3,281 research outputs found

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Bidirectional Communication Control for Human-Robot Collaboration

    Get PDF
    A fruitful collaboration is based on the mutual knowledge of each other skills and on the possibility of communicating their own limits and proposing alternatives to adapt the execution of a task to the capabilities of the collaborators. This paper aims at reproducing such a scenario in a human-robot collaboration setting by proposing a novel communication control architecture. Exploiting control barrier functions, the robot is made aware of its (dynamic) skills and limits and, thanks to a local predictor, it is able to assess if it is possible to execute a requested task and, if not, to propose alternative by relaxing some constraints. The controller is interfaced with a communication infrastructure that enables human and robot to set up a bidirectional communication about the task to execute and the human to take an informed decision on the behavior of the robot. A comparative experimental validation is proposed

    Multimodal agents for cooperative interaction

    Get PDF
    2020 Fall.Includes bibliographical references.Embodied virtual agents offer the potential to interact with a computer in a more natural manner, similar to how we interact with other people. To reach this potential requires multimodal interaction, including both speech and gesture. This project builds on earlier work at Colorado State University and Brandeis University on just such a multimodal system, referred to as Diana. I designed and developed a new software architecture to directly address some of the difficulties of the earlier system, particularly with regard to asynchronous communication, e.g., interrupting the agent after it has begun to act. Various other enhancements were made to the agent systems, including the model itself, as well as speech recognition, speech synthesis, motor control, and gaze control. Further refactoring and new code were developed to achieve software engineering goals that are not outwardly visible, but no less important: decoupling, testability, improved networking, and independence from a particular agent model. This work, combined with the effort of others in the lab, has produced a "version 2'' Diana system that is well positioned to serve the lab's research needs in the future. In addition, in order to pursue new research opportunities related to developmental and intervention science, a "Faelyn Fox'' agent was developed. This is a different model, with a simplified cognitive architecture, and a system for defining an experimental protocol (for example, a toy-sorting task) based on Unity's visual state machine editor. This version too lays a solid foundation for future research

    Human-centered User Interfaces for Automated Driving – (Un-)exploited Potentials

    Get PDF
    Designing user interfaces for (highly) automated driving is a complex task since users vary considerably regarding their needs and preferences. Therefore, a one-size-fits-all approach will not be sufficient for designing these interfaces. Thus, in this paper we aim to identify unexploited potentials in this area. We do so by performing a systematic literature review. Our contributions are 1) a systematization of human-centered user interface design for automated driving in four key aspects, 2) the research intensity per aspect, 3) the unexploited potential within each aspect and 4) the potentials of the relations between them. Concretely, current research lacks frameworks supporting the customization of the named interfaces based on user characteristics. Among others, personalization of displayed information shows unexploited potentials for acceptance and usability. Thus, we recommend future research to focus on human-centricity accounting for individual needs instead of the interface itself

    Symbiotic interaction between humans and robot swarms

    Get PDF
    Comprising of a potentially large team of autonomous cooperative robots locally interacting and communicating with each other, robot swarms provide a natural diversity of parallel and distributed functionalities, high flexibility, potential for redundancy, and fault-tolerance. The use of autonomous mobile robots is expected to increase in the future and swarm robotic systems are envisioned to play important roles in tasks such as: search and rescue (SAR) missions, transportation of objects, surveillance, and reconnaissance operations. To robustly deploy robot swarms on the field with humans, this research addresses the fundamental problems in the relatively new field of human-swarm interaction (HSI). Four groups of core classes of problems have been addressed for proximal interaction between humans and robot swarms: interaction and communication; swarm-level sensing and classification; swarm coordination; swarm-level learning. The primary contribution of this research aims to develop a bidirectional human-swarm communication system for non-verbal interaction between humans and heterogeneous robot swarms. The guiding field of application are SAR missions. The core challenges and issues in HSI include: How can human operators interact and communicate with robot swarms? Which interaction modalities can be used by humans? How can human operators instruct and command robots from a swarm? Which mechanisms can be used by robot swarms to convey feedback to human operators? Which type of feedback can swarms convey to humans? In this research, to start answering these questions, hand gestures have been chosen as the interaction modality for humans, since gestures are simple to use, easily recognized, and possess spatial-addressing properties. To facilitate bidirectional interaction and communication, a dialogue-based interaction system is introduced which consists of: (i) a grammar-based gesture language with a vocabulary of non-verbal commands that allows humans to efficiently provide mission instructions to swarms, and (ii) a swarm coordinated multi-modal feedback language that enables robot swarms to robustly convey swarm-level decisions, status, and intentions to humans using multiple individual and group modalities. The gesture language allows humans to: select and address single and multiple robots from a swarm, provide commands to perform tasks, specify spatial directions and application-specific parameters, and build iconic grammar-based sentences by combining individual gesture commands. Swarms convey different types of multi-modal feedback to humans using on-board lights, sounds, and locally coordinated robot movements. The swarm-to-human feedback: conveys to humans the swarm's understanding of the recognized commands, allows swarms to assess their decisions (i.e., to correct mistakes: made by humans in providing instructions, and errors made by swarms in recognizing commands), and guides humans through the interaction process. The second contribution of this research addresses swarm-level sensing and classification: How can robot swarms collectively sense and recognize hand gestures given as visual signals by humans? Distributed sensing, cooperative recognition, and decision-making mechanisms have been developed to allow robot swarms to collectively recognize visual instructions and commands given by humans in the form of gestures. These mechanisms rely on decentralized data fusion strategies and multi-hop messaging passing algorithms to robustly build swarm-level consensus decisions. Measures have been introduced in the cooperative recognition protocol which provide a trade-off between the accuracy of swarm-level consensus decisions and the time taken to build swarm decisions. The third contribution of this research addresses swarm-level cooperation: How can humans select spatially distributed robots from a swarm and the robots understand that they have been selected? How can robot swarms be spatially deployed for proximal interaction with humans? With the introduction of spatially-addressed instructions (pointing gestures) humans can robustly address and select spatially- situated individuals and groups of robots from a swarm. A cascaded classification scheme is adopted in which, first the robot swarm identifies the selection command (e.g., individual or group selection), and then the robots coordinate with each other to identify if they have been selected. To obtain better views of gestures issued by humans, distributed mobility strategies have been introduced for the coordinated deployment of heterogeneous robot swarms (i.e., ground and flying robots) and to reshape the spatial distribution of swarms. The fourth contribution of this research addresses the notion of collective learning in robot swarms. The questions that are answered include: How can robot swarms learn about the hand gestures given by human operators? How can humans be included in the loop of swarm learning? How can robot swarms cooperatively learn as a team? Online incremental learning algorithms have been developed which allow robot swarms to learn individual gestures and grammar-based gesture sentences supervised by human instructors in real-time. Humans provide different types of feedback (i.e., full or partial feedback) to swarms for improving swarm-level learning. To speed up the learning rate of robot swarms, cooperative learning strategies have been introduced which enable individual robots in a swarm to intelligently select locally sensed information and share (exchange) selected information with other robots in the swarm. The final contribution is a systemic one, it aims on building a complete HSI system towards potential use in real-world applications, by integrating the algorithms, techniques, mechanisms, and strategies discussed in the contributions above. The effectiveness of the global HSI system is demonstrated in the context of a number of interactive scenarios using emulation tests (i.e., performing simulations using gesture images acquired by a heterogeneous robotic swarm) and by performing experiments with real robots using both ground and flying robots

    Value Co-Creation in Smart Services: A Functional Affordances Perspective on Smart Personal Assistants

    Get PDF
    In the realm of smart services, smart personal assistants (SPAs) have become a popular medium for value co-creation between service providers and users. The market success of SPAs is largely based on their innovative material properties, such as natural language user interfaces, machine learning-powered request handling and service provision, and anthropomorphism. In different combinations, these properties offer users entirely new ways to intuitively and interactively achieve their goals and thus co-create value with service providers. But how does the nature of the SPA shape value co-creation processes? In this paper, we look through a functional affordances lens to theorize about the effects of different types of SPAs (i.e., with different combinations of material properties) on users’ value co-creation processes. Specifically, we collected SPAs from research and practice by reviewing scientific literature and web resources, developed a taxonomy of SPAs’ material properties, and performed a cluster analysis to group SPAs of a similar nature. We then derived 2 general and 11 cluster-specific propositions on how different material properties of SPAs can yield different affordances for value co-creation. With our work, we point out that smart services require researchers and practitioners to fundamentally rethink value co-creation as well as revise affordances theory to address the dynamic nature of smart technology as a service counterpart

    Narrative and Hypertext 2011 Proceedings: a workshop at ACM Hypertext 2011, Eindhoven

    No full text

    Automation study for space station subsystems and mission ground support

    Get PDF
    An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS
    • …
    corecore