9 research outputs found

    Orchestration of IT/Cloud and Networks: From Inter-DC Interconnection to SDN/NFV 5G Services

    Get PDF
    The so-called 5G networks promise to be the foundations for the deployment of advanced services, conceived around the joint allocation and use of heterogeneous resources,including network, computing and storage. Resources are placed on remote locations constrained by the different service requirements, resulting in cloud infrastructures (as pool of resources) that need to be interconnected. The automation of the provisioning of such services relies on a generalized orchestra tion, defined as to the coherent coordination of heterogeneous systems, applied to common cases such as involving heterogeneous network domains in terms of control or data plane technologies, or cloud and network resources. Although cloud-computing platforms do take into account the need to interconnect remote virtual machine instances, mostly rely on managing L2 overlays over L3 (IP). The integration with transport networks is still not fully achieved, including leveraging the advances in software defined networks and transmission. We start with an overview of network orchestration, considering different models; we extend them to take into account cloud manage ment while mentioning relevant existing initiatives and conclude with the NFV architecture

    A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms

    Get PDF
    Edge Computing is moving resources toward the network borders, thus enabling the deployment of a pool of new applications that benefit from the new distributed infrastructure. However, due to the heterogeneity of such applications, specific orchestration strategies need to be adopted for each deployment request. Each application can potentially require different optimization criteria and may prefer particular reactions upon the occurrence of the same event. This paper presents a Service- Defined approach for orchestrating cloud/edge services in a distributed fashion, where each application can define its own orchestration strategy by means of declarative statements, which are parsed into a Service-Defined Orchestrator (SDO). Moreover, to coordinate the coexistence of a variety of SDOs on the same infrastructure while preserving the resource assignment optimality, we present DRAGON, a Distributed Resource AssiGnment and OrchestratioN algorithm that seeks optimal partitioning of shared resources between different actors. We evaluate the advantages of our novel Service-Defined orchestration approach over some representative edge use cases, as well as measure convergence and performance of DRAGON on a prototype implementation, assessing the benefits compared to conventional orchestration approaches

    Placement and Scheduling of Network Traffic on Virtual Network Functions

    Get PDF
    Hardware MiddleBoxes represent a vital part in today's networks. Despite their important roles, they are accompanied by several problems, namely, their lack of flexibility, high capital and operational expenditures, and power consumption. Network Function Virtualization is one promising solution to address these problems. This trend replaces the MiddleBoxes by software-based entities. Indeed, these Virtual Network Functions promise to alleviate the numerous disadvantages brought by their hardware counterparts. One of these most serious issues is the steadily increasing power consumption. Studies suggest that the Virtual Network Functions will reduce the electricity costs needed to turn on and operate the hardware functions. In order to further optimize the power consumption of the network, an efficient framework, capable of placing and scheduling traffic on these VNFs, is needed. Such a framework allows to optimally map and schedule the flows to be serviced, and place the unused servers in energy saving modes. In this thesis, we assume VNFs are already placed on physical machines. We consider traffic flows with deadlines. We aim at assigning and scheduling flows to VNFs in the most energy efficient manner. We formulate this problem mathematically and, owing to its complexity, present an efficient algorithmic method for solving the problem. We compare our heuristic with two other approaches, one of which aims to minimize the makespan, and the other to minimize number of servers used. We show that our heuristic combines the advantages of both approaches and generates better results by consuming up to 31.3% and 46.1% energy less than other two approaches respectively. Further, we extend the existing work in the literature, and solve the problem of placement of traffic flows on VNFs while taking into account the transmission delay between pairs of VNFs, and the routing of the virtual links on the underlying physical network

    Traffic and Resource Management in Robust Cloud Data Center Networks

    Get PDF
    Cloud Computing is becoming the mainstream paradigm, as organizations, both large and small, begin to harness its benefits. Cloud computing gained its success for giving IT exactly what it needed: The ability to grow and shrink computing resources, on the go, in a cost-effective manner, without the anguish of infrastructure design and setup. The ability to adapt computing demands to market fluctuations is just one of the many benefits that cloud computing has to offer, this is why this new paradigm is rising rapidly. According to a Gartner report, the total sales of the various cloud services will be worth 204 billion dollars worldwide in 2016. With this massive growth, the performance of the underlying infrastructure is crucial to its success and sustainability. Currently, cloud computing heavily depends on data centers for its daily business needs. In fact, it is through the virtualization of data centers that the concept of "computing as a utility" emerged. However, data center virtualization is still in its infancy; and there exists a plethora of open research issues and challenges related to data center virtualization, including but not limited to, optimized topologies and protocols, embedding design methods and online algorithms, resource provisioning and allocation, data center energy efficiency, fault tolerance issues and fault tolerant design, improving service availability under failure conditions, enabling network programmability, etc. This dissertation will attempt to elaborate and address key research challenges and problems related to the design and operation of efficient virtualized data centers and data center infrastructure for cloud services. In particular, we investigate the problem of scalable traffic management and traffic engineering methods in data center networks and present a decomposition method to exactly solve the problem with considerable runtime improvement over mathematical-based formulations. To maximize the network's admissibility and increase its revenue, cloud providers must make efficient use of their's network resources. This goal is highly correlated with the employed resource allocation/placement schemes; formally known as the virtual network embedding problem. This thesis looks at multi-facets of this latter problem; in particular, we study the embedding problem for services with one-to-many communication mode; or what we denote as the multicast virtual network embedding problem. Then, we tackle the survivable virtual network embedding problem by proposing a fault-tolerance design that provides guaranteed service continuity in the event of server failure. Furthermore, we consider the embedding problem for elastic services in the event of heterogeneous node failures. Finally, in the effort to enable and support data center network programmability, we study the placement problem of softwarized network functions (e.g., load balancers, firewalls, etc.), formally known as the virtual network function assignment problem. Owing to its combinatorial complexity, we propose a novel decomposition method, and we numerically show that it is hundred times faster than mathematical formulations from recent existing literature

    Management and Orchestration of Virtualized Network Functions

    No full text
    Part 2: Ph.D. Student Workshop — Management of Virtualized Network Resources and FunctionsInternational audienceSoftware Defined Networking (SDN) and Network Function Virtualization (NFV) paradigms are driving a number of research activities aiming to develop virtual network infrastructures where Network Functions (NF) and services could be executed as applications in ensemble of virtual machines. This paper addresses the problem of managing and orchestrating said highly dynamic networks, where virtualized NFs and resources are created and destroyed depending on traffic demands, service requests, or other high-level governance goals such as the reduction of energy consumption

    Transport-layer limitations for NFV orchestration in resource-constrained aerial networks

    Get PDF
    In this paper, we identify the main challenges and problems related with the management and orchestration of Virtualized Network Functions (VNFs) over aerial networks built with Small Unmanned Aerial Vehicles (SUAVs). Our analysis starts from a reference scenario, where several SUAVs are deployed over a delimited geographic area, and provide a mobile cloud environment that supports the deployment of functions and services using Network Functions Virtualization (NFV) technologies. After analyzing the main challenges to NFV orchestration in this reference scenario from a theoretical perspective, we undertake the study of one specific but relevant aspect following a practical perspective, i.e., the limitations of existing transport-layer solutions to support the dissemination of NFV management and orchestration information in the considered scenario. While in traditional cloud computing environments this traffic is delivered using TCP, our simulation results suggest that using this protocol over an aerial network of SUAVs presents certain limitations. Finally, based on the lessons learned from our practical analysis, the paper outlines different alternatives that could be followed to address these challenges.This article has been partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795- C6-3-R) funded by the Spanish Ministry of Economy and Competitiveness.Publicad

    Management and Orchestration of Virtualized Network Functions in the 5G Cellular Network : Overview, Security Considerations and SCAS Test Case Draft

    No full text
    In dieser Bachelorarbeit wird ein Überblick über die Management- und Orchestrierungskomponente eines 5G Mobilfunknetzes sowie dafür relevante, zugrundeliegende Konzepte gegeben. Die Sicherheitsrelevanz des MANO-Systems wird anhand der Ergebnisse einer Risikoanalyse eingeordnet. Die daraus abgeleiteten Sicherheitsvoraussetzungen werden mit bereits bestehenden Zertifizierungs-Tests verglichen und somit herausgearbeitet, für welche Sicherheitsaspekte zukünftig ein MANO-spezifischer Zertifizierungstest erstellt werden muss. Um die Arbeit abzuschließen, wird ein beispielhafter Test-Entwurf vorgestellt, mit welchem sich eine der noch offenen Sicherheitsvoraussetzungen überprüfen lassen könnte

    Transport-Layer Limitations for NFV Orchestration in Resource-Constrained Aerial Networks

    No full text
    In this paper, we identify the main challenges and problems related with the management and orchestration of Virtualized Network Functions (VNFs) over aerial networks built with Small Unmanned Aerial Vehicles (SUAVs). Our analysis starts from a reference scenario, where several SUAVs are deployed over a delimited geographic area, and provide a mobile cloud environment that supports the deployment of functions and services using Network Functions Virtualization (NFV) technologies. After analyzing the main challenges to NFV orchestration in this reference scenario from a theoretical perspective, we undertake the study of one specific but relevant aspect following a practical perspective, i.e., the limitations of existing transport-layer solutions to support the dissemination of NFV management and orchestration information in the considered scenario. While in traditional cloud computing environments this traffic is delivered using TCP, our simulation results suggest that using this protocol over an aerial network of SUAVs presents certain limitations. Finally, based on the lessons learned from our practical analysis, the paper outlines different alternatives that could be followed to address these challenges
    corecore