3 research outputs found

    Understanding the Role of Registrars in DNSSEC Deployment

    Get PDF
    The Domain Name System (DNS) provides a scalable, flexible name resolution service. Unfortunately, its unauthenticated architecture has become the basis for many security attacks. To address this, DNS Security Extensions (DNSSEC) were introduced in 1997. DNSSEC’s deployment requires support from the top-level domain (TLD) registries and registrars, as well as participation by the organization that serves as the DNS operator. Unfortunately, DNSSEC has seen poor deployment thus far: despite being proposed nearly two decades ago, only 1% of .com, .net, and .org domains are properly signed. In this paper, we investigate the underlying reasons why DNSSEC adoption has been remarkably slow. We focus on registrars, as most TLD registries already support DNSSEC and registrars often serve as DNS operators for their customers. Our study uses large-scale, longitudinal DNS measurements to study DNSSEC adoption, coupled with experiences collected by trying to deploy DNSSEC on domains we purchased from leading domain name registrars and resellers. Overall, we find that a select few registrars are responsible for the (small) DNSSEC deployment today, and that many leading registrars do not support DNSSEC at all, or require customers to take cumbersome steps to deploy DNSSEC. Further frustrating deployment, many of the mechanisms for conveying DNSSEC information to registrars are error-prone or present security vulnerabilities. Finally, we find that using DNSSEC with third-party DNS operators such as Cloudflare requires the domain owner to take a number of steps that 40% of domain owners do not complete. Having identified several operational challenges for full DNSSEC deployment, we make recommendations to improve adoption

    The Reality of Algorithm Agility:Studying the DNSSEC Algorithm Life-Cycle

    Get PDF
    The DNS Security Extensions (DNSSEC) add data origin authentication and data integrity to the Domain Name System (DNS), the naming system of the Internet. With DNSSEC, signatures are added to the information provided in the DNS using public key cryptography. Advances in both cryptography and cryptanalysis make it necessary to deploy new algorithms in DNSSEC, as well as deprecate those with weakened security. If this process is easy, then the protocol has achieved what the IETF terms "algorithm agility". In this paper, we study the lifetime of algorithms for DNSSEC. This includes: (i) standardizing the algorithm, (ii) implementing support in DNS software, (iii) deploying new algorithms at domains and recursive resolvers, and (iv) replacing deprecated algorithms. Using data from more than 6.7 million signed domains and over 10,000 vantage points in the DNS, combined with qualitative studies, we show that DNSSEC has only partially achieved algorithm agility. Standardizing new algorithms and deprecating insecure ones can take years. We highlight the main barriers for getting new algorithms deployed, but also discuss success factors. This study provides key insights to take into account when new algorithms are introduced, for example when the Internet must transition to quantum-safe public key cryptography

    Making DNSSEC Future Proof

    Get PDF
    corecore