29 research outputs found

    A Survey of Developable Surfaces: From Shape Modeling to Manufacturing

    Full text link
    Developable surfaces are commonly observed in various applications such as architecture, product design, manufacturing, and mechanical materials, as well as in the development of tangible interaction and deformable robots, with the characteristics of easy-to-product, low-cost, transport-friendly, and deformable. Transforming shapes into developable surfaces is a complex and comprehensive task, which forms a variety of methods of segmentation, unfolding, and manufacturing for shapes with different geometry and topology, resulting in the complexity of developable surfaces. In this paper, we reviewed relevant methods and techniques for the study of developable surfaces, characterize them with our proposed pipeline, and categorize them based on digital modeling, physical modeling, interaction, and application. Through the analysis to the relevant literature, we also discussed some of the research challenges and future research opportunities.Comment: 20 pages, 24 figures, Author submitted manuscrip

    3D Spatial Data Infrastructures for web-based Visualization

    Get PDF
    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as enabling technology for sharing, distributing, and connecting geospatial data and services. The Open Geospatial Consortium is the main driver for developing international standards in this sector and includes government agencies, universities and private companies in a consensus process. 3D city models are becoming increasingly popular not only in desktop Virtual Reality applications but also for being used in professional purposes by public authorities. Spatial Data Infrastructures focus so far on the storage and exchange of 3D building and elevation data. For efficient streaming and visualization of spatial 3D data in distributed network environments such as the internet, concepts from the area of real time 3D Computer Graphics must be applied and combined with Geographic Information Systems (GIS). For example, scene graph data structures are commonly used for creating complex and dynamic 3D environments for computer games and Virtual Reality applications, but have not been introduced in GIS so far. In this thesis, several aspects of how to create interoperable and service-based environments for 3D spatial data are addressed. These aspects are covered by publications in journals and conference proceedings. The introductory chapter provides a logic succession from geometrical operations for processing raw data, to data integration patterns, to system designs of single components, to service interface descriptions and workflows, and finally to an architecture of a complete distributed service network. Digital Elevation Models are very important in 3D geo-visualization systems. Data structures, methods and processes are described for making them available in service based infrastructures. A specific mesh reduction method is used for generating lower levels of detail from very large point data sets. An integration technique is presented that allows the combination with 2D GIS data such as roads and land use areas. This approach allows using another optimization technique that greatly improves the usability for immersive 3D applications such as pedestrian navigation: flattening road and water surfaces. It is a geometric operation, which uses data structures and algorithms found in numerical simulation software implementing Finite Element Methods. 3D Routing is presented as a typical application scenario for detailed 3D city models. Specific problems such as bridges, overpasses and multilevel networks are addressed and possible solutions described. The integration of routing capabilities in service infrastructures can be accomplished with standards of the Open Geospatial Consortium. An additional service is described for creating 3D networks and for generating 3D routes on the fly. Visualization of indoor routes requires different representation techniques. As server interface for providing access to all 3D data, the Web 3D Service has been used and further developed. Integrating and handling scene graph data is described in order to create rich virtual environments. Coordinate transformations of scene graphs are described in detail, which is an important aspect for ensuring interoperability between systems using different spatial reference systems. The Web 3D Service plays a central part in nearly all experiments that have been carried out. It does not only provide the means for interactive web-visualizations, but also for performing further analyses, accessing detailed feature information, and for automatic content discovery. OpenStreetMap and other worldwide available datasets are used for developing a complete architecture demonstrating the scalability of 3D Spatial Data Infrastructures. Its suitability for creating 3D city models is analyzed, according to requirements set by international standards. A full virtual globe system has been developed based on OpenStreetMap including data processing, database storage, web streaming and a visualization client. Results are discussed and compared to similar approaches within geo-informatics research, clarifying in which application scenarios and under which requirements the approaches in this thesis can be applied

    Material exploration and engagement: Strategies for investigating how multifunctional materials can be used as design drivers in architecture

    Get PDF
    Since the early 2000s, primarily research-based projects have focused on the use of new materials such as shape-memory alloys, light-emitting diodes (LED), film-encased photovoltaic cells and thermochromic paints. These materials offer a wide range of outstanding possibilities to the construction industry through their capacity to sense and respond to external environmental stimuli. However, the advent of smart materials – multifunctional materials that are designed by chemists, physicists and biologists - pose challenges for design practices exploring such innovations. Given the rich potential of these emerging materials and technologies for architecture, I was intrigued to know: what is necessary to introduce these materials in architecture? In this thesis, I report on design strategies that involve extrinsic and intrinsic material properties. My research strategies included the use of digital design tools, physical computing and haptic-intuitive workflows in order to bypass a lengthy iterative design and analysis process through rapid intuitive feedback. My research demonstrates the necessity of both a digital and physical interaction with previously little- or un-used engineered advanced materials, if the use of those materials is to drive change in the overall material system. This proposition is developed and tested by practice-based research and design explorations. Centred on the idea of material-driven design processes, my research addresses the work of architects, engineers and materials scientists and locates opportunities for working together within a trans-disciplinary environment. Having direct interaction with materials and their behaviours generates an awareness of the material possibilities that enables architects to engage with engineers and materials scientists. In considering both theoretical and practical implications, my research contributes to the discussion of multifunctional materials as they emerge and their applications within architecture

    The benefits of an additional practice in descriptive geomerty course: non obligatory workshop at the Faculty of Civil Engineering in Belgrade

    Get PDF
    At the Faculty of Civil Engineering in Belgrade, in the Descriptive geometry (DG) course, non-obligatory workshops named “facultative task” are held for the three generations of freshman students with the aim to give students the opportunity to get higher final grade on the exam. The content of this workshop was a creative task, performed by a group of three students, offering free choice of a topic, i.e. the geometric structure associated with some real or imagery architectural/art-work object. After the workshops a questionnaire (composed by the professors at the course) is given to the students, in order to get their response on teaching/learning materials for the DG course and the workshop. During the workshop students performed one of the common tests for testing spatial abilities, named “paper folding". Based on the results of the questionnairethe investigation of the linkages between:students’ final achievements and spatial abilities, as well as students’ expectations of their performance on the exam, and how the students’ capacity to correctly estimate their grades were associated with expected and final grades, is provided. The goal was to give an evidence that a creative work, performed by a small group of students and self-assessment of their performances are a good way of helping students to maintain motivation and to accomplish their achievement. The final conclusion is addressed to the benefits of additional workshops employment in the course, which confirmhigherfinal scores-grades, achievement of creative results (facultative tasks) and confirmation of DG knowledge adaption

    The contemporary visualization and modelling technologies and the techniques for the design of the green roofs

    Get PDF
    The contemporary design solutions are merging the boundaries between real and virtual world. The Landscape architecture like the other interdisciplinary field stepped in a contemporary technologies area focused on that, beside the good execution of works, designer solutions has to be more realistic and “touchable”. The opportunities provided by Virtual Reality are certainly not negligible, it is common knowledge that the designs in the world are already presented in this way so the Virtual Reality increasingly used. Following the example of the application of virtual reality in landscape architecture, this paper deals with proposals for the use of virtual reality in landscape architecture so that designers, clients and users would have a virtual sense of scope e.g. rooftop garden, urban areas, parks, roads, etc. It is a programming language that creates a series of images creating a whole, so certain parts can be controlled or even modified in VR. Virtual reality today requires a specific gadget, such as Occulus, HTC Vive, Samsung Gear VR and similar. The aim of this paper is to acquire new theoretical and practical knowledge in the interdisciplinary field of virtual reality, the ability to display using virtual reality methods, and to present through a brief overview the plant species used in the design and construction of an intensive roof garden in a Mediterranean climate, the basic characteristics of roofing gardens as well as the benefits they carry. Virtual and augmented reality as technology is a very powerful tool for landscape architects, when modeling roof gardens, parks, and urban areas. One of the most popular technologies used by landscape architects is Google Tilt Brush, which enables fast modeling. The Google Tilt Brush VR app allows modeling in three-dimensional virtual space using a palette to work with the use of a three dimensional brush. The terms of two "programmed" realities - virtual reality and augmented reality - are often confused. One thing they have in common, though, is VRML - Virtual Reality Modeling Language. In this paper are shown the ways on which this issue can be solved and by the way, get closer the term of Virtual Reality (VR), also all the opportunities which the Virtual reality offered us. As well, in this paper are shown the conditions of Mediterranean climate, the conceptual solution and the plant species which will be used by execution of intensive green roof on the motel “Marković”

    PAINTING THE SKY BLACK

    Get PDF
    Dieter Häussinger, Direktor des HITM und der Medizinischen Klinik und Poliklinik für Gastroenterologie, Hepatologie und Infektiologie und Lehrstuhlinhaber für Innere Medizin an der Heinrich-Heine-Universität Düsseldorf, ist im Bereich der klinischen und experimentellen Hepatologie und Gastroenterologie aktiv. Er engagiert sich für die Weiterentwicklung der klinischen Infektiologie. In diesem Zusammenhang erfolgte die Zertifizierung seiner Klinik als Zentrum für Infektiologie, der Aufbau einer tropenmedizinischen Ambulanz und Infektionssprechstunde, die Errichtung des Leber- und Infektionszentrums mit der einzigen Sonderisoliereinheit in Nordrhein-Westfalen für hochinfektiöse Patienten sowie die Gründung des Hirsch-Instituts für Tropenmedizin

    Fabricate 2014

    Get PDF
    FABRICATE is an international peer reviewed conference that takes place every three years with a supporting publication on the theme of Digital Fabrication. Discussing the progressive integration of digital design with manufacturing processes, and its impact on design and making in the 21st century, FABRICATE brings together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation. Discussion on key themes includes: how digital fabrication technologies are enabling new creative and construction opportunities from component to building scales, the difficult gap that exists between digital modelling and its realisation, material performance and manipulation, off-site and on-site construction, interdisciplinary education, economic and sustainable contexts. FABRICATE features cutting-edge built work from both academia and practice, making it a unique event that attracts delegates from all over the worl

    PAINTING THE SKY BLACK

    Get PDF
    Dieter Häussinger, Direktor des HITM und der Medizinischen Klinik und Poliklinik für Gastroenterologie, Hepatologie und Infektiologie und Lehrstuhlinhaber für Innere Medizin an der Heinrich-Heine-Universität Düsseldorf, ist im Bereich der klinischen und experimentellen Hepatologie und Gastroenterologie aktiv. Er engagiert sich für die Weiterentwicklung der klinischen Infektiologie. In diesem Zusammenhang erfolgte die Zertifizierung seiner Klinik als Zentrum für Infektiologie, der Aufbau einer tropenmedizinischen Ambulanz und Infektionssprechstunde, die Errichtung des Leber- und Infektionszentrums mit der einzigen Sonderisoliereinheit in Nordrhein-Westfalen für hochinfektiöse Patienten sowie die Gründung des Hirsch-Instituts für Tropenmedizin
    corecore