3 research outputs found

    Ensemble Boosted Tree based Mammogram image classification using Texture features and extracted smart features of Deep Neural Network

    Get PDF
    /n This work proposes a technique of breast cancer detection from mammogram images. It is a multistage process which classifies the mammogram images into benign or malignant category. During preprocessing, images of Mammographic Image Analysis Society (MIAS) database are passed through a couple of filters for noise removal, thresholding and cropping techniques to extract the region of interest, followed by augmentation process on database to enhance its size. Features from Deep Convolution Neural Network (DCNN) are merged with texture features to form final feature vector. Using transfer learning, deep features are extracted from a modified DCNN, whose training is performed on 69% of randomly selected images of database from both categories. Features of Grey Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) are merged to form texture features. Mean and variance of four parameters (contrast, correlation, homogeneity and entropy) of GLCM are computed in four angular directions, at ten distances. Ensemble Boosted Tree classifier using five-fold cross-validation mode, achieved an accuracy, sensitivity, specificity of 98.8%, 100% and 92.55% respectively on this feature vector

    A framework for breast cancer classification using Multi-DCNNs

    Get PDF
    Background: Deep learning (DL) is the fastest-growing field of machine learning (ML). Deep convolutional neural networks (DCNN) are currently the main tool used for image analysis and classification purposes. There are several DCNN architectures among them AlexNet, GoogleNet, and residual networks (ResNet). Method: This paper presents a new computer-aided diagnosis (CAD) system based on feature extraction and classification using DL techniques to help radiologists to classify breast cancer lesions in mammograms. This is performed by four different experiments to determine the optimum approach. The first one consists of end-to-end pre-trained fine-tuned DCNN networks. In the second one, the deep features of the DCNNs are extracted and fed to a support vector machine (SVM) classifier with different kernel functions. The third experiment performs deep features fusion to demonstrate that combining deep features will enhance the accuracy of the SVM classifiers. Finally, in the fourth experiment, principal component analysis (PCA) is introduced to reduce the large feature vector produced in feature fusion and to decrease the computational cost. The experiments are performed on two datasets (1) the curated breast imaging subset of the digital database for screening mammography (CBIS-DDSM) and (2) the mammographic image analysis society digital mammogram database (MIAS). Results and Conclusions: The accuracy achieved using deep features fusion for both datasets proved to be the highest compared to the state-of-the-art CAD systems. Conversely, when applying the PCA on the feature fusion sets, the accuracy did not improve; however, the computational cost decreased as the execution time decreased

    Bioinformatics and Machine Learning for Cancer Biology

    Get PDF
    Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer
    corecore