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Abstract

Rural Community Wireless Mesh Networks (WMN) can be great assets to rural communities, helping

them connect to the rest of their region and beyond. However, they can be a liability in terms of security. Due

to the ad-hoc nature of a WMN, and the wide variety of applications and systems that can be found in such

a heterogeneous environment there are multiple points of intrusion for an attacker. An unsecured WMN can

lead to privacy and legal problems for the users of the network. Due to the resource constrained environment,

traditional Intrusion Detection Systems (IDS) have not been as successful in defending these wireless network

environments, as they were in wired network deployments. This thesis proposes that an IDS made up of

low cost, low power devices can be an acceptable base for a Wireless Mesh Network Intrusion Detection

System. Because of the device’s low power, cost and ease of use, such a device could be easily deployed

and maintained in a rural setting such as a Community WMN. The proposed system was compared to a

standard IDS solution that would not cover the entire network, but had much more computing power but also

a higher capital cost as well as maintenance costs. By comparing the low cost low power IDS to a standard

deployment of an open source IDS, based on network coverage and deployment costs, a determination can

be made that a low power solution can be feasible in a rural deployment of a WMN.
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Chapter 1

Introduction

Wireless Mesh Networks (WMN) have gained popularity as a cost effective deployment for rural and

developing areas [5, 11]. WMNs are utilized for the facilitation of communication and commerce, between

internal and external users [5]. The openness of the WMN can give a malicious attacker many different

methods with which to compromise the WMN. A compromise in the security and or privacy of the WMN

can lead to numerous online and real world problems for those affected. Personal data and financial data

can be exposed and identities can be compromised and taken over. A security system is needed for such

a network. In corporate and scholar networks, the systems are usually homogeneous and as such can be

monitored and fixed by applying universal remedies; however, not all WMNs are homogeneous. A great

number of them are made of varying Operating Systems (OS) and hardware. WMNs allow many different

devices to connect to the network. The variety of the Operating Systems and hardware is wide and may

require a variety of different drivers to simply communicate with the network, and as a result, require security

to be added on after deployment due to the lack of homogeneity. Therefore, establishing adequate and cost-

effective security mechanisms, such as intrusion detection, provides a significant challenge to the deployment

and effectiveness of a WMN.

1.1 Characteristics of Wireless Mesh Networks

As shown in Figure 1.1, Wireless Mesh Networks (WMN) are communications networks in which the routing

infrastructure is comprised of nodes (usually WIFI-connected) that are organized and deployed in a mesh

topology. Wireless Mesh Networks consist of End User Systems, mesh routers and gateways. The End-User

systems can consist of desktops, laptops, cell phones and other wireless devices, while the mesh routers can

be special purpose devices that forward traffic to and from the gateways which in turn may, but need not,

connect to the Internet [5, 60]. The WMN uses radio frequency communications, usually WIFI but there

have been WiMax deployments in the past [59]. A Wireless Mesh Network can help communities with only

a limited number of consistent and reliable broadband connections to the Internet build up a network that

would facilitate Internet connectivity for the entire community. The open nature of the WMN, however,

could lead to possible problems in regards to information security for the community’s user base.

If a WMN is open, anybody can access it, even people driving within radio range (up to 300 ft) of the

1
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Figure 1.1: An Example Wireless Mesh Network

community [38]. This can lead to multiple points of attack and not only through the regular gateway to the

Internet. A successful intrusion could lead to the compromise of user data and identity theft. Identity and

data theft can lead to financial and legal implications for the victims [8]. Even if the users of a WMN do not

think that there is anything of personal or financial value held in their computers, the computing resources

themselves can be the target.

Access to the network and maintaining connectivity depends on the routing nodes of the network working

together to forward and route packets from one end of the network to the other. Mesh networks are designed

to be reliable as they incorporate commonly-used fail-over techniques such as Ad hoc On-demand Distance

Vector(AODV) [28] and have the possibility of built-in fault tolerance. Wireless mesh networks can make

use of various wireless technology including 802.11, 802.16, WiMax cellular technologies or an amalgam of

the multiple protocols.

A WMN is made up of two separate parts, the Wireless Mesh Routers (WMR) and the End-User Systems

[33, 5, 43, 60, 41]. The End-User machines are simply regular consumer machines that connect to the network

2



and use it as they would any other networked connection [5]. End User Systems connect to the routing

boxes to access the Internet; wireless connectivity can be used for surfing the Internet, gaming and business

applications, etc. The WMRs make up the backbone of the network as they route the packets from each

node to the gateway for the Internet Service Provider(ISP). WMRs can be old converted consumer machines

or they can be specially built low-power machines that are specially configured for the purpose of routing

packets to other nodes. Converted WMRs have the drawback of using more power than specially-built

WMRs [5]. Some specially-built WMRs can often be powered by batteries. They can also be located quite a

distance from a persistent power source, facilitating easy routing and network connection [5]. Routing boxes

forward the packets for all the applications that are being run on the End User machines. Figure 1.1 shows

an example layout of a WMN.

There are plenty of uses for Wireless Mesh Networks. They are found in regular usage in different

Municipal Wireless networks that provide free connectivity to their residents and businesses. Examples of

Municipal Wireless Networks in the last ten years include 1) Calgary, Alberta, 2) Brookline, Massachusetts,

3) Rochelle, Illinois, 4) Thorold, Ontario, 5) Milton Keynes, UK, 6) Oulu, Finland, and 7) Galatsi, Greece

[11, 56]. The municipal networks are usually a joint venture between a local government and a private

company, and allow for free connectivity to anyone within a certain radius around the city centres.

Another application for WMNs is the use of Community Wireless Mesh Networks. These networks differ

in that they are setup and maintained by the residents of the community themselves, with little or no help

from the municipality. Places such as Wray [33, 43], Berlin [62], and Boston’s MIT RoofNET [4] have

established community-driven WMNs with a bit of help from local universities for the maintenance and

technical expertise.

WMNs provide the same network connectivity and applications as traditional wired networks do. Unlike

urban areas, the cost for an Internet connection in rural or remote areas may be considerably higher as there

is a smaller subscriber pool from which ISPs can recover deployment costs or make profits. In other cases,

the rural community may be so remote that traditional wired service cannot be provided to everyone in the

community. The distance issue may require a more costly solution to the connectivity problem and it is

possible that only the more wealthy in the community could afford it. By deploying a community WMN, the

cost of the network is spread out amongst the community. With more people connected, the per-user costs

decrease as each new person is added to the WMN, amortizing the initial infrastructure costs, enabling the

community to use the WMN to perform regular Internet activities that were previously cost prohibitive.

For the rural community of Wray [33, 43], deployment was a costly, time consuming, and risky endeavour.

The main costs of deployment were with the mesh boxes that acted as routers for the peer packets to be

forwarded; however there is also a cost in securing the network against intrusion, data loss, and disruption

due to connectivity and availability issues.

3



1.2 Security Requirements in Community Wireless Mesh Net-

works

By using the computing resources of the WMN, attackers can launch distributed attacks against other net-

works. By installing a Trojan program, attackers can issue commands remotely to the local user’s computers

causing them to initiate connections to foreign networks [61]. These remote instructions can steal cycles

from users, generate more network traffic for the WMRs to route [64], and perhaps lead to legal troubles

for users. Generating more traffic for the WMRs to route can lead to increased power consumption on a

WMR, and subsequently leading to a shorter battery life. Decreased battery life means that the network

nodes may become disconnected more frequently leading to service disruption. Also, more traffic generation

has the ability to tie up the network resources, thereby lowering the throughput of the WMN and leading

to congestion in network packets [64].

The security function of the WMN can potentially be more costly than initializing the WMN. Securing

WMNs is complicated, due to issues with power consumption, multi hop routing, authentication of router

nodes, and the encryption needed to ensure trust between nodes [60]. Also there is the issue that security is

an ongoing and evolving process with new and different exploits being discovered as technology matures.

According to Dourish and Redmiles, security is an End-User problem [14]. Most breaches of security are

either caused by or affect the end user. Due to the variety of different end-user programs that are available

for users of the WMN and the multitude of bugs and exploits associated with those programs, the easiest part

of a system to compromise is the end-user system. In a network such as a WMN, the large number of devices

that can connect to the network and the various intentions of the connecting end users, combine to form an

emergent heterogeneous network. Also, since different nodes can be run by individuals in the community or

run on battery power to facilitate connectivity, a WMN can be classified as an Ad-Hoc Network, as nodes

can join and leave with no set schedule or warning.

A community WMN will not always have technical expertise available locally to defend against the

numerous possible security threats [65, 66, 41]. Due to potential lack of advanced technical knowledge on

the part of the community [66], individual routing nodes that provide the vital connectivity of the network

may be initialized, in many cases, with the default setup. Use of the default setup can lead to the nodes of

the network not having adequate security protection software, resulting in many exploits that could be open

to potential intruders.

There is an identified requirement for the network itself to provide additional security to novice users,

and to discourage its use in an external attack [60, 43, 33]. Any compromise of a node system in the WMN

could lead to disconnectivity, loss of personal information (identity fraud, credit card numbers, mail fraud,

etc.), and resulting legal issues.
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1.3 WMN Security Issues in Detail

Security is not a single component of a system or network. As most modern systems now cooperate with many

different components, each component can be the target of a security breach. An attacker can compromise

any component of a system with a multitude of possible attacks. If he or she is successful in compromising

one of the components that interact or are a part of the system, then the system itself can be compromised.

Aspects of Security

There are five separate components that comprise information systems security: Confidentiality, Authenti-

cation, Integrity, Availability and Non-Repudiation [74]. For an attacker to be successful, he or she only

needs to compromise one of the five components. The defending network, on the other hand, needs to secure

all five; thus providing the required security is a challenging task.

Confidentiality is the ability to keep information readable to only the select users who are authorized,

and required to view it. In a WMN the transmission is open; therefore, the data is readable by anyone.

To allow for complete confidentiality, cryptography must be used. Cryptography is a resource-intensive

strategy for providing confidentiality, and the machines that perform it must have the available resources to

accommodate it; otherwise, the packet forwarding and routing task efficiency of the network suffers.

Authentication is the ability to correctly identify a valid user of the data or service. Authentication is

usually done through a central authority such as an authentication service like Kerberos [50]. In a WMN, the

network is distributed, with no central authority. The WMN relies on its components to communicate and

authenticate each other and due to possible environmental and power fluctuations it is not always possible

to connect to a third party server.

Integrity is the ability for the data to remain unchanged from its original state during transmission or

viewing. In a WMN, it is easy for an attacker to alter the network data, as the nodes act as relays to the rest

of the network. It is therefore possible to compromise integrity by changing packets’ payloads at a malicious

router.

Availability requires the resource or data to be available when the service or data is requested. Attackers

use Denial of Service (DOS) attacks to remove availability. DOS attacks usually tie up resources of a system

so that valid users have delayed or no access to the network resources. By generating a large number of

packets from a single node or bringing a high coupling 1 node down, an attacker can cause a DOS attack.

Non-repudiation is the inability for a node to deny or disown data sent in to the network. Non-

repudiation is a legal term that has been adapted to fit in to the computing security context. Again, since a

WMN is a multihop network, it is possible for attackers to spoof IP or MAC addresses. There is an implicit

trust between nodes, and this kind of spoofing can lead to the nodes disowning routing data that other nodes

1High Coupling Node: a node in a network that is connected to multiple other nodes with more connections than the average

node in the network.
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think they have sent. Since this is true data that is being disowned, the spoofed node loses reputation, since

it is providing unreliable information, and other nodes would not trust the routing done by spoofed nodes.

If no nodes trust the others, then the routing capability of the network would fail.

All these components are as vital to securing a rural WMN as they are to securing a city-wide or

company-wide network. A community WMN has difficulties in providing the same security as larger city

and corporate networks. The heterogeneity of the community usage gives a number of attack vectors for

malicious operators to attempt.

Due to the fact that the systems are generally considered open, there is also the possibility that an attack

can come from within the network [24]. An attack from within the network creates the added problem that

nodes cannot implicitly trust the data that is originating from other local user nodes and possibly the routers

themselves, and as a result need to mitigate the security flaws.

1.3.1 Common Attacks Against WMNs

The attack vectors that are used by malicious intruders are much the same as those that are launched against

a regular network.

The Denial of Service attack involves an attacker trying to compromise a network not by gaining

entry into the network but by preventing the regular users of that network from normal access [70]. The

attacks are difficult to identify as quite often the attack sends valid data to the network, but the DOS sends

it at a rate that a network with resource constraints can have difficulty serving it and the valid requests

simultaneously.

A scanning attack is essentially a precursor to an attacker gaining entry to a system. The attacker uses

a tool to scan the ports on a network to determine what applications are running on the network and if they

have any communication ports open, they could receive malicious commands from the attacker.

A Man-in-the-middle Attack is comprised of an attacker intercepting all or part of the communication,

changing the content, and sending back as legitimate replies. Both speaking parties are not aware of the

attacker’s presence and believe the messages they receive are from each other.

Spoofing is used to masquerade as a person, program or an address as other than oneself by altering

the address data for the purpose of unauthorized access.

The various attack vectors a malicious computer user can undertake can range from simple to quite

sophisticated; the sheer number of potential attack vectors requires that the user of a network has help in

identifying and mitigating the risks that he or she is exposed to every day while on the network. The users

can have help via software or expertise means.
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1.4 Potential Solution: Intrusion Detection Systems

An Intrusion Detection System (IDS) is a tool that analyzes the traffic on the network. The primary purpose

of an IDS is to determine if a node in the network has been compromised or is attempting to send traffic

that is not typically sent within the network [39]. Such a system can also be used to alert the community

network in case of odd behaviour. Traditional IDSs in wired systems sit on a central point of a network and

detect packets being sent through. Since the wired systems are usually on the same subnet, an administrator

can set up an IDS on the gateway so that it may filter and detect all the traffic that is entering from outside

the network.

Traditional IDSs are usually found in larger, mostly corporate networks [14]. Small public networks do

not usually have the resources to hire a professional to deploy and monitor an IDS. These networks have

a much different user and resources base than a corporate network [7]. Barman et al. investigated the

mono-culture in IT environments and found that users can be grouped by specific contextual network usage.

Barman et al. also stated that the idea of one-size-fits-all for IDS configuration in this context can lead

to numerous problems. Therefore, since a centrally designed and focused IDS does not work for a network

that is mostly made up of homogeneous clients and routers, then the challenge would be much greater to

configure a single IDS for a diverse network such as a WMN. In a WMN, an Intrusion Detection System

needs an adaptable configuration to deal with a variety of different traffic patterns [7]. The users of a WMN

have the potential to use any program that can be networked, and in turn can offer numerous protocols that

must be secured. This wide variety of usage can lead to false positives2 or in certain cases, false negatives.3

In the case of false positives, this could lead to a preemptive disconnection or cause panic among the user

base.

In a rural setting, there is frequently no full time system administrator that can configure and monitor an

IDS [35, 66, 65]. Instead, a rural community relies on phone support, intermittent visits from administrators

from outside the community, or self taught members of the community to maintain the system [66]. An

intermittent visit is in most cases too long to wait for an intrusion to be detected or mitigated. There needs

to be a way that the system can detect these intrusions and potentially heal itself, without much help from

outside, as there is the distinct possibility of connection disruption or power failure [66].

Certain attacks can permit attackers full access to the network and they only require a few hours or

minutes to conceal the evidence of a system compromise, meaning that even a trained professional may not

be able to detect and mitigate the intrusion. Due to the concealment aspect of a possible attack, it is even

more imperative that the IDS should be monitoring at all times in order to prevent an attack.

The scope and range of attacks that a single node IDS can cover can be a challenge. While it may cover

its own subnet in the WMN, the rest of the network may be open to undetected attack. Unless packets

2False Positive: situation in which the software would detect an intrusion where there was none

3False Negative: situation in which the software does not detect an Intrusion event, where one is present
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come into radio range for the single IDS, even outbound packets from the WMN can infect other parts of the

network. In a WMN, devices can connect to any part of the network, allowing for a potential to compromise

the network from within.

Rather than have a single IDS system listening to the network and performing deep packet inspection on

packets, a system that includes multiple low cost devices performing the IDS responsibilities is proposed. A

single IDS may only be able to monitor the outgoing traffic; the rest of the network could be compromised

without its knowledge. Due to the hybrid nature of the WMN, and relatively low computational power that

Wireless Mesh Routers(WMR) require, the low-cost devices will be able to off-load the work allowing for the

WMRs to solely focus on packet forwarding.

1.5 Thesis Statement

This thesis proposes that an IDS made up of low cost, low power devices can be an acceptable base for a

Wireless Mesh Network Intrusion Detection System. Experiments evaluating the system with typical WMN

traffic demonstrate that the Raspberry Pi can handle the processing requirements for deployment in a small

to midsize system in a flexible and low-cost manner.

1.6 Contribution

The proposed system offers potential solutions and tradeoffs as to the layout of a WMN for greatest possible

security and mitigation and minimal cost. The proposed low cost device IDS can be implemented to better

protect a WMN using low cost hardware available to most community members. With lower cost devices

and a readily implementable platform, the on-site technical expertise is not as crucial to the security of a

community WMN. This thesis will analyze the feasibility of using the low cost Raspberry Pi device as an

IDS by comparing it to a standard desktop operated IDS.

1.7 Overview

The rest of this thesis is organized as follows. Chapter 2 will detail the related work in regards to the other

IDS that have been attempted for WANETs, MANETs, and WMNs. Chapter 3 introduces the proposed low

cost low power system. Chapter 4 will detail the experiments and the types of metrics that will be collected

and analyzed. Chapter 5 will examine the results and analyze the data collected. Chapter 6 will give a

conclusion and provide ideas and new directions for future work.
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Chapter 2

Background and Related Work

2.1 Security Issues in Wireless Networks

There has been much research in regards to ad-hoc and sensor network security. Wireless Mesh Networks

have not been covered as extensively due to their relatively recent deployment. WMNs and Ad-Hoc/Sensor

networks have some similarity and because of this similarity, the security research overlaps between the

two. There have been different approaches to IDS systems proposed in the literature. The remainder of

this chapter contains an evaluation of these approaches and their applicability to Community Wireless Mesh

Networks.

2.1.1 Terminology & Definitions

Computer security involves usage of a lot of attacks software, mitigation terminology that can have obtuse

naming. As a result their purpose may not have an obvious meaning or understanding. The terminology is

defined in the next subsections.

Attack Definitions

There are many different attacks that are possible in a WMN. Attacks in a WMN can target a number of

different technologies in a network. Among the attacks that can target a WMN are: Teardrop attack, DNS

Tunneling, Computer Worms including the slammer worm, and Trojan Horses including the Trojan.tbot,

and Poison Ivy CnC.

Teardrop Attack. The teardrop attack is a denial of service (DOS) attack that targets TCP/IP fragmen-

tation reassembly codes [45]. Fragmented packets overlap one another on the host receipt and the attack

malforms them. When the host attempts to reconstruct them during the process it fails. Gigantic payloads

would be sent to the targeted systems, causing the system to crash.

DNS Tunneling. DNS Tunneling was discovered in 1998 and allows an attacker to bypass outbound

security controls and devices by tunneling IP over DNS [25]. The would-be attacker has control of an

external DNS server. The attacker then sends a malicious or infectious email to the victim. The victim
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sends a request for a certain host name within a domain. The compromised server responds with a modified

RData field that will act as a command to the victim. The modified DNS queries can then be used to

transfer files or execute remote commands.

Computer Worm. A computer worm is a malware computer program that replicates itself in order to

spread to other computers [19]. Worms have often been responsible for massive disruptions in the Internet

and many data compromises. Worms also attempt to replicate and send themselves out into the Internet in

the hope that the exploit they use is found on other hosts. Once a new host is infected, the worm attempts

the reproduction process again. Slammer is a computer worm that caused a denial of service on Internet hosts

and impeded Internet traffic on January 25, 2003 [51, 19]. Slammer exploited a buffer overflow vulnerability

in Microsoft’s SQL server and Desktop Engine database suite. The slammer worm’s behaviour consisted

of generating random IPs and sending a version of itself to the generated IPs. The key components of the

Slammer worm were that it was very small so that it fit inside a single packet, and it used the UDP protocol

to send out potentially hundreds of packets per second. The rapid packet generation and traffic caused

certain routers on the Internet to crash and become unusable. The result of this was that other routers that

had not failed updated their own routing tables to remove the crashed routers. The failed routers then were

restarted triggering a massive routing table update after their announcement to other routers. This caused

regular traffic to slow down on the Internet as most routers were busy configuring and updating their routing

tables.

Trojan Horse. A Trojan is a non-self-replicating type of malware program that typically causes loss or

theft of data, and possible system damage. Trojans often use social engineering, presenting themselves as a

non-threatening and useful piece of software so that an end user will install them. There are many various

trojans that exploit networks, two of them are listed below.

The Trojan.tbot was a recent trojan that would create a directory on a Windows-based OS with a

random name and then rename itself with a random string. A Trojan is considered to be a non-self-replicating

type of malware program containing malicious code that carries out actions typically causing loss or theft of

data.1 A Trojan often acts as a backdoor, contacting a controller which can then have unauthorized access

to the affected computer. The Trojan.tbot injected itself into an svchost.exe process and terminated the

original process. It would then listen to a newly created IRC(Internet Relay Chat) session for command and

control commands [17].

Poison Ivy CNC uses a stack-based buffer overflow in CoolType.dll in Adobe Reader on Windows

and Mac OSX. It allows remote attackers to execute arbitrary code or cause a denial of service (application

crash) via a PDF document with a long field in a Smart Independent Glyphlets (SING) table in a TTF font.

Poison Ivy CNC was exploited in the wild in September 2010 [17].

1http://usa.kaspersky.com/internet-security-center/threats/trojans
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Software Terminology

Blacklist. A blacklist is a list that holds the various IP addresses of malicious sources. It is generally used

to disallow traffic from the sources into the network. An IDS would use a blacklist to save on resources by

not needing to scan the packet from the source, simply disallowing it into the network.

Whitelist. A Whitelist is a list that holds the various IP addresses of trusted sources, it is the opposite of

a blacklist. It is generally used to allow traffic from the sources into the network, as the traffic is considered

trusted. It is used in IDS to make scanning more efficient, and prevent resources from being utilized to

process already trusted sources.

Deep Packet Inspection. Deep Packet Inspection (DPI) is the filtering and categorizing of a network

packet data part in addition to the header of a packet. It attempts to verify if the packet contains viruses,

spam, intrusions, or other predefined harmful criteria. While a lot of IDS check the headers of a packet, DPI

allows an IDS to cover more possibilities of intrusion.

Software Tools Techniques

Rsyslog. Rsyslog is an open-source software utility used in Linux systems for forwarding log messages

in a network. It is an extension of the syslog protocol, by allowing it to filter the logs based on certain text

properties, and allows for TCP to be used as a transport mechanism.

Nmap. Nmap is a program used to discover hosts and services on a computer network [29]. Nmap sends

specially crafted packets to the target host and then analyzes the responses. It is often used by attackers to

map out a network or host and determine what open programs are running on them. There are a few preset

scans available to Nmap: Quick Scan, Regular Scan, Intense Scan, and Slow Comprehensive scan.

Quick Scan. The Quick Scan will execute a TCP connect() port scan on the target host and report

on open ports. It is difficult to detect as it only initiates the connection and does not follow up on it.

Regular Scan. The Regular Scan means it will issue a TCP SYN scan for the most common 1000

TCP ports, it also uses an ICMP Echo request (ping) for host detection. The ping is what will give the scan

away as pinging more than one port in succession is a common rule in snort.

Intense Scan. The Intense Scan scans the most common TCP ports. It will make an effort in deter-

mining the OS type and what services and what versions of the services are running. This also includes the

ping scan as well as the OS profiling, so it is easy to detect.
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Slow Intensive Scan. The Slow Intensive Scan has a large number of options enabled. The main

focus of the scan is for host detection, by not terminating the scan if the initial ping request fails. It uses

three different protocols in order to detect the hosts; TCP, UDP and SCTP. If a host is detected it will do

its best in determining what OS, services, and application versions the host are running based on the most

common TCP and UDP services. The scan camouflages itself as a DNS request.

2.1.2 Availability

A DOS attack greatly affects the availability of a network or system. If a valid method for detecting frequent

excessive valid requests can be determined, then a potential to mitigate Denial of Service (DOS) attacks

can be implemented with an IDS. Other methods have suggested to increase the bandwidth of a system in

case of a DOS attack [70]; the feasibility of the aforementioned methods can be disputed, however, because

of the lack of available bandwidth in a lot of rural areas. Another method of DOS attack mitigation is

computational puzzles introduced by Aura et al., where the performance trade-off for the clients is having

the client compute puzzles to delay replay of attacks, and to tie up DOS nets [6]. Due to the battery and

processing power requirements of mesh boxes, computational puzzles could consumer power unnecessarily.

2.1.3 Non-Repudiation

Research into non-repudiation has mostly been done at the protocol level with researchers introducing new

protocols to achieve non-repudiation. Meng et al. introduced a fair non-repudiation protocol that used hash

values of the ciphers of plain text messages into the non-repudiation tokens, thereby reducing the amount of

data sent over the network, while still achieving non repudiation with a third-party authority [47]. Yang et

al. introduced a Behaviour Authentication Code (BAC) in wireless mesh network user postings [77]. They

manipulated the data frame on the MAC layer in a WMN by including keys that included group keys, and

user addresses. Teh group key would be used to decrypt the BAC code that is embedded in the packets, and

would be compared to the BAC on file at the end point. They simulated the approach and found that they

were able to secure and disown any data that was trying to be sent without the BAC embedded. However

they did not go beyond the simulation phase of the project, and the scope of the project was only limited to

user postings on a BBS type server. Adikari introduced the Efficient Non-Repudiation Protocol (ENRP) [2]

for non-repudiation in techno-informational environments. They used cryptography with multiple trusted

third party authentication services that allowed for the binding of the certificates to be high2 by making

forging very difficult and making sure the message cannot be altered. The methodologies introduced in the

design of both protocols can improve the non-repudiation. The protocols also require that each node in the

network would be aware and utilize the protocols. This would be a very difficult task to deploy successfully

because of the ad-hoc nature of a WMN.

2Physically bonded to an entity with a unique identification or evidence is stored and managed by a trusted third party [2]
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2.1.4 Confidentiality

Confidentiality in a WMN is a difficult concept to realize as most of the solutions for confidentiality would

require a full network solution for the WMN and could not be added after system deployment and in an

ad-hoc manner. Wang et al. implemented a new Simple Authentication and Key Distribution Protocol

(SAKDP) that would be used to distribute authentication keys in a WMN [71]. With SAKDP utilized

symmetric keys and a trusted network center to handle the generation of the authentication keys. The

clients would communicate with the network center using one way functions that would then be exchanged

for the symmetric keys to the other end point, thereby allowing the two sides to communicate without

someone eaves dropping on the exchange. Wu et al. provided a solution that would encrypt each message in

the WMN [73]. They also introduced a penalty-based routing algorithm that would prevent the discovery of

any emerging traffic patterns that could potentially be exploited by an intruder. The algorithm would send

traffic to its destination through nodes in a predefined list of nodes that would not always take the most

efficient path; instead, it would choose a path that would be able to disrupt the traffic pattern to outside

observers. The results of this would be that the traffic entropy would increase to the outside observers,

making it more difficult to determine the source and type of traffic.

2.1.5 Authentication

Studies in regards to the user authentication of the WMNs have been mostly done at the routing protocol

level. Different routing protocols have been introduced to authenticate the individual routing nodes to the

network. Numerous authentication schemes were introduced to allow new users to be authenticated when

they joined the WMN. Fu et al. introduced an authentication scheme that allowed peers to authenticate

nodes as they joined, provided that they had already registered previously with an offline certificate authority

[21]. The offline certificate authority would then issue the public and private keys and select existing nodes

from the network that can handle extra processing overhead that would then act as a virtual authority

online that would manage the predefined keys. This solution is quite secure, but requires extra overhead

and limits the ad-hoc nature of the WMN, and the redundancy of the the Certificate Authority can be

compromised. Li and Nguyen introduced a fast authentication scheme in which the client and the mesh

access point authenticate each other [40]. Mobile devices can then travel and connect from node to node

by use of tickets that are generated by the nodes between themselves. The mobile hardware would use the

tickets to allow authentication on most of the nodes on the network. While this methodology would limit

the need for the mobile devices to perform intensive computing for authentication, and remove the need for

a central certificate authority, it can still be bypassed by an attacker commandeering a node via different

means.
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2.1.6 Integrity

There is research that deals with providing algorithmic solutions to the security problems [76], and the

processing capacities of WMNs [75] required for intensive tasks such as packet analysis. Hubaux et al.

investigated securing the communication in ad-hoc networks; having each user generate and distribute their

own certificates, allowing for better authentication between the nodes of the network. Since the nodes are

using their own certificates and can verify the validity of the sender with other nodes, the packets would

have to be de-crypted in order to change the data. With the certificates acting as a trust source, the system

achieved data integrity, preventing attackers from spoofing the packets thereby compromising the integrity

of the packets. When nodes want to communicate, they exchange their certificate directories to determine

if they are trustworthy. Srinivasan et al. looked into determining security by cooperation with a Generous

Tit-for-Tat algorithm, determining which nodes are acting in a normal manner [63]. Here again, all solutions

provided required an increase in processing overhead and more technical knowledge to deploy the systems.

2.2 Intrusion Detection Systems

Researchers have shown that cooperation can be useful in securing WANETs and there have been a few IDS

systems developed that use a distributed and cooperative scheme to provide intrusion detection functionality

in the WMN.

2.2.1 Agent-based IDS

Zhang and Lee provided a framework for the deployment of an IDS in a wireless mesh network [79]. They

proposed an IDS running on each of the nodes in the network, with communication and cooperation between

the nodes. Each node acts as an IDS agent on behalf of the entire system. Each system or node has a local

trace that it collects and monitors. If strong evidence of an intrusion (i.e. a detected malware signature or

anomalous network behaviour) is found, the IDS signals an alarm to the rest of the network. If an anomaly

is detected, then it must coordinate with other nodes to confirm an intrusion event has taken place. If the

majority of the nodes around an inquiring node detect something suspicious, then the inquiring node can

then issue an alarm and act as though an intrusion has taken place. If an intrusion is determined to have

taken place, then the nodes can reorganize to exclude the offending node from the network. This can be

accomplished by issuing a re-authentication for all nodes, or to have all nodes remove the offending node

from the network. This approach was shown to be more resource intensive than the agents could handle,

and found a high false alarm rate [36]. Each IDS would have to be rule-limited for the IDS in order to work

on each node and still not tie up all the resources on the node. Another weakness was that most of the IDS

proposed were light-weight; deep packet inspection is not implemented in most cases as it as been shown to

use up 31% of the processing time for SNORT [18].

14



Kachirski et al. also devised a distributed IDS with agents monitoring a subset of the network [36].

Their stated goal was to provide an IDS that could function in a low power and low bandwidth mobile

environment. Agents can provide coverage for basic IDS functions as well as using cooperation to exclude

nodes from the network [36, 49]. To save on power and computing resources, they implemented the agents in

a modular IDS deployment, meaning that not every node received an IDS agent that monitored the network;

instead each agent monitored their host on both the system and application level. Only some nodes were

given network monitoring duties. To determine which hosts received the network monitoring duties, they

divided the nodes into clusters and then each cluster would vote on the node to be the monitor, based on

the number of connections that each node had to the rest of the cluster. In their scheme, any node that

determined it was under attack could raise an alarm. The network monitors would raise alarms if they or

any member of their cluster were sending or receiving suspicious traffic. No mitigation strategy was given.

The authors also stated that there would still be a high false positive rate due to the nature of the network

in which it was deployed. To extend the mobile agents and give them the resources to perform deep packet

inspection would require them to be installed on lower powered Mesh Boxes in a WMN that would then not

be capable of processing the required tasks [23].

One problem with mobile agents is that they require a high security clearance and would have to be

self-updating. Installing updates frequently on different areas of the network could be misappropriated by

an attacker and could lead to a compromise in part or all of the WMN [12]. If an attacker could spoof the

agent signature, they would be granted elevated privilege in the network.

2.2.2 Cluster-based IDS

Yi et al. proposed an IDS based on a finite state machine that uses cluster-based intrusion detection for

a Wireless Ad-Hoc Network to detect DSR protocol exploits and intrusions [78]. They argued that such a

system would be more efficient than one in which all of the nodes acted as an IDS. The proposed algorithm

consisted of one node being promoted to the position of Monitor for a cluster of nodes. As in the previous

implementation, an election algorithm is used to select the monitoring node. Once the Monitor has been

elected it monitors all the incoming routing messages for the zone for which it is responsible. If an incoming

REQUEST message is deemed to have been tampered with, then the monitor rejects the route request

message and does not forward it to the rest of the zone for which it is responsible. The drawbacks to this

system are that the election algorithm can seemingly be exploited by an attacker by acting as a monitor

node and simply forging their ID to become a monitor node. If an attacker achieved monitor status, he

or she could then alter the routes at their leisure. Another drawback is that the cluster-based approach

proposed only functioned with the DSR algorithm and required that there be a significant number of nodes

from which to choose a monitor [78].
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2.2.3 CIDS

Bose et al. created a cross-layer IDS (CIDS) that is capable of detecting DOS attacks across multiple stack

layers [10]. As DOS attacks can be successful at different layers of the IP stack, they decided to permit an

IDS to analyze all the available layers in order to detect malicious nodes. They implemented a multi-level

approach to detection. In the first level, if a node is detected to be misbehaving, it gets flagged and put on a

NO TRUST REGION and is then passed on to level 2 for further analysis. Level 2 then gathers information

from different layers in the network. Level 2 analyzes the amount of energy resources at a node, the overall

congestion and then any malicious intent of the packets to determine if an alarm should be raised. By

analyzing different responses at different layers, they were able to successfully detect a DOS attack 100% of

the time. They eliminated the false positive rate by combining analysis from different tests such as energy

levels, packet drops, sequence packets lost by intrusions, etc. when looking at a maximum of 55 nodes in a

simulated environment. This research was only specialized in the detection of DOS attacks, however, and

did not attempt to detect other types of malicious traffic. Also, it did not show a distributed IDS but rather

a single stationary one that receives information relayed by the rest of the network, leading to a potential

single point of failure in the security of the network.

2.2.4 Routing Protection

Marti et al. used Watchdog, and pathrater, two tools that help to monitor the network and mitigate

against routing algorithm exploits [46]. They developed a way to detect DOS attacks in a Wireless Ad-Hoc

Network that routes with DSR; they would only work on wireless networks as Watchdog would need to listen

to the traffic of nearby nodes to work correctly. If a node was found to misbehave (by not transmitting or

delaying the packets), it would be removed from the routing table [46]. Watchdog can detect packets being

dropped at the forwarding level, as well as the link layer. The pathrater program is run on each node in

the network and it combines the Watchdog information to build a more reliable network path for all nodes

that are running it. The pathrater algorithm assigns the shortest path to a node and its intermediary

steps between nodes with a neutral value and always rates the local node higher than the neutral value. After

a certain time interval, the algorithm then increments the rating system on all paths until a predetermined

maximum value that is still a bit less than its own path rating. When a node connection breaks, then each

time slice is decremented until the floor of 0 is reached. If, however, a node is flagged by Watchdog, then

its rating is set at a high negative value (-100); this allows for false positive nodes to eventually work their

way back into the network.

However, the Watchdog system could be fooled by a node dropping packets at a lower rate than the

Watchdog threshold [49]. Also, Watchdog can’t function very well in an environment where a lot of natural

collisions are occurring as it can be fooled by low-powered or failing nodes. As well, Watchdog can be fooled

by a node falsely reporting that another node is misbehaving. Watchdog also did not take into account Deep
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Packet Inspection (DPI) because of its resource requirements. This can lead to complex malware slipping

through the system and infecting other nodes.

2.2.5 Anomaly-Based Ad Hoc IDS

Islam et al. [34] developed an intrusion detection system for Suburban Ad-Hoc Networks (SAHN-IDS).

SAHN-IDS focused on two specific areas of attack. The first attack vector was the misuse of the transmission

channel, and the second was anomalies in packet forwarding [34]. Among the characteristics of misusing the

transmission channel were the following:

• Non-compliance with the MAC protocol,

• Jamming the transmission channel with packets of unknown format or random bit-patterns and static

noise, and

• Not complying with the bandwidth reservation scheme.

The anomalies in packet forwarding were dropped packets, and delayed packet transmissions. SAHN-IDS

uses traffic volume and a preallocated bandwidth rating to determine if there is a misuse of the transmission

channel. A limitation of this system is that it can only detect an attack if only one neighbour node is

misbehaving.

SAHN-IDS uses timestamps and expected transmission and processing delay to determine whether or

not there is a delay attack present in the network. If an attack is discovered, then the routing protocol is

altered to avoid the misbehaving node. They deployed SAHN-IDS on each node in the network, and ran a

simulation of the system in GloMoSim with 70 nodes. They found the detection was fairly fast and effective

and was able to maintain a high throughput of the network traffic. The authors did note however that there

was a 6% increase in traffic overhead from the IDS itself passing messages.

2.2.6 Grid-Based IDS

Donadio et al. proposed a distributed IDS using grid computing middleware [13]. Each node would contain

an agent that would provide a continuous monitoring service, a decision making service, an action making

service, and a communication service. The monitoring service would be a passive monitoring system that

would be able to share traffic statistics and other information over the grid. The main processing is handled

by the open source framework CoMo [27]. The nodes would each have their own decision making system and

would provide coverage for other node clusters. The processing would be done by each node and the IDS

would be distributed throughout the network using the GLOBUS [54] open source communication service.

The Grid-based approach required all of the nodes to be homogeneous.

This type of system would be difficult to deploy in a WMN consisting of heterogeneous nodes, namely

the lower-powered routing nodes and higher-powered end nodes. There is little mention of nodes listening
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on other nodes traffic as a means of monitoring, and while the authors state they built a prototype, no

experiments were performed on it. One particular problem is the possibility of letting too much information

become available to the other nodes.

2.2.7 SNORT

SNORT is an open source network intrusion detection system created by Martin Roesch. It is used worldwide

as a primary IDS to secure networks of leading companies in the Aerospace Industry, wireless industry

and Military [57]. SNORT performs protocol analysis, content searching, and content matching. SNORT

is a packet sniffer that monitors network traffic in real time, analyzing each packet to detect a dangerous

payload or suspicious anomalies. It can be run in three different modes, packet logger, sniffer, or intrusion

detection mode. SNORT is based on libpcap, a tool that is widely used in TCP/IP traffic sniffers and

analyzers. Through protocol analysis and content searching and matching, SNORT is capable of detecting

many different attack methods, including denial of service, buffer overflow, CGI attacks, stealth port scans,

and SMB probes. When suspicious behavior is detected, SNORT sends a real-time alert to syslog, and a

separate alerts file. There are also many rules and administration managers available for SNORT that allow

the rules to be updated as new exploits are confirmed. As a result of SNORT’s widespread use, it makes an

ideal platform from which to base a low-cost, low-power IDS. The open source nature of SNORT makes the

software capital cost nil and the large adoption rate allows for a well documented and large knowledge base.

This allows non-experts to be able to configure or troubleshoot the SNORT IDS in environments like WMNs.

2.2.8 OpenLIDS

Hugelshofer et al. [26] investigated lightweight intrusion detection research on WMN systems. They showed

that conventional IDS software such as BRO [55] and SNORT [57] can severely hamper the performance of

an underpowered mesh routing box. The CPU utilization could reach 100% with processor load reaching

over 1.0 meaning that processing time would continue to be delayed and the processing queue would keep

growing, resulting in the routers dropping packets. The resulting dropped packets would negatively impact

the application performance of the end nodes. A detection mechanism was developed that could be deployed

on the lower-powered node machines called OpenLIDS. They used simple detection mechanisms to detect

anomalies that could be an indication of a mass mailing worm, in order to save on space and resources. Deep

packet processing was removed due to the inability of the mesh boxes to perform the necessary pre-processing

on the packets and still route the packets efficiently. They used DNS MX queries and SMTP traffic to detect

the mass mailing worms and spam. They collected the number of packets being sent, ratio of incoming and

outgoing traffic, average packet size, and average flow size. They used the collected data to infer whether or

not an attack was taking place. OpenLIDS was tested with traces taken from Wray, as well as traces of a

variant of the conficker worm test detection. The authors indicated that systems running BRO and SNORT

were dropping packets in the preprocessing phase when analyzing the Wray traces. OpenLIDS was able
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to allow the boxes to function on the low powered mesh boxes by not performing deep-packet inspection.

The drawback to not attempting the deep packet inspection is that more sophisticated attacks, worms and

exploits can still be used against the OpenLIDS system.

2.3 Low Power Devices Security Deployments

There have been many deployments using low-power devices in various different deployments. Usually the low

power devices are used for single-task functionalities like monitoring or logging; the Raspberry Pi, however,

has been able to load an operating system, and be used as a small multitasking platform.

The Raspberry Pi (RPi) has been used for a variety of projects, including as a database server, in

numerous home automation projects, as a learning device for low income areas of the world, and even a as

security monitoring system. The processing power and flexibility of the device has been applied to higher

processing tasks such as decryption and video processing [32]. Low power devices are desirable due to low

power consumption and low cost, facilitating ease of replacement and low overhead when deploying new

devices into a WMN.

Other devices are also low powered such as the Arduino [58] and the Texas Instruments MSP430 Launch

Pad [30], however they require more technical knowledge to program and deploy and do not have as much

software available for the platform. The Arduino platform is a series of boards and microcontrollers created at

the Interaction Design Institute Ivera, that can be assembled together with different peripherals to perform

various tasks. The Arduinos are usually shipped with just the board and usually no operating system

type software. The developer is usually required to program the board for the desired task. Much like

the Arduino, the MSP430 launchpad was designed by Texas Instruments to provide microcontrollers with

significant lower power consumption than previous generations of previous hardware. As with the Arduino,

the MSP430 requires the developer to compile directly on to the board to perform the desired task. This

requires more technical knowledge than a typical user in a WMN has. The RPi was chosen in this work for

its durability and low cost as well as complete ease of use and fully functional, plug and play capabilities.

2.3.1 WiFiPi

Low power devices were also used to track and simulate the movements of people in crowds at a mass event

[9]. The researchers deployed Raspberry Pi devices in a popular summer concert series and around their

own university. Using the Raspberry Pi to process the incoming connections from people’s wireless devices

they were able to process and model the crowd dynamics. The researchers did not let the people attending

know that the devices were present in the field. The devices were able to process a coverage area of 400m by

500m. They were able to identify 137,899 unique devices over a span of three days. They mentioned that

the processing power of the Raspberry Pi needed to be able to filter the incoming packets to identify and

log the unique devices, and the devices were able to keep up to the task.
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2.3.2 Drone Penetration Testing

A Raspberry Pi has been used for security penetration testing. Abramov et al. attached a Raspberry Pi

to a flying drone, and used it to launch attacks against different WIFI networks [1]. Using the Raspberry

Pi it was able to use PwnPi suite to launch attacks, as well as using the Raspberry Pi to perform logging

and flight recording. They were able to crack both open networks and encrypted networks using a processor

intensive program AirCrack. The research showed that the Raspberry Pi, is able to perform in the processor

intensive application of security.

2.3.3 CreepyDOL

The CreepyDOL [53] detection network was built by Brendan O’Connor and presented at both BlackHat2013

and DefCon 21. CreepyDOL was a project in which Multiple RPi devices were used to connect to public

WIFI hotspots and essentially track individuals. The project worked by distributing the RPi devices over a

certain geographical area and logging the hardware and software information of laptops, smart phones and

other WIFI enabled gadgets that connected to the access points. They logged all of the wireless connections

and data that was readily available in the vicinity of the hotspot and sent it to logging server. After a few

days the information gathered was able to provide the basic information to identify the people attached to

the sniffed devices. After a month of data collection, meaningful insight was provided into the private lives

of the owners of the devices. For instance the personal details of a person such as their marital status, what

bank they used, their browsing habits, and other more personal details depending on what sites they accessed

could be extrapolated from the collected data. The RPi devices themselves did not masquerade as access

points, but merely sniffed and logged the information that was being sent in plain text between the devices

and hotspots. They were deployed in arbitrary locations determined by the desired geographical coverage

area where they could obtain power from the nearest wall socket. The distributed deployment matches that

of a WMN; thus, the feasibility of the CreepyDOL deployment showed the potential of the Raspberry Pi to

host an application in wireless security domain.

2.4 Summary

A great deal of the related research has only attempted to develop an IDS, but there has been little or

no research attempted with regards to an automated DPI (Deep Packet Inspection) mitigation system to

be deployed in a remote rural area. Due to the multitude of possible attacks, a system that can attempt

DPI is needed to detect increasingly sophisticated malicious behaviour in order to better protect the WMN.

By providing another layer of security defense for the WMN, the success of the WMN to function as a

communication outlet for rural communities greatly increases. The Raspberry Pi has been shown to be

able to handle various and differing processing requirements, to have a large software library, and that its
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platform can be possibly applied to an IDS.
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Chapter 3

The Raspberry Pi Intrusion Detection System

3.1 Overview

An IDS would be very beneficial to a WMN with respect to protecting the end-user’s data and privacy.

The hardware limitations of the WMN that provide benefits such as low overhead, inexpensive and easily

replaceable hardware and battery power as the main potential source of power can prove deploying such an

IDS difficult. A low cost, low power device can be augmented to the nodes of the WMN, however, to provide

an IDS function. As shown in Chapter 2, the Raspberry Pi has been developed so it can meet such a need for

niche computational usage. Using the Raspberry Pi platform [20], a low-cost, low-power and low-overhead

device, an IDS based on SNORT can be deployed in a distributed fashion over a large physical distance. The

distribution of the IDS nodes would function to augment the security of the WMN at the node level.

The RPi platform provides a flexible environment for an IDS. No commercial software is required to

be installed on the systems, and Linux-based operating systems are readily available. The device is easily

configurable and have built-in Ethernet ports (Model B). This port is used in the system for physical

connection, but Wireless connectivity is also available [20]. The devices could be deployed throughout the

network to listen in on the network traffic providing a real-time intrusion detection service.

Once deployed, the RPi acts as a packet sniffer1 and scans all the packets being sent from the node, even

packets being forwarded from other nodes. By monitoring each node, the RPi machine provides a barrier

from internal exploits. By default, the end stations in the network would not trust each other. Internally

generated packets would no longer be blindly accepted by the WMRs; instead, all packets would be scanned.

This policy prevents static trust exploits [79] by having all of the data analyzed. A compromised node would

not be able to impersonate a cooperating node without more effort to hide its true identity or nature.

Due to the RPi’s portability and ability to run on battery power, non-traditional node locations are

also possibilities for deployment. The devices would be distributed to the Mesh nodes’ locations to provide

coverage in routing node areas, rather than deploying one IDS to monitor the entire network. Thus, detection

would be spread out into the network, allowing for more robustness in security rather than relying on a single

node that may fail, leaving the entire network unsecured. Should a misbehaving computer be detected,

1A program and/or device that monitors data traveling over a network.
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the devices would then communicate with each other to alert the entire network about the inappropriate

computer behaviour, therefore preventing the spread of the intrusion to other sections of the network that

may or may not be aware of the security breach.

3.2 Design

The RPi’s operating system is based off a version of Debian (Raspbian). The RPi can be altered to work

with open source intrusion detection programs [20, 37]. The devices analyze the packets that are being

transported on the network to and from any device connected to the WMR. Since the RPi is monitoring the

incoming traffic of a node, it receives everything that the node receives before forwarding the traffic. This

will allow the analysis to be done while not burdening the network nodes with scanning tasks and allowing

the WMR to only route packets. An overview of this can be seen in Figure 3.1. The RPi machine runs

the SNORT software, which performs the scans of the packets in real time. Due to SNORT’s reliability, large

community [57], and relative ease of deployment it was chosen as an ideal platform on which to base an IDS.

One of the reasons that SNORT was chosen as the test IDS is that it is capable of Deep Packet Inspection

(DPI). DPI is a form of packet filtering that not only examines the header but also the data portion of the

packet to determine if there are any attempts to intrude or compromise the system in the packet payload.

IDSs that provide DPI are able to reveal more malicious attacks than IDS that do not offer it. The extra

detection comes at a price of more processing time and resources being used to analyze the packets against

all rules.

Should the detection program running on the RPi device detect anomalous or malicious behaviour, the

device would then flag it as malicious and then notify the rest of the network or routing nodes with an alert.

Once the anomalous traffic is detected, an alert is sent out to the network. The RPi nodes then begin to

look out for packets coming from the detected intruder. By initiating a large scale alert, a mass attack can

be detected and mitigated before it infects a majority of the WMN. The RPis will be able to add a new rule

to the SNORT ruleset to automatically drop packets coming from the detected malicious source. This would

attempt to prevent an attacker from getting further access via an exploited node. Currently mediation of

the alarm would have to be attempted manually, meaning that the threat an black list would have to be

added to the routing nodes, as there currently is no mechanism for the RPi devices to message the WMRs

automatically.

3.3 Raspberry Pi Hardware

The Raspberry Pi was created with the goal of providing a fully functional computing tool at a low cost to

help facilitate educating the general public about computing [20]. The Model B runs off of a 5v micro USB

and can be used in conjunction with a 1.2A power supply to run the majority of linux based utilities and
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Figure 3.1: Communication Between Two Nodes with RPi Attached.

non-computationally intensive applications [20]. The maximum power consumption for the Raspberry Pi is

1 ampere. As shown in Figure 3.2, the Raspberry Pi Model B has 2 USB ports usually used for a keyboard

and mouse, regular audio output, S-video out, HDMI output, and SD card slot (this is used as the main hard

drive). The HDMI connection comes standard and can connect to any monitor or television that includes

either HDMI or DVI ports. The USB ports will only output up to 1 ampere, so certain USB devices may

need to be powered, or if more than two devices are to be used, a powered USB hub is recommended.

There are many flavours of Operating Systems that are tailor-made for the Raspberry Pi. The Raspbian

OS is made specifically for the Raspberry Pi and is based off of the Debian Linux distribution. Arch Linux

can also be installed directly on the Raspberry Pi. Most of the Operating Systems come with python

installed as the main tool for programming. With the python PIP libraries, rapid application development

on the Raspberry Pi is achievable.

3.4 Implementation

3.4.1 SNORT on the Raspberry Pi

With some system alterations to the setup of the Rasbian OS, SNORT was installed on the RPi [37]. The

SNORT program was running along side of an RPi communication program that works by sharing detection

results amongst the RPis.

The setup for the RPi machine involved first building a working image of the finished RPi IDS on one
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(a) A) Dual USB ports B) Audio Out C)
Video Out D) SD Card (8GB) E) HDMI out
F) Ethernet

(b) Side View.

(c) SD Card the ”Hard Drive” for the RPi

Figure 3.2: RPi Hardware
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instance and then using that instance as a clone template for any future machines. The raspbian OS was

installed on the SD card that functioned as the RPi’s hard drive. The configuration of the OS was standard,

except for the following three changes. First, SSH was upgraded on the OS. The SSH session would be the

only way of altering or communicating with the RPi machine once deployed. Second, there was a need to

deallocate memory from the RPi’s GPU back to the system memory as the configuration would provide

more memory for the system to run SNORT. The RPi would not require the GPU memory as it would not

be displaying graphics to the user. Finally, the iptables service was configured to only allow SSH messages

through, any other packets incoming to the RPi machine would be dropped as a preventative measure against

compromise of the IDS itself.

Once the machine was configured, SNORT was installed. SNORT was installed on the RPi raspbian

OS using the built in apt-get utility. SNORT was configured to run in intrusion detection mode, with

the logs of the packets being sent to a separate log file and in command line only mode to reduce CPU

processing overhead for a GUI not required for this deployment. In intrusion detection mode, SNORT was

given permission to drop traffic in real time. The SNORT program was also run in fast mode, meaning that

the PCAP files are not be decoded from their binary form to a wireshark and other text editor compatible

plain text format. Fast mode allows for faster execution of the detection algorithm. The SNORT rules

were updated via a utility for SNORT called PulledPork. PulledPork is a rule manager for SNORT and

Suricata. It automates the process of downloading and installing/updating VRT SNORT rules, Shared

Object rules or Emerging Threats rules. The init.d service was configured to allow the SNORT process to be

run on start-up of the machine.

When the machine was booting with the SNORT service active on start up, the image was cloned. Using

a clone of the image, made it easier and faster to configure other RPi devices without having to go through

the same setup steps for each machine.

The clone was made using a combination of parted and rsync. Parted is a disk partitioning and

partition resizing program. It facilitates creation, destruction, resizing, movement and copying of ext2,

linux-swap and FAT partitions. Rsync is a fast file copying tool. It can copy locally to and from another

host over any remote shell. As shown in Figure 3.3, partitioning the SD card with two partitions (one for

the boot sector, and the other for the regular OS image) facilitated the loading of the cloned files to the SD

Card.

3.4.2 Deployment

Once the device setup was completed, the RPi IDS was attached to the individual WMR. They were con-

nected, due to their physical proximity to the WMR, via wired connection to the WMR as an ethernet

connection is available on the Model B. In a deployment scenario the model A versions of the Raspberry

Pi could be used which only support wireless connectivity. All traffic to the WMR is routed through the

Raspberry Pi and the RPi acts like a filter for all the traffic to the WMR. Due to the low power requirements,

26



root# parted /dev/sda

GNU Parted 2.3

Using /dev/sda

Welcome to GNU Parted! Type ’help’ to view a list of commands.

(parted) mklabel msdos

Warning: The existing disk label on /dev/sda will be

destroyed and all data on this disk will be lost.

Do you want to continue?

Yes/No? y

(parted) mkpart primary fat16 1MiB 64MB

(parted) mkpart primary ext4 64MB -1s

(parted) print

Model: Single Flash Reader (scsi)

Disk /dev/sda: 8069MB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Number Start End Size Type File system Flags

1 1049kB 64.0MB 62.9MB primary fat16 lba

2 64.0MB 8069MB 8005MB primary

root# mkfs.vfat /dev/sda1

mkfs.vfat 3.0.13

root# mkfs.ext4 -j /dev/sda2

mke2fs 1.42.5

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

488640 inodes, 1954304 blocks

97715 blocks (5.00\%) reserved for the super user

First data block=0

Maximum filesystem blocks=2004877312

60 block groups

32768 blocks per group, 32768 fragments per group

8144 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

Figure 3.3: Partitioning the SD Card
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root# rsync -av --one-file-system / /boot /tmp/newpi/

var/mail/

var/opt/

var/spool/

var/spool/rsyslog/

var/tmp/

var/www/

sent 2204324795 bytes received 1303348 bytes 2608667.23 bytes/sec

total size is 2199215758

root# df -h

Filesystem Size Used Avail Use% Mounted on

rootfs 15G 2.3G 12G 17% /

/dev/root 15G 2.3G 12G 17% /

devtmpfs 215M 0 215M 0% /dev

tmpfs 44M 248K 44M 1% /run

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 88M 0 88M 0% /run/shm

/dev/mmcblk0p1 60M 9.4M 51M 16% /boot

tmpfs 10M 0 10M 0% /tmp

/dev/sda2 7.3G 2.3G 4.6G 33% /tmp/newpi

/dev/sda1 60M 9.4M 51M 16% /tmp/newpi/boot

Figure 3.4: Copying the Image to a New Card.

the RPis could be run off of the same type of battery setup as the WMR, or via traditional grid connections.

The setup for these experiments were run off of regular grid power.

The housing requirements for the RPi were minimal due to the device’s size and weight. The RPi could

be fit into most existing housings. With multiple housing availability, the RPis can be put in more secure

or sheltered locations. For ones deployed in more open spaces, the small size will allow it to be placed in

optimal locations. Optimal locations indicate a location that facilitates the maximization of the signal power

and transmission radius, such as the tops of trees and/or poles in the middle of fields within line of sight of

another node. The RPis were deployed and continued to run until manually shut down or the power supply

was removed from the board.

3.5 Discussion

3.5.1 Benefits

The RPi devices themselves are resilient and cheap. They are small and require very little in actual power

usage, they can be accessed remotely and can run a lot of different beneficial anti-intrusion programs. They

are easy to conceal and can be placed on or near the WMN nodes. Each RPi primarily uses a 4 GB flash

card that holds its OS and file system. If the device breaks down or is compromised, then the flash card can

be replaced and the RPi would function as new. Development for different accessory programs on the Pi
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is relatively easy as most of the development is done with Python and is extensively documented. Python

comes standard with the raspbian OS.

3.5.2 Concerns and Limitations

The most notable concern is the resource constraints found on the RPi devices. While they are incredibly

powerful, the devices still have some limitations in processing power and storage space. The devices are also

limited by the power supply available in the area. The Raspberry Pi can run off of batteries but not for an

indefinite amount of time.

As the traffic level grows, the detection can take longer as the amount of information to go through can

be limited by the processor in the RPi. If the rate of traffic rises to a level where the Pi cannot keep up

with the rate, then a delay between initiation of attack and detection will increase. One of the test plans

included the ability of the RPi to keep up with increasing traffic.

3.6 Summary

In order to help secure a WMN, a low cost, low power device called the Raspberry Pi was chosen as the

platform to host an IDS. The Raspberry Pi was chosen due to the ease of use and deployment, readily

available documentation, and knowledge bases. The Raspberry Pi made the deployment of an IDS very easy

and quick with abilities to expand and evolve the ruleset for the IDS.
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Chapter 4

Experimental Design

A number of experiments were established to verify the effectiveness of the RPi as an IDS. The exper-

iments consisted of simulations of a WMN environment that is being attacked by a sampling of attacks

consisting of malicious exploitative code in the payload of the in-transit packet, discovery probes, and other

various commonly found historical attacks that have been used as benchmark exploits in previous research

in the last 10 years. The experiments were run on two platforms running SNORT IDS: a desktop machine

serving as a baseline system and the experimental RPi system.

4.1 Goals

The premise of the experiments was to emulate a WMN environment that could be attacked by various

attack vectors. The responses of the system determined how well the RPi handled detection of the malicious

traffic at different traffic thresholds in addition to how well it alerted the rest of the system of the intrusion.

One of the goals was to show that a low cost solution would be economical and effective in a community

WMN. The economic characteristics of the system were tested by comparing the RPi system to a similar,

more common desktop solution.

The SNORT software is not a standard install on the Raspberry Pi. To install SNORT, a few tweaks

needed to be made to allow it to run as a daemon [37]. The Raspberry Pi SNORT was configured to run in

fast mode and to have a zero size swap file so that the virtual memory would not be allocated to save on

memory usage. It was imperative to ensure that the installation did not alter the operation of SNORT. On

the baseline, the SNORT system was set up with a simple install via apt-get and one configuration change

to allow it to run as a daemon on start up. The SNORT program on the baseline was unaltered, there were

no tweaks unlike the install on the RPi. Due to this difference, the RPi would be tested against the baseline

system with a subset of common packets to show detection commonality between the two systems.

To show that an RPi system would be a competent solution vs. that of a regularly deployed IDS, the RPi

machine would have to perform within detection and traffic tolerances that would be common in a WMN.

The detection performance would be based off of the detection time of a comparable system that would be

performing intrusion detection. If the detection time is still comparable with those from the baseline system,

then the RPi can be considered to detect the attack before the attack can spread. The traffic tolerances refer
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to the amount of and type of traffic that would be found in a community WMN. Most of the time, this would

be traffic created by commonly used consumer programs such as Skype, YouTube, and BitTorrent [69].

The detection times would be based off of the detection times for the baseline system, and while they are

expected to be slower, they should still be able to detect malicious packets in a time that is not detectable to

the end-user and that would prevent an entire attack to propagate throughout the network. To be considered

successful, the RPi would have to be able to scan the traffic at the WMR, without interrupting a normal

end user experience. This would mean that, in the case of the streaming videos and the Skype calls, the

experience would be uninterrupted communication and video playback outside of normal network variability.

For the BitTorrent client, the end user should not experience longer than usual download times.

The RPi would also have to perform intrusion detection services on a WMN, monitoring the traffic

and guarding different attacks at a substantially lower cost than that of a traditional IDS. The goal of the

experiments was to show that the designed characteristics for the detection and mitigation system layout

would be proven to be robust and able to be easily deployed in a WMN with minimal cost and user expertise.

Evaluation of the RPi device was performed in a closed network environment using packet captures of

malicious attacks and penetration scans. The packet types, attack frequency, and duration of attack were

varied to allow for testing of the RPi at various levels of usage and throughput. Among the measurements

taken were the following: the number of false positives and negatives, the number of attacks and penetrations

detected, the time it takes to detect from the issuing of the attack, the throughput of the system, and the

power consumption of the device. The system would raise an alert throughout the entire network and the

alert frequency was analyzed for the time of detection1 and whether the alarms were reasonable.2 Finally,

the cost to security ratio was evaluated by comparing the IDS and other similar commercial products. The

cost to security ratio was the percentage of the network that would have an IDS monitoring all of its traffic.

4.2 Environment

All simulations were done on a private internal network with RPi monitoring packets being sent throughout

the network. The RPi machines each had 8GB of HD space from a class 6 SD card. Each RPi consisted

of a Raspbian Linux operating system with a modified version of SNORT running on each machine. The

desktop machine had an Intel Core I3 processor running with 8GB of RAM and 1TB of HD space running

Linux Mint, a lightweight distribution of the Linux operating system also running SNORT. The data sets

contained a variety of packets that were found in a variety of networks. The packets chosen for the tests

were divided into two groups: attack packets, and regular non-malicious packets. The data sets consisted of

packet captures from the following sources:

1The detection time of a malicious packet measures from the time it was launched into the network to the time an alert was

raised.

2False positive and false negative rates.
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• Wireshark Sample Captures (http://wiki.wireshark.org/SampleCaptures) ( 25 captures),

• DARPA Intrusion Detection Data Sets

(http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data) (10 captures),

• OpenPacket.org Capture Repository (https://www.openpacket.org/capture/list) (17 Captures).

4.2.1 Attacks

The Wireshark sample sets are captures of traffic packets. They are captures of normal protocols that

could be found on community WMNs. Traffic would include SAMBA,3 HTTP, UDP and Appletalk. The

Wireshark data sets also include some captures of a teardrop attack, DNS exploits, worms including the

slammer worm, and the DNS remote shell anomaly. They were discussed in Section 2.1.1.

The DARPA Intrusion Detection Data sets are captured Internet traffic packets that are used by an IDS

to tune and configure itself. The purpose of the packets is to be used as a training data set to allow the

IDS to detect common attack vectors and abnormal data in packets to facilitate anomaly detection. The

DARPA data sets are from 1998 and 1999, so the packet data is outdated, but it is still used today as a

baseline qualification for IDS testing.

Malicious packet captures were run against the system, specifically the packet captures of a Teardrop

attack, Trojan.tbot, and Poison Ivy CNC. These were chosen because they were examples of some common

types of attacks that would compromise an end user system’s security. All of the attacks are defined in

Section 2.1.1.

4.2.2 Regular Traffic

Regular application traffic was also submitted to the network to show that the IDS would not confuse it for

malicious packets; therefore not letting legitimate packets through into the network. Openpacket.org had

packet captures of various different packet types much like the previous two examples; unfortunately the site

has since been discontinued, therefore many of the packet types are outdated as of 2011. Openpacket.org

had a wide variety of captures as it was a community based repository of packets due to all sorts of users

submitting PCAPs to the repository. This meant that more unusual traffic was monitored and captured and

then submitted to the repository.

First, regular packets of varying protocols at different layers were run through the network to verify

that false positives would not be produced. The protocols that were tested were NFS, HTTP, BitTorrent,

Kaspersky Update Protocol, Kerberos, mDNS, SSL, UDP, WIFI, and H.223. Because of their popularity

in heterogeneous wireless networks, the rest of this section describes the details of these protocols and their

3Samba is a popular freeware program that allows SMB/CIFS to access and use files, printers, and other shared resources

on a local network.
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use cases. NFS is an application layer protocol used in distributed file systems, primarily those that are

Linux-based. HTTP is the common protocol for retrieving web pages and is used on a WMN whenever a user

uses a web browser. BitTorrent is a protocol that allows users to share files with peers. Kaspersky Update

Protocol is used by an anti-virus brand Kaspersky to update their software. Kerberos is an authentication

protocol that users would use to verify themselves with each other in a secure manner. The mDNS Apple

Rendezvous is a data link layer protocol used to identify and share Apple product resources and files over

the network. SSL is used to encrypt communication between a client and server at the application layer, it is

used in places like online banking and shopping. SSL can also be used in conjunction with other protocols to

provide security for sessions that involve those protocols. UDP is a transport layer protocol commonly found

on a WMN when users use the protocol for online gaming [15], VoIP [52] and multi-cast video streaming

[22]. WIFI (802.11) is the standard MAC-layer protocol that would be used by a lot of machines on the

WMN as it would be the protocol that allows the different devices on the local network to communicate.

H.223 is used by video phones to send data over publicly switched telephone networks and can be captured

in the data-link layer.

4.2.3 Typical Usage Testing

Typical community usage was simulated with the common applications that are most frequently found on

typical end user networks such as a community WMN [69]. These applications include BitTorrent, Skype,

and HTTP traffic including sites like Facebook, and YouTube. By modeling the typical usage of the network,

the goal was to show that the RPi would be able to handle the common traffic requirements of a modern

WMN.

The typical usage was simulated with three typical user applications to see if the RPi machine could

handle the traffic and still function effectively as an IDS. The simulation of normal day-to-day activity

included downloading a BitTorrent with approximately 200 peers, making a Skype call with both video

and audio, and watching a full YouTube video. The BitTorrent ran for 29 minutes of continuous download

and upload. The total size of the transferred file was 316.9 MB, and the transfer time was approximately

27 minutes. The max download rate was 218KB/sec with a max upload rate of 40KB/sec. The Skype call

lasted for almost 1 hour, and was averaging about 40 packets per second. Both video and audio were on

between two laptops that had motion happening in front of their web cameras. The YouTube video was

7 minutes 18 seconds long running at 720p resolution. It was accessed via a Firefox web browser and

decoded with a flash plug-in. The video data itself was compressed. The total size of the video that was

downloaded to the client was approximately 204 MB.

The performance data was collected by using a bash script that ran a combination of date, vnstat

and top. Also wireshark was monitoring on the endpoint to determine the total traffic received at the

node, without taxing the RPi. The CPU, memory and traffic volume were sampled every ten seconds during

operation so as not to inflate the working data set. The script can be found in Figure 4.1.
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#!/bin/bash

while true;do

process=‘top -b -d 1 -p $(pgrep -d’,’ snort) -n 1‘;

date=‘date +%D%T%N‘;

sleep 1;

echo $process $date $traffic >> snort_log.log

done

Figure 4.1: Bash Script for Logging performance

4.3 Test Setup Details

The test setup system used the Raspberry Pi running a version of SNORT specifically tuned for the low power

devices. The RPi machine was set up as a network bridge between the machine and the network that it would

be monitoring. Using the RPi as a wired network bridge was required due to a limitation on the model B

RPi that prevents the network card from entering promiscuous mode. When a data packet is transmitted in

non-promiscuous mode, all the LAN devices listen to the data to determine if the network address included

in the data packet is theirs. When the promiscuous mode is enabled, the RPi’s WIFI adapter would connect

to the network and sniff all the data that was flowing through the wireless network to the mesh box. The

benefit of promiscuous mode would be that the adapter would intercept and read all packets regardless of

which device they were addressed to. This is how the IDS is able to filter and check for malicious packets

that are not intended for the IDS. If there was no promiscuous mode then the IDS detection capabilities

would be severely limited.

4.3.1 Single Packet Worms

The following attacks are susceptible to being discovered by DPI: Buffer Overflows, Single packet Worms

[72], and DOS attacks. Examples of these attacks were included in the testing sample. The attack packet

traces were available in many forms and can be downloaded in PCAP form from the Wireshark sample

captures page as mentioned above in Section 4.2.

A scanning attack was attempted by using NMAP to port scan the protected network. Depending on

the responses received from hosts, it is possible to determine the running applications on the host and the

operating system that the host is running. When the IDS detected the attack, it was evidence indicating a

successful deployment and provided protection against the most common first step for an attacker.

TCPReplay [68] was installed on a separate machine internal to the network. It was already assumed

that the attacker was on the internal network. The attacker node then sent malicious packets from a trace

file into the network at a specified rate. Specific nodes could be targeted within the network or packets
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could be sent to the network blindly in hopes that there is a host on the network susceptible to the attack.

TCPreplay suite also comes with tcpreplay-edit that allows the user to replay the attacks with varying

frequency and arbitrary speed [68].

4.3.2 Detection & Remediation

The average time for a successful specific attack was recorded and the process was repeated in an attempt to

infect further nodes. Based on the detection time determined, the listening nodes would then begin shutting

down the attacking node by updating a blacklist and passing the blacklist on to the rest of the network. A

blacklist is a list that holds the various IP addresses of malicious sources. It is generally used to disallow

traffic from the sources into the network. SNORT has the ability to drop packets entering the network if it is

being used as a network bridge. Conversely, if SNORT is being used in a WIFI environment, it would create

an alert that it would send to the other nodes. The other nodes would then disallow the traffic from the

blacklisted IP into their local network.

4.4 Factors

The purpose of varying the input factors was to demonstrate that the RPi system is applicable in different

settings and can be considered a robust intrusion detection system. In order to be considered a robust IDS,

the detection must be able to scale to the size of the network. Each run had variables that were tweaked

to simulate a more broad operating environment as can be found in an actual WMN. The parameters that

were varied for the testing phase of the experiment were the following:

• Packet Type,

• Frequency of Attack, and

• Volume of Attack.

4.4.1 Packet Type

The packet type ranged from the standard packets that facilitate normal program network traffic to specifically-

sculpted malicious packets. By testing a variety of packets and protocols against the IDS, it can be shown

that the system would be compatible with the non-homogeneous nature of a community WMN. Both systems

were subjected to the same packet types to measure whether the SNORT implementation was stable and the

same on both systems. The packets that were analyzed were the following:

• NFS Protocol Family,

• Hypertext Transport Protocol (HTTP),
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• Telnet,

• Bittorent Protocol,

• Kaspersky Update Protocol,

• SSL,

• UDP, and

• WIFI/ Wireless LAN Captures/ 802.11.

Also the following malicious packets were analyzed:

• Teardrop Attack,

• Trojan.Tbot, and

• PoisonIvy CnC.

4.4.2 Frequency of Attack

The frequency of the attacks was altered to ensure that the processing limitations of the RPi could be

measured and applied to a real world scenario. By increasing the frequency of attacks, the IDS should be able

to determine that the attacks are more frequent and not regard the packets as an increase in normal traffic.

Frequency of attacks and overall network load was measured with Microsoft Network Monitor monitoring

tool that is free to use for local systems [48]. To alter the frequency of attacks, the attack packets were

deployed at an increasing rate from 1 per minute to 1 per second.

4.4.3 Volume of Attack

The volume of the attacks was altered to see how the RPi machine could handle the processing requirements

needed to detect malicious packets that can be hidden with carefully sculpted packets. This is where the

DPI inspection occurs and, as a result, can handle more intricate attacks. With an increasing volume of

traffic the device will have to be able to still scan all the packet payloads to determine if the packet is truly

malicious or not. This was to simulate a DOS attack, where the packet flood can severely hamper an IDS’s

ability to perform correctly.

To measure the total volume that a RPi would be able to handle, 10 runs of 10 seconds of sustained packet

packet traffic were run against the RPi and the desktop system. The each run was at different packet/sec

intervals from 50 up to 900. Top was run on each system at a 1 second interval. Wireshark was used

to collect the traffic throughput at the destination node. The averages of the runs were then collected and

measured for the packet/sec and the MBit/s measurements.
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4.5 Metrics

The metrics that were tracked belonged to two categories:

• Performance of the system as an IDS

• Cost comparison.

4.5.1 Performance of the RPi as an IDS

The following metrics were tracked to indicate the performance and reliability of the RPi:

• The number of attacks and penetrations detected. The number of attacks and penetrations detected

would provide a simple metric for determining whether or not the system would be considered more

secure by utilizing the IDS. The detection was measured over a period of simulated use.

• The time it takes the system to detect an intrusion attempt. The detection time was used to show

whether or not the IDS would be able to provide warnings in real time before the attack had a chance

to complete.

• The throughput of the system. The throughput would measure whether or not the RPi would be able

to handle the workload of the normal traffic and day-to-day use of the WMN. This was measured in

units of KB/sec or packets/sec as well as total throughput over a period of time.

• The number of false positives and negatives. The number of false positives and negatives would measure

the accuracy of the IDS and general usability level of the RPi. The number of non-malicious packets

that the system allowed in without raising an alert was measured to ensure against false positives.

Malicious packets that did not trigger an alert would be classified as a false negative.

4.5.2 Cost Comparison

The cost comparisons were chosen to show that an RPi would be a cost effective platform for deployment in a

community WMN. The cost of deploying and maintaining an IDS system would be borne by the community

and in most cases that community would want to minimize the costs of the system. The metrics that

compared the RPi with a traditional system are the following:

• The lifetime of a battery powered IDS device. The lifetime of battery powered IDS devices would show

that the RPi machine would be able to function in a remote environment and perform its tasks well

for an acceptable amount of time.

• The power consumption of the IDS devices. The power consumption would show that the RPi running

costs would be less than that of a comparable system.
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• The cost for the devices. The cost for the device would show that it is cheaper to purchase and replace

in the case of a failure.

4.6 Expected Analysis and Results

The selected PCAPs were run against the RPi system and the baseline desktop system. The captured packets

and throughput were varied identically for each capture set. When both systems completed processing the

capture sets, the SNORT logs were measured for performance and accuracy. The data was then analyzed for

the following characteristics:

• Ability to handle the various amounts of throughput on the network.

• The efficiency and accuracy of the detection.

• The cost of implementation and maintenance of the system.

The expected analysis and results are that the RPi would allow a system being attacked to respond in

a correct and timely manner and will not hinder the functionality of the WMN. Also, that the detection

success rate between the two systems will be comparable in that both systems would detect the same

amount of malicious packets at the same rate (RPi vs. Desktop). The Raspberry Pi is also expected to have

a throughput threshold that is not overly inferior to the baseline system to be able to say that it is efficient

or robust enough to be deployed in an actual WMN. The main expected difference between the two systems

will be in the ability to handle large data sets in a timely manner. Remediation Strategies are beyond the

scope of this thesis.

4.7 Summary

The testing phase compared the proposed RPi system vs. a standard desktop deployment. Malicious and

regular packet samples were used to determine the accuracy of each system. The same packet captures were

run on both systems with changing input variables of packet type, attack frequency and volume of attack.

The evaluation of the RPi system was measured by the cost and efficiency of the proposed RPi system vs.

the standard desktop deployment. By analyzing the performance of the IDS (throughput, detection rate,

and detection accuracy) and the cost variables (power consumption, procurement costs, battery life), the

suitability of the RPi as an IDS for a community WMN was evaluated.
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Chapter 5

Experimental Results

The results from the experiments described in Chapter 4 were promising for verifying the suitability

of the RPi as an IDS platform. The RPi machines were able to keep up with scanning when the traffic

approached the typical packet level of day-to-day usage for most end users. For typical end user use, the

RPi machine was at the same packet loss as the baseline desktop system.

5.1 Overview of Results

The results of the baseline system were comparable in terms of accuracy and memory usage with that of the

RPi machine. The places where the RPi lacked was in the processing power, disk space and I/O performance.

This affected the speed at which the RPi processed packets and read and wrote to the disk. The RPi machine

performed just as well as the desktop baseline in basic testing. When preprocessors are used for DPI on

packets coming through the system, the RPi platform performed slightly slower than the baseline.

5.2 SNORT Detection Results

5.2.1 Attacks

As described in Chapter 4, the SNORT IDS was run on both the baseline and the RPi machine. The attacks

were all launched at the same time and each attack described was successfully detected.

5.2.2 Common Usage

In the traffic throughput tests as described in Chapter 4, the system was run with commonly-used protocols

that would be found in a community WMN (Varied between 1.32 Mbits/s [26] to approximately 11 Mb/s

[4]).1 The RPi was able to keep up with the regular traffic load while performing the IDS inspection; however,

the desktop used far less in terms of percentage of memory and processing capacity as the processing power

of the desktop can process a simple steady stream of data very efficiently (Figure 5.1 and Figure 5.4). The

memory was shown not to be a factor in the processing performance of either system as neither system

1roofnet showed expected possible throughput, in reality the traffic throughput was lower.
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exceeded more than 15% of memory being used by the SNORT process (Table 5.1). This could potentially

allow other less processor intensive applications to be run on the RPi to augment the SNORT IDS. The tests

were done in single sample runs to model a typical end user experience. A BitTorrent session can have

differing traffic patterns from use to use depending on the amount and location of peers it connects to. The

time was sampled at an interval of one second and then averaged over ten seconds to reduce the working

data set to a more manageable level.

In the test for video streaming sites such as YouTube the desktop utilized less than 0.45% of total

processor capacity (Figure 5.1). On the baseline, any processor spikes were negligible amounting to less

than a percentage of total processor capacity. The RPi utilized more CPU than the desktop but as shown

in Figure 5.2, the RPi can handle the traffic demands and at the same time not utilize more than 50% of

processor usage. As seen in Figure 5.2, the RPi processor usage peaked at approximately 29% utilization

when the YouTube Video was being downloaded and the most amount of traffic was being sent through the

RPi. As the video went on, the traffic rate lowered and so did the processor utilization of the RPi. The

rate picked up near the end causing another processor usage spike as the video hadn’t fully downloaded yet

(Figure 5.3).

BitTorrent is also responsible for a large percentage of community network traffic. The BitTorrent

protocol opens up multiple connections to many peers increasing the traffic rate significantly, this allows

for a faster download than a single direct connection. The baseline desktop handled the scanning of the

BitTorrrent traffic utilizing 15% of processor capacity for processing (Figure 5.4). The RPi was run

during a BitTorrent swarm with the CPU utilization shown in Figure 5.5 and the packet volume shown

in Figure 5.6. The processor usage spiked whenever the packet volume did and lowered when the packet rate

lowered. The memory usage was consistent at approximately 15% no matter how many extra packets were

being processed on the RPi. This indicates that the resource constraint would be the processor and not the

memory. The RPi handled the throughput of the torrent without exceeding 45% CPU usage (Figure 5.5).

Table 5.1: Memory Usage

Application Baseline Snort Memory Usage RPi Snort Memory Usage
Skype 2.9% 15.1%
YouTube 2.9% 15.1%
Bittorrent 2.9% 15.2%

5.2.3 Attack Scenario

The attack scenarios were executed to see if the RPi could handle detecting the attacks that would be coming

into the node. The baseline desktop detected the attacks and alerted the system in all cases. The RPi was

also able to detect the scans in the attack scenario. In all cases, the malicious packets were identified as

malicious and an alert was logged to the alerts file. The scans described in Section 2.1.1 were all detected and
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Figure 5.1: Baseline CPU Usage YouTube

Figure 5.2: RPi CPU Usage YouTube
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Figure 5.3: RPi Packet Volume - YouTube

Figure 5.4: Baseline CPU Usage BitTorrent
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Figure 5.5: RPi CPU Usage BitTorrent

Figure 5.6: RPi Packet Volume - BitTorrent
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all except the Quick (stealth) scan were detected before they were completed scanning.2 As both systems

were using SNORT, this result was not a surprise.

5.2.4 Detection Results

The detection results were categorized by:

• Detection success rate

• False Positives

• False Negatives.

The first tests were run with an emphasis on detecting the common scanning techniques that an attacker

would use to map out a potential victim network. The tests were done with NMAP, an open source network

scanning tool [29]. Both systems were attacked at the same time by the NMAP scan. The alert logs were

monitored with a small python script. When an alert was logged, the system would increase the alert count.

ICMP and UDP heartbeat negatives were sometimes classified as alerts in the SNORT log.

The SNORT dump from Appendix A.2 shows that all packets on the scans in the RPi machine were caught

and processed during a Skype call. In Appendix A.1, the total percentage of scanned packets was 100%. No

packets were dropped or let through without being scanned. All packets were accounted for in the SNORT

logs, and the RPi was able to keep up with the traffic volume.

The download and upload rates were the same in both test systems. The RPi machine showed no dropped

packets and a 99.99%3 analyzed packet rate (Appendix A.3). The BitTorrent had some connections that

were still in a CLOSE WAIT state to other computers when the BitTorrent and SNORT applications was

closed to retrieve the summary log. The RPi was able to detect all the scans that were sent against the

network at the same success rate as that of the baseline desktop machine.

5.2.5 False Positives and Negatives

This section describes the testing for regular data on regular PCAPs and then mixing in malicious or

malformed PCAPs. During regular usage of the YouTube stream, Bittorrent swarm and Skype calls, the

false alerts rate was measured (Table 5.2). In each of the cases the false positive rate was below 1% with the

YouTube and BitTorrent well below 0.1%. The Skype call was greater than the other two at 0.78%, due

to a rule that was finding the advertising in the Skype program suspicious. Both systems had approximately

the same false positive rate (Table 5.2).

2The stealth scan would never actually connect to the system, as a result, no information was truly sent to be scanned and

could not be identified as malicious; instead the detection occurred when the malicious packet payload was sent to the target

computer after the scan completed.
3The outstanding packets in the BitTorrent swarm were associated with data connections that were still active with a

close wait status when the SNORT application was shut down.
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Table 5.2: False Positive Detection

Application False Positive Percentage
Skype 0.78%
YouTube 0.04%
Bittorrent 0.07%

It is more difficult to determine a false negative rate without coming up with a new methodology to

counteract the SNORT rule set, which is updated frequently. Since the rules are updated frequently much

like an anti-virus program, there are new rules that are added at each iteration. This makes it difficult to

have older attacks not be detected as once an attack is discovered and studied, a rule is usually made to

counteract it. When the malicious packets (Teardrop, Tbot, and Poison Ivy) were run against the system,

all packets were flagged as malicious by the RPi system and the baseline desktop.

5.2.6 Frequency of Attack

The frequency of the attack (Section 4.4.2) did not affect the detection capabilities of the RPi. As the

number of attacks increased, as long as the packets/sec did not increase past the 700 packets/sec threshold

as shown in Section 5.2.7, the RPi would be able to handle the throughput for the system. Each malicious

packet was detected in the traffic stream no matter how many times it was inserted into the stream.

5.2.7 Volume of Attack

As the volume traffic increased, the processing overhead increased. The packets consisted of TCP pack-

ets with a 1200 byte payload. The baseline system approached 7% CPU utilization when the packets/sec

approached 700 packets/sec and a throughput of approximately 6.5 Mbit/sec the (Figure 5.7). Using extrap-

olation, the maximum for the baseline system would be around 90 Mbit/sec. In comparison, the max for

the number of packets a second that the RPi could handle was around 7.5 MBits/sec (800 packets/sec) on

average (Figure 5.8 & 5.9). In these figures, the data points represent the average of 10 experimental runs

of traffic of 10 seconds, at various packet intervals from 50 packets/sec to 900 packets/sec. The RPi would

still be able to handle the 7.5 Mbits/sec without increasing CPU load; however, once the data rate went up,

the load of the CPU went over 100% meaning that the packet processing tasks were now being delayed and

there would be no time for other processes. Once 100% CPU usage was reached, it would begin dropping

packets in IDS mode. In the case when IDS mode is not configured, it began letting the packets through

without dropping them, leading to a potential compromise. The results demonstrated that the desktop can

handle much more throughput than the RPi. The desktop would not be deployed on a local WMR, however,

thus it would not be able to detect the traffic that is being sent through the WMR. Also, as DDOS attacks

are approaching packets/sec rate in the millions [42, 44], not even the baseline system would be able to keep

up with the packet rates without utilizing 100% CPU. Overall CPU utilization increases with an increase
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in packet volume, and the RPi CPU increases at a higher rate than the baseline. Measurement granularity

can prevent exact volume to CPU usage mapping, however, the increase in CPU utilization trends upwards

when the packet volume increases.

Figure 5.7: Baseline CPU Utilization by MBits/Sec

In all instances, the RPi detected the malicious packets in the traffic stream that it processed and raised

an alert. When the volume of attack exceeded 100% CPU utilization on the RPi, the RPi in the experiment

would drop or delay the packets from reaching the intended target. In a WMN environment, with the RPi

not acting as a physical connection to the WMR, the packets that were in excess of the traffic threshold

could be allowed into the system.

5.3 Processing

The processing requirements for the RPi machine were the key measure for the feasibility of deploying

a low-cost, low-power IDS. To help the RPi use the least amount of resources, the RPi was run with fast

processing mode. The fast processing mode allows the SNORT program to dump the logs in TCPDump format

and produce only minimal alerts. This means that the logs were written in binary format rather than a

text based human readable format. The logs would then have to be reanalyzed after the logging session is

complete to view the true details of the alerts and sniffers and make the logs human readable.

When the network was idle and not a lot of information was coming through the router, the desktop

machine had an average of 1.8% CPU usage but there were other processes or daemons that were running on

the baseline system that could explain the extra usage as the SNORT process was not using any more than

1% of CPU. In contrast, the RPi was sitting on an average of 6.3% CPU usage and only used 98MB of the

485MB available. The maximum processor and memory utilization for both the baseline and RPi systems
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Figure 5.8: RPi CPU Utilization by MBits/sec

Figure 5.9: RPi CPU Utilization by Packet Volume
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under different attack and regular usage scenarios can be found in Table 5.3. When an attack commenced

that included scanning the SNORT protected systems, there was a high increase, typically 25-40%, in the

CPU usage of the Raspberry Pi machine while the baseline desktop had a negligible usage increase of 1-2%.

This was due to the slower processor and memory capacity of the RPi. The difference in processing power

came when attempting to increase the throughput of the scanning system. The RPi began to start hitting

more than 50% usage when the scans were running at an increased rate while the system was already under

heavy network load (approximately 300 packets/sec). The CPU usage was acceptable for the RPi machine

to perform the processing for a scanning attack.

Table 5.3: Processor & Memory Load Under Various Network Usage

Scan type MAX CPU
Utilization
(Baseline)

MAX Memory
Utilization
(Baseline)

MAX CPU
Utilization
(RPi)

MAX Memory
Utilization
(RPi)

Quick Scan (11.2 sec) 1.3% 500 MB 7.5% 101MB
Regular Scan (37.3 sec) 1.3% 581 MB 17.5% 101MB
Intense Scan (73.12 sec) 1.3% 600 MB 43.5% 101MB
Slow Comprehensive Scan
(1231.15 sec)

2.6% 600 MB 36.2% 101MB

YouTube video 1.3% 581 MB 15.5% 101MB
BitTorrent download 1.3% 500 MB 45.0% 167 MB
Skype call 2.6% 600 MB 16.2% 168 MB

As an interesting side note, initiating an SSH session for the RPi machine caused the RPi CPU to go

above 50% usage on a regular basis. When attempting to process packets and defend against scans, the RPi

had a noticeable slow down in terms of responsiveness in the SSH session. When the CPU usage begins to

move upwards, this can lead to slow responsiveness and potential overheating of the device leading to device

failure.

5.3.1 Time to Detect

The time to detect was compiled by noting the time that the malicious packet was received into the network,

then the time that the item was flagged by the IDS was logged and the two times were subtracted from each

other. The total attack time was considered to be the scan plus the launching of the malicious packets. In

this case, it is assumed the attacker would begin to explore the network by scanning it with a tool such as

Nmap. Once the attacker detected a vulnerability, they would initiate the sending of malicious data to the

target computer. The time the attacker initiated the scan of the local node, attempting to find a host to

exploit or network to map was logged as the start time. The time that a scan was finished and a malicious

packet was sent to the target computer was considered the end time.

To measure the time it would take for a single packet to be detected (Poison Ivy, teardrop, etc.),

the time that the log would show a new packet in the log and the time it was processed and matched with a

SNORT rule would be logged. The difference between the two logged times is the detection time. With the
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scanning being completed in real time, the scanning based off the SNORT syslogs indicated that in the case

of a non-match for a regular packet, the time to process one of the packets would be, in most cases, lower

than 20 ms. When a packet was matched to a rule, an alert was raised. The Baseline System was more

effective in that matching was fairly consistent at 2 ms. The detection time would range from 2 ms to 18

ms on the RPi. Under low load (10 packets/sec) it was more frequently under 10 ms, while under high load

(300 packets/sec) (Figure 5.10) the detection time could reach up to 20 ms. Under high load, the average

detection time for the RPi was 9.14 ms and with a low load, the average time was 4.87 ms.

Figure 5.10: RPi Detection Time Under Various Loads

5.3.2 Remediation

The SNORT program was run on both systems, with an identical rules set-up. The network was closed off

to outside traffic. Only the test machines and an attacker machine were present on the network. Assigned

IP addresses were as follows: baseline desktop was assigned the IP address of 192.168.0.101 and the RPi

machine had the IP address of 192.168.0.104. When an alert was raised by the SNORT IDS, the offending

IP was logged in the alert log. When the rate of writing to the log reached over 30 occurrences per minute,

a new rule was created to not allow any of the traffic coming from the IP address to be whitelisted (Section

2.1.1). The offending IP was also added to a non-enforced blacklist that would update a log when the IP

would send traffic. In these cases, the attacker node would have been blacklisted in most cases, with most

common scanning techniques performed via NMAP.
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5.4 Economic Results

The economic evaluation of the system was one of the major system properties analyzed. Among the cost

associated variables were the following:

• Power Consumption cost, and

• System Costs

– Cost of the system for initial capital investment

– Cost of replacement of various system components.

These variables were evaluated to determine what level of protection could be achieved by the comparative

systems with equal financial resources.

5.4.1 Power Consumption

To measure power consumption when the CPU was fully utilized, a simple stress program was written: a

worker process was spawned that would perform the sqrt() function repeatedly, thereby tying up the

available CPU resources. The power consumption of the RPi machine was very much smaller than that of

the desktop machine. Ten separate readings were taken when each device booted, after booting at idle, and

at 100% power utilization. These results can be seen in Table 5.4. The power consumption readings on the

desktop were also backed up by various benchmarking websites [31, 67]. The Raspberry Pi, even if running

at 100% CPU capacity, would use far less power than the desktop running at idle.

Table 5.4: Power Consumption.

System Load Raspberry Pi Desktop
Idle 2 Watts 35 Watts
Typical IDS Usage (SNORT) 2 Watts 65 Watts
Maximum CPU usage ˜3 Watts 72 Watts

To figure out the amount of time a device can last off of a battery the following equation was used:

hours = (volts ∗ amperehours)/watts. (5.1)

Due to the low power requirements of the Pi, it is feasible that it could run off of a 12 volt 125 ampere-hour

battery for approximately 750 hours at typical IDS usage (250 packets/sec), 500 hours if full CPU utilization

is achieved (>450 packets/sec).
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5.4.2 System Costs

The system costs of the RPi machine were compared to the desktop IDS. The key items were the price of

acquiring the devices (initial system costs) and the cost of deploying and maintaining each IDS (maintenance

cost and replacement costs).

Initial System Costs

The initial system cost for each Raspberry Pi basic kit, which included a power supply, case, and 8GB SD

card with the Raspbian OS included, was $59.99 CDN plus tax. The system cost for the desktop computer

with an Intel i3 processor and 4GB of RAM and 1 TB HD at the lowest price was $369.99. Approximately

6 RPi machines could be deployed for the same cost as this desktop configuration. The RPi configuration

has the benefit of being able to protect the network by being deployed throughout the network. This would

allow the network to be protected via multiple detection points. Multiple devices could warn each other if

an alert is found and alter the capture rules accordingly. The costs of the RPi system and the desktop, as

well as various component replacement costs are shown in Figure 5.5.4

Table 5.5: Capital Costs & Component Costs

Item Unit Price
Raspberry Pi Model B Starter Kit $63.31
32 GB SD Card $19.00
8 GB SD Card $9.50
Raspberry Pi Casing $4.20
Raspberry Pi Model B Board $35.00

intel i3 desktop $369.99
80 GB HDD $30.00
i3 CPU $137.00
Mother Board $56.47

The cost differences can be approximated with real world examples. The MIT Roofnet [4] had in the

setup approximately 27 nodes with 5 wired gateways that allowed access to the internet. Assuming that each

gateway would utilize a traditional desktop IDS to monitor the traffic, and that each node would contain

an RPi to monitor traffic to and from the node, the total security capital costs for a WMN such as roofnet

(27 RPi and 5 Desktops) would lead to a savings of $77.27. The benefit of the RPi is that they would also

prevent attackers from inside the network and not just traffic that is coming in through the gateways.

For Wray’s 10 WMRs and one gateway node [33, 43] the cost would be $633.00 for the RPi devices vs.

the $369.00 for the single IDS desktop at the gateway. Using only a single gateway based desktop IDS in

both of these examples, the only traffic that would be screened would be the traffic that uses the gateway

as a go-between. Any traffic between the internal nodes would pass undetected.

4Prices are an average of prices taken from canada.newark.com, amazon.ca, and canakit.com for the Raspberry Pi. While the

prices for the desktop system and its components are averages from prices taken from tigerdirect.ca , ncix.com, and amazon.ca
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Maintenance Cost and Replacement costs

The costs to maintain and replace faulty parts on a device also need to be factored in to the economic

comparison. If a RPi node goes down, depending on the point of failure, the parts are fairly easy to replace.

The cost of replacement is limited to either an SD card or the RPi itself which currently costs approximately

$35. The most common occurrence of failure on the RPi machine is the SD card. The 8GB replacements are

available from many online retailers for an average price of $9.50 per card (Table 5.5), making it a trivial

piece of hardware to replace, unlike a HD drive for a desktop system. If the RPi itself goes down (i.e mother

board, CPU failure), then the cost of the replacement part is $35 vs. $100 or more for a CPU or motherboard

on the desktop (Table 5.5). The low maintenance and replacement costs add to the viability of the RPi as

an alternative to a traditional IDS.

Also, with the low power consumption of the RPi, the system will save money on power utilities. Using

the equations below and a price of 10.2 cents per kilowatt hour (currently the price per kilowatt hour in the

United States) [3], the power consumption costs can be considerably lower than a desktop system.

kiloWatthours = Watts ∗Hours/1000 (5.2)

TotalPrice = Price ∗KiloWattHours (5.3)

The monthly cost per RPi machine is $0.081 a month vs. $4.84 a month for the traditional desktop. The

monthly costs can be estimated for existing WMNs. For MIT’s Roofnet, the energy consumption costs using

RPi devices would be approximately $2.27 per month vs. $24.20 per month for the desktops. Over a year of

operation the RPi would cost approximately $263.19 less on power consumption alone. For the Wray project

with 10 WMRs and one gateway node the cost would be $0.81 per month; a savings of $48 per year over the

gateway IDS.

5.5 Advantages

The advantages of the RPi system are that the RPi can be deployed with any node in the network and not

just the ones that are connected to the Internet acting like a backbone for the network. Therefore, 100%

of traffic would be monitored, be it external to the network or internal to the network such as intruders

walking within range of a local WMR, connecting to it, and attempting to compromise it from within. The

total area coverage is greater than that of a single IDS that listens on a single gateway node. With each RPi

covering an outdoor range of 100m outdoors and 35m indoors the RPi system could cover an area at least

109.9m2 per node. To cover the village of Wray with their 10 nodes, the total cost would be approximately

$633. With the desktop, a greater amount of potential traffic can be monitored at a single node, however,

the internal WMN traffic is not monitored. To ensure all traffic is monitored, a desktop system would need

to be installed at all nodes of the WMN, escalating the cost significantly. To cover Wray’s 10 nodes with
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desktop IDSs would cost over $3699.90 for the setup. Another advantage of the RPi system is that, due to

its small size, it can be stored in a small sealable space that can be outside, whereas a desktop is not very

well suited to outdoor operation.

5.6 Limitations

The largest limitation is, of course, the processing power of the RPi machine. The experiments in this thesis

have shown that it is able to handle daily use traffic, without beginning to slow down or drop packets. There

are two possible minor additional limitations with the RPi machines: the limited amount of disk space and

the longevity of the SD cards. The disk space on a RPi is limited to the largest available SD card. At this

time that is only 32 GB [20]. The SD card forms the basis of the stable storage of the RPi. An IDS can

have multiple log files running at once, and it can read and write constantly to each of them. The number

of writes and reads that can occur in such a system tend to cause the SD Card to fail sooner than SD cards

under different usage, for instance, digital video, photo, and music storage.

Both of these limitations can be resolved by moving the logging from the IDS to a remote logging device.

This logging device could be located physically with the RPi and connected via USB, or it could be a network

log storage that is easily configured on Linux with rsyslog (Section 2.1.1). This would both save on disk

space and reduce the amount of writes and reads to the SD card. The latter method of using rsyslog

would increase the amount of network traffic and could increase the burden on other nodes. There is, as with

most network systems, an issue of scaling. As the number of nodes increases, so does the number of security

nodes alongside them. If the number of deployed nodes increases and if there is not a proportional increase

in gateway node IDS security, the capital cost becomes larger for the RPi devices vs. the desktop. Deploying

an RPi at each node no longer becomes cost effective. Instead, gains can be made in terms of security by

strategically placing the WMR nodes with an RPi system in locations that would provide greater coverage

in terms of area. For example, in the case of Wray, depending on where the nodes are located, there can be

a great improvement to the range of the WMR. A regular, effective WIFI signal5 varies between 90ft radius

and 330ft radius. If a 90ft radius is used, then approximately 25 WMR nodes would have to be deployed

to cover the village of Wray (Figure 5.11). If, however, the WIFI nodes are located outside with minimal

obstructions, then a more manageable 7 nodes are required (Figure 5.12). If we were to overlay a North

American city block on the map, we can see that approximately 1 city block of 4.5 acres could be covered

by one WMR node (Figure 5.13).

Depending on the layout and the routing of the nodes, the need for security on every node could be

eliminated, placed instead only on every second node. This setup would allow for a node to be compromised

from within its own connection area if an attacker connected and compromised the node itself; however, any

5This varies between -30 dBm (decibels) which is the maximum achievable rate to -70dBm which is the minimum signal

strength for packet delivery [16]
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Figure 5.11: Wray Coverage with 90ft WIFI Radius

Map Images c©maps.google.com

Figure 5.12: Node Coverage with 330ft WIFI radius
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Figure 5.13: Comparison of a Typical North American City Block with Wray.

connectivity between a compromised node and a security node would still be scanned. For instance, if there

was a routing layout such as the one shown in Figure 5.14, the RPi would be included on Nodes 1, 3, and 7

and every interaction would be monitored from node to node. An attacker could not compromise more than

one potential node without having to run their attack on another node that was running an IDS.

5.7 Summary

The Raspberry Pi has shown itself to be resilient for the purpose of monitoring a network and a good value

for networks with limited financial resources. The cost effectiveness has proven that a low power, low cost

device can handle a specific task with a reasonable performance rate and it will keep working at an effective

rate. While the performance will lag behind a traditional system, the low cost and ease of replacement of

the system outweigh the reduced performance.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has shown that a low cost, low power device can be used as a viable alternative to traditional

desktop Intrusion Detection Systems. The cost of the system is substantially lower than a traditional IDS

and the RPi can be adapted due to its low cost and low power consumption to run on battery systems in

remote areas. This can allow community WMNs to cover more area as nodes can be placed in remote areas.

By saving on costs and power, the RPi machine can fit into the basic security needs for a community WMN.

The main advantage to such a system is that the RPi setup will be able to monitor all network traffic at

all nodes. A traditional IDS would only be able to monitor the one node in the system that is connected to

the internet gateway. If an attacker is located within the network or a compromised device joins the network

and attempts to compromise other nodes on the network, the RPi system set up would be able to detect

the intrusion at the local connected node level. Also, due to the locality of the WMRs the offending device

could be easier to locate physically, so variants of malicious devices such as CreepyDOL[53] would be easier

to locate as well as the would-be malicious attackers that deployed them.

The advancement of new devices, from Raspberry Pis to phones (Android, Apple, Blackberry etc.) that

have the same processing power as older desktop computers allows for deploying security solutions to these

new devices. The versatility of these low power devices, their power consumption savings, and lower price

points compared to traditional security deployments, can be beneficial to smaller rural community Wireless

Mesh Networks. By utilizing these devices as components of a greater overall security strategy, even smaller

networks can have improved digital security.

This thesis has evaluated the Raspberry Pi as a deployed IDS for a small WMN. With regular traffic

usage, the RPi was able to keep up with the scanning requirements for common applications and common

attacks that would be found in a community WMN. The RPi is a potential security augmentation for a

community Wireless Mesh Network’s security.
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6.2 Future Work

Due to the RPi experiments being a proof of concept prototype, there are many potential applications of

RPi or other low-cost, low-power devices with respect to security. By using the advantages of the low power

devices, there are many different areas of research that can be explored.

6.2.1 Optimal Security Deployment Schemes in Ad-Hoc Networks

If a low cost, low power device cannot be deployed at each node due to financial or other environmental

concerns, then future study of the deployment and security node placement could show an ideal deployment

scheme for WMNs. Depending on the coverage area and the node configuration, studies could be done on

different deployments to show how to deploy a security node to key nodes that would maximize the amount

of traffic scanned, while minimizing the cost of deployment. This could lead to a more secure WMN in the

future without having some of the scaling problems described in 5.6.

6.2.2 Self-Mitigating networks

By deploying the RPi machines in a WMN and then giving them the ability of detecting an intrusion and

or virus, they can also be used to mitigate a compromised machine by removing it from the network, or

applying a patch to the compromised software. The RPi machines will, however, have to be granted elevated

privilege on these machines which could lead to some security questions. Since they are self mitigating, they

would also require less oversight from actual humans they must be thoroughly examined to ensure that a

compromised state could not be entered into by mitigating the security breaches to much.

6.2.3 Self-Upgrading Nodes

With the increase in computing power that will give future Raspberry Pis more hardware specs and per-

formance, it is possible to utilize a deployment service such as Ansible to deploy a more comprehensive

solution to each node. Ansible is software that deploys other software from a deployment server to one or

multiple clients via SSH. The Ansible server can either have all the required installation and configura-

tion files stored on the server or can download them from the Internet via install managers such as yum or

apt-get. The server then copies and installs the files via remote commands issued via SSH login. There

is no configuration that has to be configured on the clients other than having an account that can use the

SSH connection. Ansible would allow for a potentially better mitigation and update system for the RPi.

If a node is found to be compromised, a new install could be initiated or an update begun, without having

to have physical access to the node itself.
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6.2.4 Self-Repairing Security Nodes

Securing the nodes and repairing them once they have been compromised is also a priority for future re-

search. When a node is compromised, it affects the throughput and security of the network. A cooperative

methodology can be devised, such that when a node is compromised, it can re-flash itself and rejoin the

network as a new node. With the node resetting itself and removing the old state of the system, it would

prevent attackers from making long term use of a compromised node. The self-repairing nodes will be able

to provide a robust security system for wireless mesh networks.

6.2.5 Mobile Security Devices

With the small dimensions of such devices there is the possibility that the devices could be attached to a

mobile platform (a platform that moves i.e. a remote controlled car, a drone, etc., not an iOS or Android

phone), and as such could be modified to handle a larger area of security with intermittent connectivity. For

example, if a certain device monitoring certain parts of a network detects that there is more suspicious traffic

coming from a distant part of the network that has no monitoring, it can then relocate itself to monitor the

anomaly.

6.2.6 Summary

The future work with low-cost, low-power devices with a security application is very promising. With low-

cost, low-power devices becoming more and more ubiquitous and common, applications for these devices will

always be available. Security will be a constant concern for all networks new and old, large and small. With

increasing digital interaction, there is the possibility that even smaller networks can be an entry point for

malicious attackers to gain entry into larger more prized targets. Security will always need to keep up with

the ever changing landscape of modern networks.
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Appendix A

Snort Logs

Listing A.1: Results of the RPi Packet Capture from SNORT with YouTube Video

=====================================================

Run time for packet processing was 779.167510 seconds

Snort processed 63270 packets.

Snort ran for 0 days 0 hours 12 minutes 59 seconds

Pkts/min: 5272

Pkts/sec: 81

======================================================

Packet I/O Totals:

Received: 63270

Analyzed: 63270 (100.000%)

Dropped: 0 ( 0.000%)

Filtered: 0 ( 0.000%)

Outstanding: 0 ( 0.000%)

Injected: 0

=======================================================

Breakdown by protocol (includes rebuilt packets):

Eth: 63286 (100.000%)

VLAN: 0 ( 0.000%)

IP4: 62223 ( 98.320%)

Frag: 0 ( 0.000%)

ICMP: 0 ( 0.000%)

UDP: 931 ( 1.471%)

TCP: 61292 ( 96.849%)

IP6: 623 ( 0.984%)

IP6 Ext: 665 ( 1.051%)

IP6 Opts: 42 ( 0.066%)

Frag6: 0 ( 0.000%)

ICMP6: 77 ( 0.122%)

UDP6: 546 ( 0.863%)

TCP6: 0 ( 0.000%)

Teredo: 0 ( 0.000%)

ICMP-IP: 0 ( 0.000%)

EAPOL: 0 ( 0.000%)

GRE: 0 ( 0.000%)

MPLS: 0 ( 0.000%)

ARP: 440 ( 0.695%)

IPX: 0 ( 0.000%)

All Discard: 0 ( 0.000%)

Other: 0 ( 0.000%)

Bad Chk Sum: 0 ( 0.000%)

Bad TTL: 0 ( 0.000%)

S5 G 1: 16 ( 0.025%)

S5 G 2: 0 ( 0.000%)

Total: 63286

========================================================

Action Stats:

Alerts: 10 ( 0.016%)

Logged: 10 ( 0.016%)

Passed: 0 ( 0.000%)

Limits:
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Match: 0

Queue: 0

Log: 0

Event: 0

Alert: 10

Verdicts:

Allow: 61357 ( 96.976%)

Block: 0 ( 0.000%)

Replace: 0 ( 0.000%)

Whitelist: 1913 ( 3.024%)

Blacklist: 0 ( 0.000%)

Ignore: 0 ( 0.000%)

========================================================

Listing A.2: Results of the RPi Packet Capture from SNORT with Skype Call

========================================================

Run time for packet processing was 3655.536045 seconds

Snort processed 148273 packets.

Snort ran for 0 days 1 hours 0 minutes 55 seconds

Pkts/hr: 148273

Pkts/min: 2471

Pkts/sec: 40

========================================================

Packet I/O Totals:

Received: 148273

Analyzed: 148273 (100.000%)

Dropped: 0 ( 0.000%)

Filtered: 0 ( 0.000%)

Outstanding: 0 ( 0.000%)

Injected: 0

=========================================================

Breakdown by protocol (includes rebuilt packets):

Eth: 148273 (100.000%)

VLAN: 0 ( 0.000%)

IP4: 141816 ( 95.645%)

Frag: 0 ( 0.000%)

ICMP: 1128 ( 0.761%)

UDP: 4799 ( 3.237%)

TCP: 135889 ( 91.648%)

IP6: 4268 ( 2.878%)

IP6 Ext: 4383 ( 2.956%)

IP6 Opts: 115 ( 0.078%)

Frag6: 0 ( 0.000%)

ICMP6: 1931 ( 1.302%)

UDP6: 2337 ( 1.576%)

TCP6: 0 ( 0.000%)

Teredo: 0 ( 0.000%)

ICMP-IP: 0 ( 0.000%)

EAPOL: 0 ( 0.000%)

IP4/IP4: 0 ( 0.000%)

IP4/IP6: 0 ( 0.000%)

IP6/IP4: 0 ( 0.000%)

IP6/IP6: 0 ( 0.000%)

GRE: 0 ( 0.000%)

GRE Eth: 0 ( 0.000%)

GRE VLAN: 0 ( 0.000%)

GRE IP4: 0 ( 0.000%)
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GRE IP6: 0 ( 0.000%)

GRE IP6 Ext: 0 ( 0.000%)

GRE PPTP: 0 ( 0.000%)

GRE ARP: 0 ( 0.000%)

GRE IPX: 0 ( 0.000%)

GRE Loop: 0 ( 0.000%)

MPLS: 0 ( 0.000%)

ARP: 2187 ( 1.475%)

IPX: 0 ( 0.000%)

Eth Loop: 0 ( 0.000%)

Eth Disc: 0 ( 0.000%)

IP4 Disc: 0 ( 0.000%)

IP6 Disc: 0 ( 0.000%)

TCP Disc: 0 ( 0.000%)

UDP Disc: 0 ( 0.000%)

ICMP Disc: 0 ( 0.000%)

All Discard: 0 ( 0.000%)

Other: 2 ( 0.001%)

Bad Chk Sum: 270 ( 0.182%)

Bad TTL: 0 ( 0.000%)

S5 G 1: 0 ( 0.000%)

S5 G 2: 0 ( 0.000%)

Total: 148273

=========================================================

Action Stats:

Alerts: 1149 ( 0.775%)

Logged: 1149 ( 0.775%)

Passed: 0 ( 0.000%)

Limits:

Match: 0

Queue: 0

Log: 0

Event: 0

Alert: 0

Verdicts:

Allow: 148273 (100.000%)

Block: 0 ( 0.000%)

Replace: 0 ( 0.000%)

Whitelist: 0 ( 0.000%)

Blacklist: 0 ( 0.000%)

Ignore: 0 ( 0.000%)

=====================================================

Frag3 statistics:

Total Fragments: 0

Frags Reassembled: 0

Discards: 0

Memory Faults: 0

Timeouts: 0

Overlaps: 0

Anomalies: 0

Alerts: 0

Drops: 0

FragTrackers Added: 0

FragTrackers Dumped: 0

FragTrackers Auto Freed: 0

Frag Nodes Inserted: 0

Frag Nodes Deleted: 0

======================================================

Stream5 statistics:
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Total sessions: 67848

TCP sessions: 67747

UDP sessions: 101

ICMP sessions: 0

IP sessions: 0

TCP Prunes: 0

UDP Prunes: 0

ICMP Prunes: 0

IP Prunes: 0

TCP StreamTrackers Created: 67755

TCP StreamTrackers Deleted: 67755

TCP Timeouts: 0

TCP Overlaps: 0

TCP Segments Queued: 0

TCP Segments Released: 0

TCP Rebuilt Packets: 0

TCP Segments Used: 0

TCP Discards: 106

TCP Gaps: 0

UDP Sessions Created: 101

UDP Sessions Deleted: 101

UDP Timeouts: 0

UDP Discards: 0

Events: 0

Internal Events: 0

TCP Port Filter

Dropped: 0

Inspected: 0

Tracked: 135718

UDP Port Filter

Dropped: 0

Inspected: 6936

Tracked: 101

===================================================

HTTP Inspect - encodings (Note: stream-reassembled packets included):

POST methods: 0

GET methods: 0

HTTP Request Headers extracted: 0

HTTP Request Cookies extracted: 0

Post parameters extracted: 0

HTTP response Headers extracted: 0

HTTP Response Cookies extracted: 0

Unicode: 0

Double unicode: 0

Non-ASCII representable: 0

Directory traversals: 0

Extra slashes ("//"): 0

Self-referencing paths ("./"): 0

HTTP Response Gzip packets extracted: 0

Gzip Compressed Data Processed: n/a

Gzip Decompressed Data Processed: n/a

Total packets processed: 16

=====================================================

SMTP Preprocessor Statistics

Total sessions : 0

Max concurrent sessions : 0

====================================================

dcerpc2 Preprocessor Statistics

Total sessions: 0
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====================================================

SIP Preprocessor Statistics

Total sessions: 0

====================================================

Listing A.3: Results of the RPi Packet Capture from SNORT with BitTorrent

=====================================================

Run time for packet processing was 1907.796110 seconds

Snort processed 589975 packets.

Snort ran for 0 days 0 hours 31 minutes 47 seconds

Pkts/min: 19031

Pkts/sec: 309

===================================================

Packet I/O Totals:

Received: 589975

Analyzed: 589975 (100.000%)

Dropped: 0 ( 0.000%)

Filtered: 0 ( 0.000%)

Outstanding: 0 ( 0.000%)

Injected: 0

=================================================

Breakdown by protocol (includes rebuilt packets):

Eth: 589977 (100.000%)

VLAN: 0 ( 0.000%)

IP4: 587359 ( 99.556%)

Frag: 0 ( 0.000%)

ICMP: 390 ( 0.066%)

UDP: 525214 ( 89.023%)

TCP: 61753 ( 10.467%)

IP6: 1463 ( 0.248%)

IP6 Ext: 1527 ( 0.259%)

IP6 Opts: 64 ( 0.011%)

Frag6: 0 ( 0.000%)

ICMP6: 158 ( 0.027%)

UDP6: 1305 ( 0.221%)

TCP6: 0 ( 0.000%)

ARP: 1155 ( 0.196%)

All Discard: 0 ( 0.000%)

Other: 2 ( 0.000%)

Bad Chk Sum: 7 ( 0.001%)

Bad TTL: 0 ( 0.000%)

S5 G 1: 0 ( 0.000%)

S5 G 2: 2 ( 0.000%)

Total: 589977

================================================

Action Stats:

Alerts: 396 ( 0.067%)

Logged: 396 ( 0.067%)

Passed: 0 ( 0.000%)

Limits:

Match: 0

Queue: 0

Log: 0

Event: 0

Alert: 0

Verdicts:

Allow: 589959 ( 99.997%)

Block: 0 ( 0.000%)
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Replace: 0 ( 0.000%)

Whitelist: 16 ( 0.003%)

Blacklist: 0 ( 0.000%)

Ignore: 0 ( 0.000%)

===============================================

Stream5 statistics:

Total sessions: 2286

TCP sessions: 2267

UDP sessions: 19

ICMP sessions: 0

IP sessions: 0

TCP Prunes: 0

UDP Prunes: 0

ICMP Prunes: 0

IP Prunes: 0

TCP StreamTrackers Created: 2344

TCP StreamTrackers Deleted: 2344

TCP Timeouts: 0

TCP Overlaps: 0

TCP Segments Queued: 381

TCP Segments Released: 381

TCP Rebuilt Packets: 50

TCP Segments Used: 54

TCP Discards: 1306

TCP Gaps: 0

UDP Sessions Created: 19

UDP Sessions Deleted: 19

UDP Timeouts: 0

UDP Discards: 0

Events: 14

Internal Events: 0

TCP Port Filter

Dropped: 0

Inspected: 0

Tracked: 61751

UDP Port Filter

Dropped: 0

Inspected: 526463

Tracked: 19

================================================

HTTP Inspect - encodings (Note: stream-reassembled packets included):

POST methods: 0

GET methods: 20

HTTP Request Headers extracted: 20

HTTP Request Cookies extracted: 0

Post parameters extracted: 0

HTTP response Headers extracted: 19

HTTP Response Cookies extracted: 0

Unicode: 0

Double unicode: 0

Non-ASCII representable: 0

Directory traversals: 0

Extra slashes ("//"): 0

Self-referencing paths ("./"): 0

HTTP Response Gzip packets extracted: 0

Gzip Compressed Data Processed: n/a

Gzip Decompressed Data Processed: n/a

Total packets processed: 31713
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