4 research outputs found

    Malicious code detection architecture inspired by human immune system

    Full text link
    Malicious code is a threat to computer systems globally. In this paper, we outline the evolution of malicious code attacks. The threat is evolving, leaving challenges for attackers to improve attack techniques and for researchers and security specialists to improve detection accuracy. We present a novel architecture for an effective defense against malicious code attack, inspired by the human immune system. We introduce two phases of program execution: Adolescent and Mature Phase. The first phase uses a malware profile matching mechanism, whereas the second phase uses a program profile matching mechanism. Both mechanisms are analogous to the innate immune syste

    A data mining approach for detection of self-propagating worms

    Full text link
    In this paper we demonstrate our signature based detector for self-propagating worms. We use a set of worm and benign traffic traces of several endpoints to build benign and worm profiles. These profiles were arranged into separate n-ary trees. We also demonstrate our anomaly detector that was used to deal with tied matches between worm and benign trees. We analyzed the performance of each detector and also with their integration. Results show that our signature based detector can detect very high true positive. Meanwhile, the anomaly detector did not achieve high true positive. Both detectors, when used independently, suffer high false positive. However, when both detectors were integrated they maintained a high detection rate of true positive and minimized the false positiv

    An Innovative Signature Detection System for Polymorphic and Monomorphic Internet Worms Detection and Containment

    Get PDF
    Most current anti-worm systems and intrusion-detection systems use signature-based technology instead of anomaly-based technology. Signature-based technology can only detect known attacks with identified signatures. Existing anti-worm systems cannot detect unknown Internet scanning worms automatically because these systems do not depend upon worm behaviour but upon the worm’s signature. Most detection algorithms used in current detection systems target only monomorphic worm payloads and offer no defence against polymorphic worms, which changes the payload dynamically. Anomaly detection systems can detect unknown worms but usually suffer from a high false alarm rate. Detecting unknown worms is challenging, and the worm defence must be automated because worms spread quickly and can flood the Internet in a short time. This research proposes an accurate, robust and fast technique to detect and contain Internet worms (monomorphic and polymorphic). The detection technique uses specific failure connection statuses on specific protocols such as UDP, TCP, ICMP, TCP slow scanning and stealth scanning as characteristics of the worms. Whereas the containment utilizes flags and labels of the segment header and the source and destination ports to generate the traffic signature of the worms. Experiments using eight different worms (monomorphic and polymorphic) in a testbed environment were conducted to verify the performance of the proposed technique. The experiment results showed that the proposed technique could detect stealth scanning up to 30 times faster than the technique proposed by another researcher and had no false-positive alarms for all scanning detection cases. The experiments showed the proposed technique was capable of containing the worm because of the traffic signature’s uniqueness

    Implementation and Evaluation of A Low-Cost Intrusion Detection System For Community Wireless Mesh Networks

    Get PDF
    Rural Community Wireless Mesh Networks (WMN) can be great assets to rural communities, helping them connect to the rest of their region and beyond. However, they can be a liability in terms of security. Due to the ad-hoc nature of a WMN, and the wide variety of applications and systems that can be found in such a heterogeneous environment there are multiple points of intrusion for an attacker. An unsecured WMN can lead to privacy and legal problems for the users of the network. Due to the resource constrained environment, traditional Intrusion Detection Systems (IDS) have not been as successful in defending these wireless network environments, as they were in wired network deployments. This thesis proposes that an IDS made up of low cost, low power devices can be an acceptable base for a Wireless Mesh Network Intrusion Detection System. Because of the device's low power, cost and ease of use, such a device could be easily deployed and maintained in a rural setting such as a Community WMN. The proposed system was compared to a standard IDS solution that would not cover the entire network, but had much more computing power but also a higher capital cost as well as maintenance costs. By comparing the low cost low power IDS to a standard deployment of an open source IDS, based on network coverage and deployment costs, a determination can be made that a low power solution can be feasible in a rural deployment of a WMN
    corecore