1,876 research outputs found
Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience
As microgrids gain reputation, nations are making decisions towards a new energetic paradigm where the centralized model is being abandoned in favor of a more sophisticated, reliable, environmentally friendly and decentralized one.
The implementation of such sophisticated systems drive to find out new control techniques that make the system “smart”, bringing the Smart-Grid concept. This paper studies the role of Energy Management Strategies (EMSs) in hydrogen microgrids, covering both theoretical and experimental sides. It first describes the commissioning of a new labscale microgrid system to analyze a set of different EMS performance in real-life. This is followed by a summary of the approach used towards obtaining dynamic models to study and refine the different controllers implemented within this work. Then the implementation and validation of the developed EMSs using the new labscale microgrid are discussed. Experimental results are shown comparing the response of simple strategies (hysteresis band) against complex on-line optimization techniques, such as the Model Predictive Control. The difference between both approaches is extensively discussed. Results evidence how different control techniques can greatly influence the plant performance and finally we provide a set of guidelines for designing and operating Smart Grids.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-
On the Comparison of Stochastic Model Predictive Control Strategies Applied to a Hydrogen-based Microgrid
In this paper, a performance comparison among three well-known stochastic model
predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained
model predictive control is presented. To this end, three predictive controllers have
been designed and implemented in a real renewable-hydrogen-based microgrid. The
experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel
cell as main equipment. The real experimental results show significant differences from
the plant components, mainly in terms of use of energy, for each implemented technique.
Effectiveness, performance, advantages, and disadvantages of these techniques
are extensively discussed and analyzed to give some valid criteria when selecting an
appropriate stochastic predictive controller.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-RMinisterio de Economía y Competitividad DPI2013-482443-C2-1-
Hydrogen vs. Battery in the long-term operation. A comparative between energy management strategies for hybrid renewable microgrids
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time, the use of renewable energy sources is pursued to address decarbonization targets, but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing, at the same time, the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense, the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However, hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation, demand and storage, energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load, storage efficiency, operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy, while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation
On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid
© . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.Peer ReviewedPostprint (author's final draft
Combined production of electricity and hydrogen from solar energy and its use in the wine sector
© . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In the present research, the energy demanded by the wastewater treatment plant of a winery and the pumping station of the irrigation system of a vineyard is supplied by a stand-alone renewable energy system formed by three photovoltaic arrays connected to a microgrid. A relatively small battery maintains the stability and quality of the energy supply acting as a short-term energy storage. Hydrogen is generated in a production and refueling plant specifically designed for this project, and it is eventually used in a plug-in BEV properly modified as a hybrid vehicle by adding a PEM fuel cell. On the one hand, the technical and economic feasibility of the on-site electricity production for the winery and vineyard, compared to the commercial electricity from the grid and diesel gensets, is demonstrated. On the other hand, the diesel savings by the hydrogen generated on site are assessed. The electricity (72 MWh) and hydrogen (1,214 m3) produced in the first year have saved the emission of around 27 tons of equivalent CO2.Peer ReviewedPostprint (author's final draft
Recommended from our members
Research advances towards large-scale solar hydrogen production from water
Cooperative Simulation Tool with the Energy Management System for the Storage of Electricity Surplus through Hydrogen
The INGRID project aims at demonstrating the effective usage of safe, high-density, solid-state hydrogen storage systems for power supply and demand balancing within active power distribution grids with high penetration of intermittent Distributed Generation (Renewable Energy Sources in particular.) The INGRID simulator is divided in two main blocks: the first one represents the Energy Management System, the second one includes the Green Energy Storage System (water electrolyzer, hydrogen solid-storage systems and fuel cell) created to simulate the plant. This paper describes the modules of INGRID simulator and the transient responses of the system for an energy management system virtual according to the power prediction of renewable energy sources, hydrogen demand and the power demand of electric vehiclesEuropean Commission's FP
Recommended from our members
Technology, Sustainability, and Marketing of Battery Electric and Hydrogen Fuel Cell Medium-Duty and Heavy-Duty Trucks and Buses in 2020-2040
The objective of this study is to project the introduction of battery-electric and fuel cell technologies into the medium-duty and heavy-duty vehicle markets and to identify which markets will be most suitable for each of technologies and the factors (technical, economic, operational) which will be most critical to their successful introduction. The use of renewable energy sources to generate electricity and produce hydrogen are key considerations of the analysis. The present status of the battery-electric and hydrogen/fuel cell technologies are reviewed in detail and the futures of these technologies are projected. The design and performance of various types of buses and trucks are described based on detailed simulations of the various electrified vehicles. The total cost of ownership (TCO) of each bus/truck type were calculated using EXCEL spreadsheets and their market prospects projected for 2020-2040. It was concluded that before any of the electrified vehicles can be cost competitive with the corresponding diesel powered vehicle, the unit cost of batteries must be 80-100/kW. The long term economics of battery-electric buses and trucks looks more favorable than that for the fuel cell/hydrogen option if the range requirement (miles) for the vehicle can be met using batteries. This is primarily due to the significantly lower energy operating cost ($/mi) using electricity than hydrogen.View the NCST Project Webpag
- …
