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Abstract

In this paper, a performance comparison among three well-known stochastic model
predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained
model predictive control is presented. To this end, three predictive controllers have
been designed and implemented in a real renewable-hydrogen-based microgrid. The
experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel
cell as main equipment. The real experimental results show significant differences from
the plant components, mainly in terms of use of energy, for each implemented tech-
nique. Effectiveness, performance, advantages, and disadvantages of these techniques
are extensively discussed and analyzed to give some valid criteria when selecting an
appropriate stochastic predictive controller.

Keywords: Hydrogen storage, Microgrid, Model predictive control, Stochastic
processes, Supply and demand.

1. Introduction

A microgrid is a network of electric generation that may take advantage of sev-
eral renewable energy sources: solar panels, wind mini-generators, micro-turbines,
fuel cells, among others, to meet the consumer demand by working together with the
centralized grid or autonomously [1]. In a microgrid, the energy is generated only at
certain times, being necessary to provide continuous service to meet the demand at any
time of the day. Challenges arise from the natural intermittency of renewable energy
sources and the requirements to satisfy the user energy demand [2]. Thereby, storage
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Nomenclature
Symbols ez Electrolyzer
E Energy (Wh) fc Fuel cells
E Expected value grid Grid
F Cumulative distribution function H2 Hydrogen
J Cost function net Net power
K Number of scenarios res Renewable energy source
MHL Metal hydrides level (%) ref Reference
N Prediction horizon Superscripts
P Power (W) ∗ Working point
P Probability ̂ Measured value
R Reduced number of scenarios Acronyms
SOC State of charge (%) ARMA Autoregressive-moving-average
ai Weight for state variables CC Chance-constrained
bi Weight for input variables cdf cumulative distributed function
u Input variables IID Independent and identically distributed
x State variables KPIs Key performance indicators
ω Disturbances MPC Model predictive control
∆P Rate power (Ws−1) MS Multiple-scenarios
δx Risk of constraint violation PEM Proton exchange membrane
Subscripts PF Perfect forecast
batt Batteries SNEN Spanish national electricity network
dem Demand UPG Utility power grid

TB Tree-based

devices become very important in the operation of this type of systems. Among well-
established energy storage technologies, there are batteries, super-capacitors, conven-
tional capacitors, etc. In this work, we focus on the use of hydrogen as an energy vector
for energy storage. Hydrogen, combined with other renewable energy sources, is a safe
and viable option to mitigate the problems associated with hydrocarbon combustion be-
cause the entire system can be developed as an efficient, clean, and sustainable energy
source, as mentioned in [3]. The hydrogen is converted into electrical energy by using
fuel cells; the reverse process, i.e., the transformation of electric energy into hydrogen,
is conducted by electrolysis [4], or ethanol reforming [5], among other techniques.

The control problem in a microgrid is to satisfy the electricity demand under eco-
nomical and optimal conditions despite the uncertainties and disturbances that might
appear in the processes. Taking into account that there are mathematical models avail-
able that represent the main dynamics and the load of these systems [6], and that the
control problem here requires the simultaneous handling of constraints, delays, and dis-
turbances, model predictive control (MPC) emerges as a solution to this problem. MPC
is a control strategy widely used in industry for solving problems considering con-
straints on the manipulated and controlled variables, delays, nonlinearities, etc. Very
succinctly, the main idea of MPC is to obtain a control signal by solving at each time in-
stant an optimization problem in a finite prediction horizon based on the system model.
Only the first component of the control signal is implemented in the current time step,
and the problem is solved in the next time instant in a receding horizon strategy. Due
to its versatility, MPC has become one of the most popular techniques in industrial
control applications; see e.g. [7]. From using the MPC approach, different variants
of this technique have been applied to achieve an economical and optimal efficiency
in energy management of a microgrid, see, e.g., [2, 8–13]. The potential benefits of
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the application of an MPC controller are discussed to solve this control problem in an
economical manner. A review of the approaches applied for controlling smart grids
have been presented in [14, 15] and references therein.

Uncertainty in the load and generation profiles has been mainly addressed indirectly
in the dispatch problem by using the MPC approach [14]. The classical formulation
of MPC does not allow considering systems with uncertainties although some MPC
schemes have been proposed to ensure stability and compliance with constraints in
the presence of disturbances [16]. One way to address this problem is by means of the
conservative min-max approach, e.g., in [17] control of microgrids using this technique
is shown. A less conservative approach is the stochastic one, which is based on the
design of predictive controllers for dynamical systems subject to disturbances and/or
uncertainty in terms of the probability that a certain solution is feasible [18], mainly
because it is not strictly possible to speak about guaranteed feasibility in this context.

Due to the increasing importance that uncertainty plays in the power dispatch of
smartgrids, stochastic MPC can be used to deal with the uncertainty in the energy de-
mand and the renewable generation. At this point, the question of which method pro-
vides the best performance to manage the inherent uncertainties in microgrids arises.
Although each method provides a different solution to the same problem, a comparison
between the available techniques has been missed in the literature up to date. This is
indeed the main contribution of this paper. Three popular stochastic MPC techniques
have been implemented and tested to obtain experimental evidence in a real compari-
son framework of their suitability. The criteria to assess the controller performance is
based on specific key performance indicators (KPIs) defined in this work. Also, guide-
lines for controller design, tuning, and real-time implementation in a hydrogen-based
microgrid are also provided. Finally, the experimental results obtained highlight ad-
vantages and weaknesses when coping with disturbances and uncertainties within the
closed loop of a hydrogen-based microgrid.

Therefore, in this paper, three different stochastic-programming-based MPC tech-
niques are used to deal with the uncertainty of the power demand and power generation.
In the first place, multiple-scenario MPC (MS-MPC) is considered, which consists in
calculating a single control sequence that takes into account different possible evolu-
tions of the process disturbances. Hence, the control sequence calculated has a certain
degree of robustness against the potential realizations of the uncertainties. This ap-
proach is used for example in [19] for water systems and in [20, 21] within the context
of the control of smart grids. One of its advantages is that it is possible to calculate
bounds on the probability of constraint violation as a function of the number of scenar-
ios considered [22].

An alternative to model the uncertainty that is faced by this type of systems is
to use rooted trees. The rationale behind this approach is that uncertainty spreads with
time, i.e., it is possible to predict –more accurately– both the energy demand and energy
production by a renewable source in a short horizon than in a large one. For this reason,
the possible evolutions of the disturbances can be confined to a tree. In the tree, there
is a bifurcation point whenever the disturbances branch into two possible trajectories.
Consequently, the outcome, the so-called tree-based MPC (TB-MPC), is a rooted tree
of control actions. This approach is used for example in [23] for a semi-batch reactor
example, in [24] for the energy management of a renewable hydrogen-based microgrid,
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and in [25] in the context of water systems.
Finally, chance-constrained MPC (CC-MPC) is also considered in this work. CC-

MPC uses an explicit probabilistic modeling of the system disturbances to calculate ex-
plicit bounds on the system constraint satisfaction. For instance, [26] presents a chance-
constrained two-stage stochastic program for unit commitment with uncertain wind
power output and [27] shows an autoregressive-moving-average (ARMA) type predic-
tion model for the underlying uncertainties (load/generation) into chance-constrained
finite-horizon optimal control. An application of this technique in the context of the
drinking water network of the city of Barcelona is reported in [28]. In addition, [29]
shows a comparison between MS-MPC, TB-MPC, and CC-MPC approaches applied
to drinking water networks via simulation. Further, this subject has drawn significant
interest; a stochastic optimization model implemented in the context of the control of
microgrids can be seen in [30–33] and references therein.

The remainder of the paper is organized as follows. First, a description of the mi-
crogrid, its linear model and constraints are shown in Section 2. Section 3 presents
the optimization problem and the formulation of the considered stochastic MPC tech-
niques. The comparative study and the analysis drawn from the experimental results are
presented in Section 4. Finally, in Section 5, the main conclusions and future research
lines are proposed.

2. Case Study Description

The microgrid under study is the lab-scale microgrid called HyLab [34]. The mi-
crogrid test bench used in this study is an experimental platform specifically designed
for testing control strategies. HyLab is composed of a modular system equipped with
various components that allow experimentation and simulation of several types of re-
newable energy sources. In the Figure 1, a picture of the experimental Hylab platform
is shown.

PEM Electrolyzer

PEM Fuel cell

Battery bank

Hydrogen storage

Electronic load 

and Power source

Figure 1: Experimental HyLab Plant.
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The system consists of a solar field, emulated by an electronic power source, which
produces electricity to supply the electronic load. Any excess of power can be either
stored in a battery bank or derived to the electrolyzer. If the power obtained from re-
newable energy is not enough, both the fuel cell and the battery bank can support the
load, which is emulated electronically. This type of hybrid storage operation allows
implementing strategies in separated times scales: the battery can either absorb or con-
tribute to balance small amounts of energy in fast transient periods while the hydrogen
path complements larger variations [35]. The microgrid can work either connected to
the utility network or as an isolated system. The Hydrogen Path is composed of three
subsystems: the electrolyzer, which is proton exchange membrane (PEM) type [36],
for producing hydrogen; a metal-hydride hydrogen storage tank; and finally a PEM
fuel cell [37, 38] that provides power to the loads/batteries. It is important to notice
that both subsystems –electrolyzer and fuel cell– cannot work simultaneously. DC/DC
power converters are used as power interfaces that allow energy transfer between dif-
ferent distributed generation units. The equipment is connected to 48 VDC bus that is
held by the battery bank. Table 1 presents the nominal values of the HyLab equipment.

Table 1: HyLab equipment.

Equipment Nominal Value

Electronic power source 6 kW
Electronic load source 2.5 kW
PEM fuel cell 1.2 kW
PEM electrolyzer 0.23 Nm3h−1 @5barg

1 kW
Metal hydrides tank 7 Nm3

5 bar
Battery bank C120 = 367 Ah
DC/DC converters 1.5 kW, 1 kW

2.1. Microgrid linear model and constraints

As it can be inferred, behind the experimental setup there is a set of complex non-
linear subsystems. The detailed description of sub-models and the physical equations
are out of the scope of this paper. The complete non-linear model of the plant, its
simulation, and validation are presented in [39].

Remark 1. To apply linear MPC techniques is required to find a linear model of the
system around a working point (x∗, u∗). The identification process for obtaining the
linear model of the plant is developed in [9]. The continuous linear system was dis-
cretized using Tustin’s method with a sampling time of 30 s. Also, the working point is
given by u∗ = [0 kW, 1.75 kW]T and x∗ = [50 %, 50 %]T .
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The linear discrete-time model of the plant consists of two input variables, PH2
(k)

and Pgrid(k), which are measured in kilowatts (kW). Here, PH2
(k) represents the

power of the electrolyzer and the power of the fuel cell: when it is greater than zero, the
PEM fuel cell is working (Pfc(k)), and when PH2(k) is negative, it indicates that the
electrolyzer is operating (Pez(k)). Both the electronic load and the electronic power
source can either deliver or absorb power from the utility power grid (UPG). The con-
nection with the electric network is “virtual”, since it is emulated by the source and
electronic load. Moreover, Pgrid(k) represents the power of UPG, which is positive
when the power is imported by the microgrid from the UPG, and it is negative when
exporting power to the UPG. The system is subject to uncertainties from the power
produced by a renewable energy source, in this case, it is the power from the solar
field, (Pres(k)) and the power demanded by the consumers (Pdem(k)); the difference
between them can be considered as disturbances (Pnet(k)) to the system. Moreover,
the plant counts with an additional variable, the power of the batteries (Pbatt), which is
controlled indirectly, resulting of the power balance. The states are given by the state
of charge of the batteries (SOC(k)), and the metal hydrides level (MHL(k)) of the
storage tank, both measured in percentage (%). A scheme of the power variables is
shown in Figure 2. The discrete-time linear model of the plant, for each time instant
k ∈ Z+, around a working point (u∗, x∗), can be written as

x(k + 1) = Ax(k) +Bu(k) +Dω(k), (1a)

that is,

x(k + 1) = x(k) +

[
8.1360 5.958
−15.2886 0

]
u(k) +

[
5.958

0

]
ω(k). (1b)

In this model, u(k) = [PH2(k), Pgrid(k)]T represents the vector of manipulated vari-
ables, x(k) = [SOC(k),MHL(k)]T is the state vector of the system and ω(k) =
Pnet(k) ∈ Rnd represents the system disturbance, where nd = 1.

Pez

Pfc

Pres PH2

Pgrid

Pdem

MHL SOC

HyLab Plant

+

Controller

Renewable Source

(Electronic Power Source) 

Electrical Demand 

(Electronic Load) 

PEM 

Electrolyzer

PEM

Fuel cell

Hydrogen 

storage

UPG

Bank of 

Batteries

Figure 2: HyLab variables scheme.
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The system is subject to constraints that avoid equipment damage and guarantee its
safe operation. In particular, the Hydrogen Path –both the electrolyzer and the fuel cell–
has constraints for limiting the values of PH2

(k) since its power capacity is limited to
0.9 kW; this value reflects some conservatism and it ensures that the hydrogen path
does not work at its nominal value to protect the equipment. In this way, a longer
lifespan is expected. Also, the Hydrogen Path has a dead zone between −0.1 kW
and 0.1 kW that ensures a minimum production of power from both the electrolyzer
and the fuel cell. The constraints for Pgrid(k) correspond to physical limitations of the
electronic units. Furthermore, it is necessary to include constraints on their incremental
signals ∆PH2

(k) and ∆Pgrid(k), to guarantee the physical safety of the equipment.
These constraints are mathematically expressed as follows:

− 0.9 kW ≤ PH2
(k) ≤ 0.9 kW, (2a)

− 2.5 kW ≤ Pgrid(k) ≤ 2 kW, (2b)

− 20 Ws−1 ≤ ∆PH2
(k) ≤ 20 Ws−1, (2c)

− 2.5 kWs−1 ≤ ∆Pgrid(k) ≤ 2 kWs−1. (2d)

Overall constraints have to be considered as hard constraints, since the equipment
lifespan could be drastically reduced. Both the battery bank and the metal hydrides
storage tank have limited capacity to prevent any plant damage by overcharge or un-
dercharge. Constraints on SOC(k) guarantee suitable voltage levels in the 48 VDC
bus. Also, they protect the battery bank of strong load voltage variations. These state
constraints are written as

40 % ≤ SOC(k) ≤ 90 %, (3a)
10 % ≤MHL(k) ≤ 90 %. (3b)

The input constraints given by (2) can be properly rewritten as

u(k) ∈ U ⊆ Rnu , (4)

with nu = 2, while the state constraints defined by (3) are expressed as

x(k) ∈ X ⊆ Rnx , (5)

with nx = 2. Furthermore, the total power delivered to the load, in order to satisfy the
consumer demand, must satisfy the energy balance

Pdem(k) = PH2(k)− Pbatt(k) + Pgrid(k) + Pres(k). (6)

3. Stochastic MPC formulation for hydrogen-based microgrids

MPC is a strategy based on the explicit use of a dynamical model of the plant to
predict the state/output evolution of the process in future time instants along a predic-
tion horizonN [7]. The set of future control signals is calculated by the optimization of
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a criterion or objective function. Only the control signal calculated for the time instant
k is applied to the process, whereas the others are withdrawn. One of the advantages of
MPC over other control methods includes the easy extension to the multivariable case.

The optimization problem to be solved at each time instant k is formulated as

min
{u(k),...,u(k+N−1)}

N−1∑
i=0

J(x(k + i), u(k + i)), (7)

subject to

x(i+ 1) = Ax(i) +Bu(i) +Dω(i), (8a)
x(0) = x(k), (8b)
x(i+ 1) ∈ X , (8c)

u(i) ∈ U , ∀i ∈ ZN−10 , (8d)

where A ∈ Rnx×nx , B ∈ Rnx×nu , and D ∈ Rnx×nd are the system matrices defined
in (1). The multi-objective cost function to be minimized is given by

J(x(k), u(k)) = a1(SOC(k)− SOCref)
2

+ a2(MHL(k)−MHLref)
2 (9)

+ b1P
2
H2

(k) + b2P
2
grid(k).

The sequence of inputs that must be applied to the plant along the horizon is denoted by
{u(k), ..., u(k+N−1)}. Note that only u(k) is actually applied. Here, SOCref = 65%
andMHLref = 40% are the references given for the state of charge of the batteries and
the metal hydride level, respectively. The tuning of the cost function weights seeks for
a soft tracking of the output variables towards the given references and an efficient use
of the energy. More specifically, the controller is designed such that the batteries are
the first way of energy storage. If there exists a big difference between the demanded
energy and the produced energy by the renewable sources, it proceeds to the production
of hydrogen. These prioritization weights ai, bi have been adjusted by trial and error
approach carried out on simulation tests reported in previous works with this plant, see,
e.g. [4, 8, 9]. In this sense, they have been established as a1 = a2 = 10, b1 = 5000,
and b2 = 8000. As can be seen, the weight associated with the hydrogen production is
lower than the weight related to the power of the grid in order to minimize the power
interchange with the UPG. The weights associated with the outputs take low values
compared with the others to give flexibility to the smart grid. However, these values
can been modified in the multi-objective function (9) for tracking the reference. In this
work, the energy management is the main objective, therefore the weights associated
with the hydrogen path and the grid are higher than those associated with the outputs
of the system.

In this paper, MPC is used to satisfy the power demanded by local consumers. As
mentioned before, both the demand and the generation of energy show a stochastic
behavior. Therefore, the use of stochastic MPC techniques that account for the uncer-
tainty is well suited for this context.
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Next, the description of the stochastic MPC techniques designed and implemented
is presented.

3.1. Multiple-scenarios MPC approach (MS-MPC)
The optimization based on scenarios provides an intuitive way to approximate the

solution to the stochastic optimization problem. In order to design the MS-MPC, it
is required to know several scenarios with possible evolutions of the energy demand
and generation. The scenario forecasts can be obtained either from historical data or
by introducing a random scenario generation. The idea behind this approach is that
a general control sequence that optimizes all the considered scenarios is calculated,
obtaining in this way a certain robustness against the different possible evolutions of
the disturbances. The scenario-based approach is computationally efficient since its
solution is based on a deterministic convex optimization, even when the original prob-
lem is not [40]. One advantage of this approach does not assume a prior knowledge
of the statistical properties that characterize the uncertainty (e.g., a certain probability
function) as generally required in stochastic optimization.

The main idea for optimization with a finite number of scenarios is to consider the
same system for each one of the known disturbance realizations. The problem consists
in solving

min
{u(k),...,u(k+N−1)}

K∑
j=1

(
N−1∑
i=0

J(xj(k + i), u(k + i))

)
, (10)

subject to

xj(i+ 1) = Axj(i) +Bu(i) +Dωj(i), (11a)
xj(0) = x(k), (11b)
ωj(i) = ω̂j(i), (11c)
xj(i+ 1) ∈ X , (11d)

u(i) ∈ U ∀i ∈ ZN−10 , ∀j ∈ ZK1 , (11e)

where K ∈ Z+ is the finite number of scenarios considered and ω̂j(k) is the distur-
bance forecast for scenarioj ∈ ZK1 .

Due to the stochastic nature of the disturbances, the number of scenarios considered
K deserves special attention to ensure compliance with the state constraints with a
certain confidence degree, i.e.,

P [xj(i+ 1) ∈ X ] > 1− δx,
where P[·] denotes the probability operator and δx ∈ (0, 1) is the risk acceptability
level of constraint violation for the states. The number of scenarios needed to achieve
this goal can be calculated as a function of δx, the number of variables in the opti-
mization problem (z), and a quite small confidence level (β ≤ 10−6), as indicated in
[41]

K ≥
z + 1 + ln( 1

β ) +
√

2(z + 1) ln( 1
β )

δx
. (12)
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Furthermore, the sample scenarios must meet the following assumptions, as pointed
out in [40]:

1. The uncertainties ω̂j ; ∀j ∈ ZK1 are independent and identically distributed (IID)
random variables on a probability space.

2. A “sufficient number” of IID samples of ω̂j can be obtained, either empirically
or by a random-number generator.

In this manner, a control sequence is optimized for the system given by (11a),
which includes different possible evolutions of the original one. The calculation of
the controller will result in a unique robust control action that satisfies all the potential
realizations of the disturbances with a certain probability.

3.2. Tree-based MPC (TB-MPC)
This technique consists of transforming the different possible evolutions of the dis-

turbances into a rooted tree that, through its evolution, diverges and generates a reduced
number of scenarios. The points of divergence are called bifurcations and they repre-
sent moments in time in which the potential evolution of the disturbances is uncertain
enough to consider more than one trajectory, as shown in Figure 3. The formulation of
the control problem involves making tree-based optimization scenarios, where only the
most relevant disturbance patterns are modeled, starting with a common root that cor-
responds to the current disturbance at each time instant. It must be noted that TB-MPC
formulates the optimization problem by means of Multistage Stochastic Programming
[42, 43]. The number of scenarios used to build the tree should be coherent with the
computational capability of the controller and the risk probability, δx.

Figure 3: Scenario fan and scenario tree over the prediction horizon.

Being a scenario-based approach, it is possible to determine δx by taking into ac-
count the number of discarded scenarios Nr from the initial K scenarios for any viola-
tion level υ ∈ [0, 1], as seen in [40]. The probability of satisfying the state constraints
is given by

P[xi+1 ∈ X ] ≥ 1− δx,
where

δx =

∫ 1

0

U(υ)dυ, (13a)
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and

U(υ) = min

1,

(
Nr + z − 1

Nr

)Nr+z−1∑
j=0

(
K

j

)
υj(1− υ)K−j

 . (13b)

In this way, the amount of R used in the optimization problem is calculated as
R = K −Nr.

Unlike the MS-MPC approach, each scenario into the tree has its own control sig-
nal, which means that more optimization variables are needed. However, given that
the control signal cannot anticipate events beyond the next bifurcation point, control
sequences for different scenarios must be equal as long as the scenarios do not branch
out. As a consequence, the solution of this control problem is a rooted-tree of control
inputs. Notice that only the first component of this tree, which is equal for all the sce-
narios, is actually applied. For the design of this controller, the bifurcation points of
the tree are checked: if they are equal, then the control actions are the same so that both
the number of variables and the computational time can be reduced significantly.

The TB-MPC problem formulation to be solved at each time instant is represented
by

min
{uj(k),...,uj(k+N−1)}

R∑
j=1

(
N−1∑
i=0

J(xj(k + i), uj(k + i))

)
, (14)

subject to

xj(i+ 1) = Axj(i) +Buj(i) +Dωj(i), (15a)
xj(0) = x(k), (15b)
ωj(i) = ω̂j(i), (15c)

xj(i+ 1) ∈ X , ∀i ∈ ZN−10 , (15d)

uj(i) ∈ U , ∀j ∈ ZR1 . (15e)

In addition, it is necessary to introduce non-anticipative constraints to force the con-
troller to compute the control inputs only considering the observed uncertainty before
the bifurcation points [43]. These constraints are given by

ui(k) = uj(k) if ω̂i(k) = ω̂j(k); ∀ i 6= j. (15f)

One way to satisfy (15f) is to introduce equality constraints into the optimization
problem and solving it with a number of optimization variables defined as z = N×R×
nu. Nevertheless, constraints in (15f) can be used to reduce the number of optimization
variables by removing the redundancy to lower the computational burden.

As said before, a control sequence is optimized for the extended system with a
disturbance tree, and only the first component of the input tree is applied to the system.
The problem is repeated at each time instant k ∈ Z+.
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3.3. Chance-Constrained MPC (CC-MPC)

Given that disturbances are stochastic, another way of addressing this problem is
using CC-MPC. The stochastic behavior from the weather conditions and the electric
demand can be addressed by formulating hard constraints into probabilistic constraints
related to a risk of constraint violation that determines the degree of the conservatism
when computing the control inputs. Also, the cost function is expressed as its ex-
pected value in the formulation of the optimization problem. A major advantage of
this approach is that the computational burden is not increased as in the scenario-based
techniques.

Given that the disturbances in the dynamic model (1a) are stochastic, the state con-
straints (5) must be formulated in a probabilistic manner, i.e.,

P[x(i+ 1) ∈ X | Gx ≤ g] > 1− δx. (16)

Here, G ∈ Rnr×nx and g ∈ Rnr . The probabilistic constraints (16), also called chance
constraints, can be written in two different manners [28]:

• Individual chance constraints that express a probabilistic equivalent for each
constraint. They are formulated as

P[G(m)x < g(m)] > 1− δx,m, ∀m ∈ Znx
1 , (17)

where G(m) and g(m) are the mth row of G and g, respectively. Each mth row
satisfies its respective δx,m.

• Joint chance constraints, which take into account an unique risk of constraint
violation for all stochastic constraints. They are written as

P[G(m)x < g(m), ∀m ∈ Znx
1 ] > 1− δx. (18)

All rows jointly satisfy the unique δx.

The application of (18) along N is necessary to implement the controller. To this
end, it is assumed that the disturbances behave as Gaussian random variables, which
are modeled based on historical data, with a known cumulative distribution function
(cdf). The deterministic equivalent of these chance constraints can be formulated as
follows:

P[G(m)x(k + 1) < g(m)] > 1− δx
⇔ FG(m)Dω(k)(g(m) −G(m)(Ax(k) +Bu(k))) > 1− δx
⇔ G(m)(Ax(k) +Bu(k)) < g(m) − F−1G(m)Dω(k)

(1− δx). (19)

Here, FG(m)Dω(k)(·) represents the cumulative distribution function of the random
variableG(m)Dω(k), andF−1G(m)Dω(k)

(·) is its inverse cumulative distribution function.
Note that the expression (19) is the deterministic equivalent of the chance con-

straints and is built based on historical data.
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The optimization problem formulation related to the design of the CC-MPC con-
troller is stated as

min
{u(k),...,u(k+N−1)}

N−1∑
i=0

E[J(x(k + i), u(k + i))], (20)

subject to

x(i+ 1) = Ax(i) +Bu(i) +Dω(i), (21a)
x(0) = x(k), (21b)
ω(i) = ω̂(i), (21c)

G(m)(Ax(k) +Bu(k)) < g(m) − F−1G(m)Dω(k)
(1− δx), (21d)

u(i) ∈ U , ∀i ∈ ZN−11 , (21e)

where E[·] denotes the expected value of the cost function.

4. Results and Discussion

The experiments were conducted in the microgrid described in Section 2 during a
trial period of eight hours for each experiment. The controller receives the measured
variables SOC(k) and MHL(k), which are used to compute the optimal control sig-
nals PH2(k) and Pgrid(k)) by means of Simulink Real-Time workshop toolbox. The
control signals are sent to the SCADA via the OPC Matlab Library and finally the PLC
carries out these control actions.

The prediction horizon was N = 5 and the sampling time was 30 s. The selected
weather and load profiles for verifying the performance of the three proposed con-
trollers were the scaled difference between the real solar generation and the demand
registered by the Spanish National Electricity Network (SNEN)2 on May 23, 2014.
These values were sampled each 3 s and scaled for the microgrid allowable power val-
ues, which are shown in Figure 4(a). The initial conditions for all experiments were
SOC(0) = 70% and MHL(0) = 50%.

An issue that deserves particular attention is the amount of scenarios to be con-
sidered into the optimization problem. This number should be selected by taking into
account a trade-off between robustness and computational burden. In this sense, it is
possible to establish the number of scenarios that guarantees a particular risk level,
according to (12), as shown Table 2.

MS-MPC was performed by using the electricity demand and the solar generation
registered during K = 316 different days of one year from historical data, obtained
from the SNEN. For these scenarios, it is expected a risk of violation of constraints less
than δx ≤ 10%. This number of scenarios offers an acceptable risk and ensures a rea-
sonable computational burden when solving the optimization problem. Furthermore,

2SNEN demand data can be obtained at: https://demanda.ree.es/movil/peninsula/demanda/total
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Table 2: Number of scenarios (K) that fulfills an specific risk level (δx).

δx 0.20 0.15 0.10 0.05 0.01
K 152 203 316 611 3005

this set of scenarios considers days with enough solar energy generation as well as
cloudy days, which makes the controllers more robust and somehow relieves the need
for increasing the number of scenarios used. TB-MPC was performed by using an orig-
inal number of K = 316 scenarios, which were reduced to R = 250 scenarios forming
a tree using GAMS [44]. This reduction tried to replicate the main dynamics of all
original disturbances considered in a small disturbance tree. This reduction introduces
a boundary that guarantees δx ≤ 10%, according to (13). Finally, CC-MPC approach
was performed considering the failure probability δx = 10%. The disturbances were
considered as a random function with a cdf, which were obtained from the historical
daily data registered in 2014.

The scheme of the microgrid operation, from a general point of view, follows simi-
lar patterns for the three proposed controllers. At this point, given that the energy from
the renewable source is not sufficient to meet the energy demand, the fuel cell turns on,
the battery SOC and the MHL decrease gradually without going below their forbid-
den levels. Also, energy is imported from the grid to meet the load beyond demand.
When the energy from the renewable source greatly exceeds demand, the electrolyzer
is switched on, the batteries are fully charged, and the excess of energy is stored in the
hydrogen tank, and the remaining power that cannot be stored in the form of hydro-
gen is exported to the grid. However, each stochastic MPC approach shows particular
differences, as reported below, which are highlighted to offer a suitable comparison
among them.

In order to compare all the considered strategies, Figure 4(b) shows the battery
power for the three aforementioned stochastic predictive controllers. As can be noticed,
CC-MPC controller performs a deep cycle using the batteries. It strives for using the
full capacity, reaching the upper and lower levels. In contrast, TB-MPC controller,
although partly discharges and recharges the batteries, it does in a softer way. This
implies that the excess of energy must be balanced through either the electrolyzer or the
grid. It is observed that MS-MPC technique behaves between the two other approaches.
Therefore, MS-MPC controller achieves a trade-off between using the full capacity of
the batteries and the energy derived either to the electrolyzer or the grid.

Figure 4(c) presents the fuel cell and electrolyzer power along the test duration.
The fuel cell performance signals obtained are similar for all the three controllers, ex-
cept for CC-MPC controller, which shows a peak between the first and second hour, to
satisfy an increase in the energy demand at that time. When there is an excess of energy
from the renewable source, the electrolyzer starts its operation. Results show a clear
difference in the electrolyzer operation. On the one hand, with CC-MPC technique, the
electrolyzer presents a larger use of the power, as expected. On the contrary, the elec-
trolyzer utilization is restricted quite more with TB-MPC approach, reaching only a
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(a) Energy generated by solar panels Pres, demand of energy

Pden, and Pnet corresponding to May 23, 2014.

(b) Battery power.

(c) Fuel cell power and Electrolyzer power. (d) Grid power.

(e) Battery SOC and MHL. (f) Electric power provided by the microgrid compared with the 

consumer demand.

Figure 4: Experimental results applying the proposed stochastic MPC approaches.

peak of 200 W, while CC-MPC controller sets the electrolyzer power to nearly 600 W.
Regarding TB-MPC approach, it also shows a small ripple; this is explained because
the controller seeks to primary satisfy the demand and compensate any power unbal-
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ance in the system. As it has been shown through experimental tests, there are clear
differences in the way each controller manages the power signals of the electrolyzer
and the fuel cell.

Figure 4(d) shows the grid power signal generated by applying the stochastic MPC
controllers. From the point of view of the network operators (DSO3/TSO4), the use
of the UPG is minimized with the CC-MPC approach. In this manner, the impact in
the electrical system generated by the renewable sources present in the microgrid is
reduced. On the other hand, for the consumer point of view, it might be convenient not
to force the equipment to a deep duty cycle and take advantage of the grid to smooth
the power profiles.

Figure 4(e) shows the evolution of the SOC and MHL for each proposed con-
trollers along the test period. In general, for all the implemented controllers, the bat-
teries are discharged until the fuel cell turns off at the first time, and then they raise
their charge level lower than 85% for MS-MPC and CC-MPC controllers. Regarding
TB-MPC controller, it holds a charge level around 75% for a longer period compared
with the other ones. Then, the SOC starts to decrease again for all controllers under
study. The MHL presents a minor variation, and it reduces its level below 40% until
the renewable source can contribute with power to the load. After this, theMHL seeks
to track its reference.

Figure 4(f) shows the comparison among the different powers delivered to the load
by applying the controllers. As seen, the demand is satisfied by the power from the
microgrid for all the controllers as imposed in their design. Notice that, in some sit-
uations, using the “elasticity” of the consumer; it might be possible to momentarily
unbalance the power demand to satisfy other microgrid objectives [45]. Nevertheless,
demand response is out of the scope of this paper.

In order to quantitatively assess the performances of these three stochastic ap-
proaches that have been implemented in the HyLab microgrid laboratory, several KPIs
have been defined as follows:

• KPI1 defines the final cumulative cost given by (9) (in cost units).

• KPI2 is the computational time to solve the optimization problem (in s).

• KPI3 counts the average unmet demand with respect to the overall power demand
(in %).

• KPI4 is the time that the fuel cell is operating (in hours).

• KPI5 is the time that the electrolyzer is operating (in hours).

• KPI6 indicates the final value of SOC (in %).

• KPI7 indicates the final value of MHL (in %).

3DSO: Distributed System Operator
4TSO: Transmission System Operator
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Table 3 summarizes the numerical results of the KPIs. As it can be seen the highest
value for KPI1 is obtained when using MS-MPC. The rationale behind this value is
that the controller optimizes a sequence of control actions valid for the most favorable
scenarios as well as the least favorable ones. In this sense, an over-conservative control
action is carried out. This issue can be relaxed by calculating a tree of control actions
that is subject to non-anticipatory equality constraints. In this way, the control actions
are calculated in a closed-loop fashion, i.e., the controller can adapt the future control
actions to the evolution of the disturbances. As can be seen, TB-MPC reduces its cumu-
lative cost by increasing the number of control variables involved into the optimization
problem. Hence, its computational time is the biggest within this comparative study.
Regarding CC-MPC, it has the lowest cumulative cost without increasing the number
of control variables. For reference purposes, the final cumulative cost for an MPC with
a perfect forecast (PF-MPC), obtained via simulation, is 2.05 × 1012. The computa-
tional time comparison is provided by KPI2.

Table 3: Comparison of the MS-MPC, TB-MPC, and CC-MPC controllers applied to HyLab microgrid by
means of KPIi, i = 1, ..., 7.

Controller KPI1 KPI2 KPI3 KPI4 KPI5 KPI6 KPI7
(cost units) (s) (%) (hours) (hours) (%) (%)

MS-MPC 3.89× 1012 7.76 0.12 3.26 2.90 63.53 42.91
TB-MPC 2.75× 1012 18.15 0.11 2.63 2.45 62.51 41.58
CC-MPC 2.44× 1012 1.04 0 3.70 2.97 63.71 43.85

The three tested controllers are able to meet the overall demand in a satisfactory
way, as indicated by the performance comparison given by KPI3. At this point, we
must remark that the three tested controllers solve their optimization problems faster
than the sampling time. Therefore, it is possible to select the approach that has the best
performance in terms of the demand satisfaction and the use of the hydrogen path.

The comparisons between the proposed controllers regarding the time when both
the fuel cell and the electrolyzer are operating are given by KPI4 and KPI5, respectively.
In this sense, TB-MPC shows the lowest time for the fuel cell and the electrolyzer. It
offers a larger conservatism when working with the hydrogen path, which is obtained
at the expense of a higher computational time since TB-MPC meets the current demand
and reformulates its disturbance tree at each time step. Notice that the main difference
is at the time that the hydrogen path is working.

The final values of SOC and MHL, which present similar values for the three
controllers, are around 63% and 42%, respectively. These values are provided by KPI6
and KPI7.

Table 4 presents a comparison among the total energy produced by the fuel cell
(Efc), the electrolyzer (Eez), the batteries (Ebatt), and the grid (Egrid) during the test
period. The negative sign in Egrid indicates that the amount of energy sold to UPG
is greater than the energy purchased. The total energy of the batteries indicates the
difference between the stored energy and the delivered energy to the load: the negative
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value means that the stored energy predominates over the delivered energy.

Table 4: Energy produced by the fuel cell, electrolyzer, batteries, and grid during the test period by applying
the proposed stochastic MPC controllers.

Controller Efc Eez Ebatt Egrid

(Wh) (Wh) (Wh) (Wh)
MS-MPC 302 481 −62.2 −418
TB-MPC 261 217 −110.23 −661
CC-MPC 348 642 −43.09 −268

Notice that the absolute value of the energy amounts are taken to achieve a reliable
comparison in terms of energy consumption for each component of the system. In
this sense, CC-MPC has better performance regarding energy efficiency. CC-MPC
achieves less exchange with UPG, and the batteries provide enough power to supply
the load. Also, both the fuel cell and electrolyzer use energy in a wider range when
compared to the MS-MPC and TB-MPC approaches. Note also that TB-MPC and MS-
MPC handled more cautiously hydrogen energy from the path while performing more
exchanges with the UPG, specially TB-MPC.

Another KPI to compare the performance of the controllers for energy management
in a smartgrid is the number of start-ups for both equipment, the fuel cell and the
electrolyzer. From the results obtained from the experimental setup, the number of
start-ups is the same for all the controllers. However, it is a major factor that could
reduce the lifespan of the hydrogen path.

Finally, Table 5 shows the range of values of each variable obtained during the
experiments by applying the proposed approaches. As seen, the control actions satisfy
the constraints given by (2) and (3).

Table 5: Range of values for the states and control inputs obtained during the test period by applying the
proposed stochastic MPC controllers.

Variable MS-MPC TB-MPC CC-MPC
SOC (%) [57.61, 83.73] [57.59, 75.30] [48.82, 84.42]
MHL (%) [38.51, 50] [39.07, 50] [37.06, 50]
Pfc(W) [100, 268.13] [100, 259.69] [100, 250.44]
Pez(W) [100, 432.9] [100, 202.13] [100, 584.94]
Pgrid(W) [−529.4, 320.3] [−705.02, 314.0] [−312.8, 117.5]

In order to extend the comparative analysis to general results and taking into ac-
count that the experimental setup of the plant is limited, the non-linear simulation
model developed in [39] is used to compare the controllers in other situations and
the same circumstances. This simulation model replicates the main dynamics of the
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real plant with enough accuracy. An additional case study for testing the three stochas-
tic MPC controllers and a PF-MPC controller is introduced to enhance the results and
obtain conclusions.

Figure 5 shows the evolution of the signals by applying the three stochastic MPC
controllers and a PF-MPC controller for a cloudy day in the simulation model of the
HyLab microgrid. All controllers present the same evolution to satisfy the demand.
The fuel cells are turned on when the power from the renewable sources is not enough
to meet the electric demand. Hence, SOC and MHL decrease gradually to supply
power to the load. For this particular day, the microgrid imports energy power from
the UPG. Given that the excess of renewable energy production over the demand is not
enough, the batteries are charged, and the electrolyzer stays off.

To compare the behavior of these MPC controllers, Table 6 shows the results from
aforementioned KPIs. The results obtained from the comparison are similar to the pre-
vious experimental case study. As expected, the lowest value of KPI1 is presented by
standard MPC controller with perfect information; this value gives a target for the com-
parison. In this sense, CC-MPC controller results in a lower cumulative cost as well as
the computational time compared with MS-MPC and TB-MPC controllers. The elec-
trical demand is satisfied by all controllers. Regarding KPI3, MS-MPC controller uses
the hydrogen path longer than the other two approaches. Finally, KPI6 shows very sim-
ilar values for all controllers, the battery SOC is reduced until its lower constrained
level. The lowest value of KPI7 is presented by CC-MPC controller because this con-
troller delivers a bigger amount of energy from the fuel cell. Finally, the electrolyzer
stays off over the simulation period; therefore KPI5 is zero for all controllers.

Table 6: Comparison of the MS-MPC, TB-MPC, CC-MPC, and PF-MPC controllers applied to the simula-
tion model of HyLab microgrid for a cloudy day by means of KPIi, i = 1, ..., 7.

Controller KPI1 KPI2 KPI3 KPI4 KPI6 KPI7
(cost units) (s) (%) (hours) (%) (%)

MS-MPC 6.24× 1012 7.76 0.10 6.00 40.56 20.43
TB-MPC 5.33× 1012 18.20 0.11 5.67 40.64 23.46
CC-MPC 4.22× 1012 1.04 0.10 5.68 40.46 14.08
PF-MPC 4.05× 1012 0.98 0 5.90 40.01 19.77

Table 7 compares the stochastic MPC controllers regarding energy for a cloudy day
via simulation. The CC-MPC controller results in higher energy consumption from the
fuel cell. The energy from the renewable sources is not enough at the time to turn on the
electrolyzer for storing energy as hydrogen. The batteries are used to provide energy to
the load; both, MS-MPC and TB-MPC controllers, show a similar use of the energy of
the batteries. A remarkable difference is shown in the energy exchanged with the grid,
in this case, the TB-MPC controller presents the highest value.

All in all, Table 8 shows priority factors for each one of the proposed stochastic
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(a) Energy generated by solar panels Pres, demand of energy 

Pden, and Pnet corresponding to a cloudy day.

(b) Battery power.

(c) Fuel cell power and Electrolyzer power.

(e) Battery SOC and MHL. (f) Electric power provided by the microgrid compared with the 

consumer demand.

(d) Grid power.

Figure 5: Simulation results for a cloudy day applying the proposed stochastic MPC approaches and a
standard PF-MPC.

MPC controllers based on the overall analysis at the time of selecting one of them.

20



Table 7: Energy produced by the fuel cell, electrolyzer, batteries, and grid during the test period for the
simulation model by applying the proposed stochastic MPC controllers.

Controller Efc Eez Ebatt Egrid

(Wh) (Wh) (Wh) (Wh)
MS-MPC 472 0 −285 688
TB-MPC 437 0 −287 721
CC-MPC 547 0 −295 604

Table 8: Priority factors for selecting one of the proposed stochastic MPC controllers.

Priority MS-MPC TB-MPC CC-MPC
Maximization of hydrogen path lifespan X
Minimization of energy exchanged with the UPG X
Cumulative cost X
Computational burden X
Demand satisfaction X X X
Availability of historical data X X

5. Conclusions

Three stochastic MPC schemes have been designed and applied to a microgrid
based on hydrogen storage. Acting on the set-point power of the fuel cell, electrolyzer
and grid, the controllers were able to regulate the hydrogen tank level and the state of
charge of the battery bank to their desired values. In addition, the controllers consider
constraints in both the manipulated variables and the system states for optimal perfor-
mance and high functionality. Also, the system can deliver electric power from the fuel
cell once it has been stored in the form of hydrogen to contribute further to the grid,
to satisfy the energy demand under the influence of uncertainties both in the renewal
generation and the consumer’s behavior.

MS-MPC controller is generally over-conservative because it does not consider the
controller capacity to adapt. It calculates a control series valid to all possible scenarios
by means an open-loop formulation. However, it is possible to solve the optimization
problem by using a control tree and increasing the number of optimization variables
and the computational time. Regarding the control point of view, TB-MPC controller
works in a closed-loop fashion to adapt the control actions to the expected evolution
of the disturbances. Finally, CC-MPC controller formulates the optimization problem
by taking into account the statistical features of the uncertainty without increasing the
number of variables.

The results obtained with the three presented versions of stochastic MPC con-
trollers show their effectiveness in energy management under economic and optimal
criteria. According to the results obtained and their evaluation by the KPIs, it can be
said that CC-MPC controller relaxes the constraints of the optimization problem by
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assuming a risk to offer better performance, resulting in a lower cost, less energy ex-
change with the network when compared to MS-MPC and TB-MPC controllers. This
is also the approach with the lowest computational burden. The downside of this ap-
proach is that it requires a statical characterization of the disturbances.

The TB-MPC approach, according to the results, provides a more moderate use of
the hydrogen path, which could lead to a longer equipment lifespan. From the point of
view of the user, the energy demand is fulfilled by increasing energy exchange with the
network.

The MS-MPC approach provides a certain robustness of the system, generating
control actions able to cope with potential disturbances. This approach provides a
trade-off between the time of use of the equipment and the satisfaction of the energy
demand.

Other factors that are important to take into account are the initial conditions for
SOC and MHL. These values will determine the evolution of the variables. Besides,
the final value of these variables will take an additional meaning of comparison after a
longer time of use of the plant. However, they have been employed in a smaller period
to show how they finish after the experiments.
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