to be recommended to the desired audience.

This multi-stakeholder evaluation of popularity bias has revealed certain aspects of the al-

gorithms’ behavior that cannot be captured using standard evaluation methods and metrics that
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are focused on overall outcomes, including differences across results returned to different user,

supplier, and item groups. For example, in Chapter 6 we saw that some algorithms perform bet-

ter than others for certain user /item /supplier groups and worse on some other groups. That

indicates that, when we take an average perspective over all users or items, we cannot see the

differences of different algorithms in their performance for different stakeholders.

7.1.3 Algorithmic solutions to tackle popularity bias

In Chapter 6, I presented three different recommendation algorithms to control popularity

bias. As I discuss in that chapter, generally two types of solutions can be found to address the

popularity bias in recommendation: 1) model-based and 2) post-processing re-ranking. I proposed

one model-based approach and two re-ranking methods.

The first approach I presented in this dissertation was a model-based technique that works

on top of a particular learning-to-rank algorithm (RankALS) and changes its objective function

so it incorporates the popularity of the recommendations in each given recommendation list. The

algorithm aims to diversify the recommendations in each list according to whether they belong to

popular items or the long-tail ones. In other words, it penalizes the lists that only contain popular

items or only long-tail items. Experimental results showed that our proposed method was able to

improve the long-tail properties of the recommendations such as catalog coverage and long-tail

coverage.

The second method I proposed to control popularity bias was in the post-processing re-

ranking category. Generally speaking, in a re-ranking technique, the algorithm first generates a

larger list of recommendations and the re-ranking acts as a post-processing step to extract the best

top recommendations that have both high relevance to the user and also desired characteristics

of long-tail. The algorithm was inspired by a well-known diversification method in information

retrieval called xQuAD which aims at covering different aspects related to a given query in the

returned search results. In my case, I did not have aspects associated with items but rather a cat-

egory to which each item belongs. I defined two item categories short-head and long-tail and,
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therefore, the diversification task was to make sure items from different item categories are fairly

represented in the recommendations. The experimental results indicated a significant improve-

ment in long-tail properties of the recommendations with a small loss in accuracy.

The third algorithm I proposed in this dissertation was also a post-processing technique but

with a different objective. In this method which I called Calibrated Popularity the goal was to make

sure the recommendation lists for each user are calibrated in terms of the range of popularity of the

items in the list compared to the range of item popularity the user had originally shown interest

at. For instance, if a user has 20% popular items, 50% items with medium popularity and 30% less

popular items in his profile, the recommender system should try to keep this ratio as much as pos-

sible while keeping the accuracy loss as small as possible. Experimental results showed that, when

evaluated from the multi-stakeholder paradigm discussed in Chapter 4, this method outperforms

our two other proposed methods and also two other state-of-the-art methods proposed by other

researchers. Compared to the other algorithms, the Calibrated Popularity algorithm matches the

distribution of the recommendations in terms of item popularity with that of rating data much

better and hence gives a more calibrated lists to the users. I also showed that this approach im-

proves supplier fairness, as measured by the exposure of items from different supplies groups in

recommendation lists.

7.2 Future Work

The contributions presented in this thesis extend the state-of-the-art of long-tail recommen-

dation, however they are not exhaustive and a number of questions remain for future work. In

this section, I outline some of the envisioned lines of work that could follow the contributions of

this thesis.

7.2.1 User Studies

Throughout the thesis I have been performing evaluation of the proposed algorithms for

long-tail recommendation. This has been done in an offline fashion, where we use the historical
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interaction data of the users with recommendations as a ground truth to measure the effectiveness

of the proposed methods. Such evaluation is based on a number of assumptions about how users

interact with recommendations and how they perceive these. Although the adapted evaluation

protocol follows some of the common approaches taken in recommender systems, conducting user

studies may be particularly important when evaluating the long-tail promoting algorithms. The

reason for that is the complexity of user needs and interests that are commonly not well reflected

in the recorded datasets. Long-tail promotion and diversification is meant to bring (sometimes)

content that is not well explored by a user, and its evaluation is not very conclusive in an offline

setting since only items that are already in the user’s profile are considered good recommenda-

tions. In other words, in offline evaluation we have no knowledge about whether a recommended

item that was not in the user’s profile was a good recommendation or not and, by the nature of

this type of evaluation, we consider them as bad recommendations.

Metrics such as long-tail promotion, diversity, and novelty are frequently placed together

with accuracy — as I did — and a trade-off of these is analysed in order to develop a better

method, a method which offers smaller loss in accuracy and more prevalent diversity or long-tail

improvements. However prior research such as the one by Ekastrand et al. [58] has suggested

that non-accuracy metrics actually could lead to accuracy improvements. In fact, this is the ulti-

mate goal of making recommendations more diverse and calibrating the recommendations with

the range of users’ interests — improving user’s satisfaction, which means producing recommen-

dations that users feel address their needs. We can say that, all the algorithms I proposed in this

dissertation are evaluated in a rather pessimistic way meaning the real trade-off between accuracy

and long-tail diversification would probably be better if they were evaluated on a live system and

the users had interacted with those recommendations.

7.2.2 Directly Optimizing for Supplier Fairness

The beneficial side-effect of supplier fairness was not directly optimized as our algorithm

focused on the user calibration and no information about the suppliers was used in the calibration
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algorithm. However, because of the positive correlation between item popularity and the average

popularity of the corresponding suppliers, improving popularity calibration has this indirect effect

of improving supplier fairness. An interesting extension of this work would be to incorporate

the tendency of each user towards different groups of suppliers as well as different popularity

categories in the calibration algorithm. I will leave this for future work.

For each user we can define a vector of popularity interest which can encompass both item

categories and supplier groups. For instance, sticking with the triple grouping I presented in

this thesis, one could define a vector of size 6 that has the interest of the user towards different

item categories and supplier groups and the recommendation algorithm should try to calibrate

the recommendation list according this vector. How this extended method would perform for

different stakeholders and also how it matches the distributional properties of the item popularity

of the recommendations with that of rating data will remain as an open question.

7.2.3 Connection Between Popularity Bias and other Types of Fairness

In this dissertation, our main concentration was on measuring the fairness of the recom-

mendations with respect to popularity. In other words, I intended to evaluate the unfairness of a

given recommender system for users with different levels of interest in item popularity and also

for suppliers with different degrees of popularity. For example, our grouping strategy I described

in Chapter 4 was solely based on the information about the popularity of the items, suppliers, or

the users’ interest towards popular items. However,in many domains, certain aspects associated

with users or suppliers might be important for the system designer to consider them as a group.

These could be gender, age, race, nationality, or any other types of pre-defined labels for deter-

mining a group of people. The connection between popularity bias and the unfairness in those

scenarios is an interesting open question that needs further attention. Can controlling popularity

bias help making the recommendation to become fairer with respect to those pre-defined labels?

What is the connection of what is referred to ”protected group” or under-represented group and

the group with lesser popularity? In what situations can popularity bias mitigation can be also
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helpful in alleviating other types of unfairness? Our preliminary results show that popularity bias

is indeed connected to certain types of unfairness in recommendation such as miscalibration of

the recommendations for certain groups of users [6].

7.3 Limitations

This dissertation, like many other scientific works, is not perfect and there are questions that

are not addressed. Two main limitations are as follows:

• Not Investigating Pre-processing Techniques: In Chapter 6 three approaches for mitigat-

ing popularity bias were mentioned: pre-processing, in-processing, and post-processing.

My model-based technique (RG) is an in-processing method since it modifies the existing

recommendation algorithm. Tow other methods XQ and CP are both post-processing

methods since they work on top of an existing recommendation algorithm. I have not

proposed any pre-processing method for two reasons: these methods require sampling

the data and this usually leads to increased data sparsity. In addition, the focus of this

dissertation was not on comparing different processing methods for mitigating popular-

ity bias but rather to study the impact of popularity bias on different stakeholders and the

extent to which different algorithms can mitigate this bias for these stakeholders. Never-

theless, trying different pre-processing techniques to remove the bias in data would be an

interesting thread of research.

• Not taking into account the dynamics of item popularity: In real world, items become

popular over time and might lose popularity when new items arrive. In fact, if this was

not the case, music in 50’s would have been still the most popular music now. My analysis

does not take into account this dynamic as I was mainly interested in how popularity bias

impacts the performance of the algorithms for different stakeholders and my analysis has

been under the fact that certain items are popular and others are not. In other words, my

analysis sees a snapshot of the current situation of a recommendation algorithm. How-
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ever, the dynamics of item popularity could be incorporated as an interesting future work

to analyze the popularity bias of different algorithms on different stakeholders over time.
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